7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The...

61
7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One Parameter Subgroups, Generators, and the Lie Algebra 7.3 Irreducible Representations of the SO(3) Lie Algebra 7.4 Properties of the Rotational Matrices 7.5 Application to Particle in a Central Potential 7.5.1 Characterization of States 7.5.2 Asymptotic Plane Wave States 7.5.3 Partial Wave Decomposition 7.5.4 Summary 7.6 Transformation Properties of Wave Functions and Operators

Transcript of 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The...

Page 1: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7. Rotations in 3-D Space – The Group SO(3)

7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles

7.2 One Parameter Subgroups, Generators, and the Lie Algebra 7.3 Irreducible Representations of the SO(3) Lie Algebra 7.4 Properties of the Rotational Matrices 7.5 Application to Particle in a Central Potential

7.5.1 Characterization of States 7.5.2 Asymptotic Plane Wave States 7.5.3 Partial Wave Decomposition 7.5.4 Summary

7.6 Transformation Properties of Wave Functions and Operators 7.7 Direct Product Representations and Their Reduction7.8 Irreducible Tensors and the Wigner-Eckart Theorem

Page 2: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.1. Description of the Group SO(3)

Definition 7.1: The Orthogonal Group O(3)

O(3) = All continuous linear transformations in 3 which leave the length of coordinate vectors invariant.

( 0 is fixed )

= orthonormal basis vectors along the Cartesian axes. ˆ 1,2,3i i e

3 3: E E

ˆ ˆi ii ix x x e x e x ˆ i

ie x ˆ j ij ie x i i j

jx x

2 i j ii i jx x g x x x

j k i li j k lg x x

ˆ ˆ ˆ ˆ ji i i j i e e e e 0 0 0

2 iix x x

j ii jg x x

3 : i j i jg E

j ii j k l k lg g 3 :

j ii j k l k l E

gij = metric tensor

( is Orthogonal )

Page 3: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

det det detT TΘ Θ Θ Θ 2det Θ 1

det 1Θ

1 0 0

0 1 0

0 0 1S

IInversion: det 1S I

~ix column vectorx ~j Ti i jx g x row vector x g

det E

( Orthogonal )

Let be the matrix with ( i , j )th element = i j = i j .

Matrix formulation:

~j i i T Ti j k l i k l k l Θ Θ ΘΘ E

~i j i Ti i jx x g x x x g x

3 : ~i Tix x x xE

Page 4: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Definition 7.1a: The Special Orthogonal Group SO(3)

SO(3) = Subgroup of O(3) consisting of elements R whose matrix representation R satisfies det R = +1

= Rotational group in 3-D

Note: Any element with det 1Θ can be written as S SR I I R

3 3 SO SO C

Orthogonality condition

can be interpreted as the invariance of the the (2nd) rank (20) tensor

ij :

i k j l i kj l

deti j k lmn i j kl m n Θ

i j k lmn i j kl m nR R R is invariant under rotation

Definition 7.1b: The Special Orthogonal Group SO(3)

SO(3) = Subgroup of O(3) that leaves invariant

Page 5: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Definition 7.1c: The Special Orthogonal Group SO(3)

SO(3) = All 33 orthogonal matrices with unit determinants

Successive rotations:

2 1 2 1ˆ ˆ ji j iR R R Re e 2 1ˆ k j

k j iR Re 2 1ˆ k

k iR Re

Group multiplication ~ Matrix multiplication

Product of orthogonal matrices = orthogonal matrice Closure

Ditto for the existence of identity & inverses.

Each element of SO(3) is specified by 3 (continous) parameters.

Page 6: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.1.1. The Angle-and-Axis Parameterization

Rotation by angle about the direction

ˆ , ,R R n

ˆ , : n

0 with 0 2

Since ˆ ˆR R n n0 we need only

ˆ , n

Group manifold is a sphere of radius π. SO(3) is a compact group.

ˆ 2R n

Redundancy: ˆ ˆR R n n

Group manifold is doubly connected

i.e., 2 kinds of closed curves

1ˆ ˆR R R R m n

ˆ ˆRm n ˆ ˆR R R R m nx x 1ˆR R R R n x

Theorem 7.1: All R*() belong to the same class

Page 7: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.1.2. The Euler Angles

1.

31,2,3 , , , ,R

x y z x y z

3R x x x

2.

, , , ,yx y zR

x y z

yR x x x

3. zR x x x

1z y z yR R R R

13 2 3yR R R R

13 3 3zR R R R

3R

3, , z yR R R R

, ,R x x

3 3yR R R

3 2 3, ,R R R R

, 3, ,2,1zx y zR

0 , 2 0

z' = 3

Page 8: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

3

cos sin 0

sin cos 0

0 0 1

R

2

cos 0 sin

0 1 0

sin 0 cos

R

1

1 0 0

0 cos sin

0 sin cos

R

Relation between angle-axis parameters & Euler angles:

1

2

tan2tan

sin2

2 2cos 2cos cos 12 2

cos cos cos sin sin cos cos sin sin cos cos sin

, , sin cos cos cos sin sin cos sin cos cos sin sin

sin cos sin sin cos

R

Mathematica: Rotations.nb

Page 9: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.2. One Parameter Subgroups, Generators, & the Lie Algebra

ˆˆ 0 2i JR e nn is an 1-parameter subgroup isomorphic to SO(2)

Lemma: 1ˆ ˆRR J R J n n 3R SO

Proof: 1ˆ ˆRR R R R n n

ˆ ˆ 1Ri J i Je R e R n n

1ˆi R J Re n QED

0 !

mm

m

iR J R

m

n

1ˆ0 !

mm

m

iR J R

m

n

The 33 matrix Jn transforms like the vector n under rotation.

ˆ ˆ0R E i J n nUsing one gets the basis matrices

1

0 0 0

0 0 1

0 1 0

J i

2

0 0 1

0 0 0

1 0 0

J i

3

0 1 0

1 0 0

0 0 0

J i

kj j kmmJ i

Page 10: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Theorem 7.2: Vector Generator J

1. 1 mk m kR J R J R , 1,2,3m k

2. ˆk

n kJ J nˆ ˆ kk nn e

Proof of 1:

3R SO

Since 3 2 3, ,R R R R

it suffices to prove explicitly the special cases 2R R & 3R R

This is best done using symbolic softwares like Mathematica.

Alternatively, i j k lmn i j kl m nR R R

p i j k lmn j k lmnpi q l m n ql m nR R R R R R p i j k

p i qR

j k mn i j km n q iqR R R

kj j kmmJ i j kmnj k i

m n q iqR R J R J

j k j kT iq i qR J R J R QED

Note : eq(7.2-7) is wrongj k j k

k j j k k jA A A A A Numerically,j k qmn q i j km n iR R R

Page 11: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Proof of 2: (Tung's version is wrong)

3ˆ ˆ, , 0 ,R e n

3

, , 0i iR n

From part 1: 1

ˆ 3 3, , 0 , , 0 , , 0

k

kJ R J R J R n

kkJ n

QED

Thus, { Jk | k =1,2,3 } is a basis for the generators of all 1-parameter subgroups of SO(3), i.e.,

ˆ

kki n JR e n 3 32, , i J i Ji JR e e e

cos cos cos sin sin cos cos sin sin cos cos sin

, , sin cos cos cos sin sin cos sin cos cos sin sin

sin cos sin sin cos

R

Page 12: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Theorem 7.3: Lie Algebra so(3) of SO( 3)

{ Jk | k = 1,2,3 } is also the basis of the Lie algebra , mk l k lmJ J i J

Proof:

1 mk m kR J R J R 1 m

l k l m l kR d J R d J R d

l k lLHS E i d J J E i d J k l k k lJ i d J J J J

mmm k l k

RHS J i d J mk m l kJ d J

ml k k l m l ki J J J J J

, mk l l k k l lmkJ J J J J J i J m

k lmi J QED

A Lie algebra is a vector space V endowed with a Lie bracket

, ,A B B A

, , , , , , 0A B C B C A C A B

Jacobi's identity

, ,A B C V

Page 13: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Comments:

• The commutation relations of Jk are equivalent to the group multiplication rule of R near E.

• Jk determine the local properties of SO(3)

• Global properties are determined by the topology of the group manifold.

E.g., Rn(2π) = E, Rn(π) = R–n(π), ….

• It's straightforward to verify that the matrix forms of Jk satisfy the commutation relations

• The Lie algebra define earlier is indeed an algebra with [ , ] as the multiplication

• Jk are proportional to components of the angular momentum operator

ˆ, 0H R n ˆ, 0H J n Jn is conserved

Every component of the angular moment is conserved in a system with spherical symmetry

Page 14: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.3. IRs of the SO(3) Lie Algebra so(3)

Local properties of Lie group G are given by those of its Lie algebra

Generators of G = Basis of

Rep's of G are also rep's of .

The converse is also true provided all global restrictions are observed.

Compact Lie group :

1. An invariant measure can be defined so that all theorems for finite groups can be adopted

2. Its IRs are all "finite" dimensional & equivalent to unitary reps

3. IR appears in the regular rep n times

4. Its generators are hermitian operators

SO(3) is compact

Page 15: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Representation space for an IR is a minimal invariant space under G.

Strategy for IR construction (simplest version of Cartan's method):

1. Pick any convenient "standard" vector.

2. Generate the rest of the irreducible basis by repeated application of selected generators / elements of G.

Natural choice of basis vectors of representation space

= Eigenvectors of a set of mutually commuting operators

Example: SO(3)

Generators J1, J2, J3 do not commute:

Definition 7.2: Casimir Operator

C is a Casimir operator of a Lie group G if [ C, g ] = 0 g G

2 2 2 21 2 3J J J J is a Casimir operator, i.e., 2 , 0kJ J

,i j i j k kJ J i J

Schur's lemma: 2J E in any IR

Page 16: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Convention: Choose eigenvectors of J2 and J3 as basis.

Raising (J+) & lowering (J–) operators are defined as: 1 2J J i J

Useful identities: 3 ,J J J 3, 2J J J

†J J 2 2

3 3J J J J J 23 3J J J J

Let | , m be an normalized eigenvector of J2 & J3 in rep space V:

3 , ,J m m m 2 , ,mJ m m

2J E on V m m

If V is a minimal invariant subspace, then

Thus, we can simplify the notation:

2J m m 3J m m m

Page 17: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

3 3J J m J J J m 1m J m 1J m m

kJ m m k

V is finite dimensional max value j

3J j j j 0J j

so that 2 23 3J j J J J J j 1j j j

1m k m k if 0m k with

Page 18: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Also, min value n

3J n n n 0J n

so that 2 23 3J n J J J J n 1n n n

Hence 1 1j j n n n j

Since kJ j j for some positive integer k

we have j k j 2

kj

1 3 50, , 1, , 2, ,2 2 2

For a given j, the dimension of V is 2j+1 with basis

, 1, , 1,m m j j j j

, 1 , , 1 ,j j j j

Page 19: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Theorem 7.4: IR of Lie Algebra so(3)

The IRs are characterized by j = 0,1/2, 1, 3/2, 2, …. .

Orthonormal basis for the j-rep is , 1, , 1,j m m j j j j

with the following properties:

2 1J j m j m j j 3J j m j m m

1 1 1J j m j m j j m m

Proof:

Let 1 mJ j m j m 1 mJ j m j m

23 3 1j m J J j m j m J J J j m 1 1j j m m

* 1 1m mj m J J j m j m j m

1 1m j j m m

* 1 1m mj m J J j m j m j m 1 1m j j m m

αm is real Condon-Shortley convention

Page 20: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Let U(,,) be the unitary operator on V corresponding to R(,,) SO3.

The j-IR is given by

, , , ,mj

mU j m j m D

3 32, , i J i Ji JR e e e

3 32, , i J i Ji JU j m e e e j m 3 2i J i J i me e j m e

3 2i J i J i me j m j m e j m e

mi m j i m

mj m e d e 2

m i Jj

md j m e j m where

, ,m mj i m j i m

m mD e d e

( m in e– i m is not a tensor index so it's excluded from the summation convention)

Condon-Shortley convention: Dj(J2) is an imaginary anti-symmetric matrix

dj() are real & orthogonal

( Sum over m' only)

Page 21: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Example 1: j = 1/2 Basis:

11 1

02 2

3 31/ 23

3 3

J JD J

J J

10

21

02

1 01

0 12

1 1 1 11 1

2 2 2 2J

1/ 2 0 1

0 0D J

1

1 1 1 11 1

2 2 2 2J

1/ 2 0 0

1 0D J

1

3

1

2

1/ 2 1/ 2 1/ 21

1

2D J D J D J

0 11

1 02

1

1

2

01

02

i

i

2

1

2

Pauli matrix

1/ 2 1/ 2 1/ 22

1

2D J D J D J

i

01 1

12 2

1/ 2 1

2D J σ

Page 22: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Useful properties of the Pauli matrices: i j i j i j k ki

21/ 2 2

i

d e

2 2 1

20

1 1

2 ! 2 2 1 ! 2

k kk k

k

E ik k

2

j E

2cos sin2 2

E i

cos sin2 2

sin cos2 2

2 2 2 2

1/ 2

2 2 2 2

cos sin2 2

, ,

sin cos2 2

i i i i

i i i i

e e e e

D

e e e e

1ˆ ˆ2 2R R R R n y where ˆ ˆRn y

21/ 2 1/ 2 1/ 2 1ˆ 2

iD R D R e D R n 1/ 2 1/ 2 1D R E D R E

Since R(2π) = E, D1/2 is a double-valued rep for SO(3)

Mathematica: Rotations.nb

Page 23: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Example 2: j = 1 1 1 , 1 0 , 1 1

3 3 3

13 3 3 3

3 3 3

11 11 11 1 0 11 1 1

10 11 10 10 10 1 1

1 1 11 1 1 1 0 1 1 1 1

J J J

D J J J J

J J J

1 0 0

0 0 0

0 0 1

1

0 1 0

2 0 0 1

0 0 0

D J

1 0 2 1 1J

1 1 2 1 0J

1

0 0 0

2 1 0 0

0 1 0

D J

1 0 2 1 1J

1 1 2 1 0J

12

0 1 0

1 0 120 1 0

iD J

212

1 0 110 2 0

21 0 1

D J

31 12 2D J D J

Mathematica: Rotations.nb

1

1 cos 2 sin 1 cos1

2 sin cos 2 sin21 cos 2 sin 1 cos

d

Error in eq(7.3-23)

Page 24: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Theorem 7.5: IRs of SO( 3)

The IRs of so(3), when applied to SO(3), give rise to

1. Single-valued representations for integer j.

2. Double-valued representations for half-integer j.

Proof:

323 2

mm i Jj j

m mD R D e

2i m

m m e

2i j km m e

2 jm m

Since 1ˆ 32 2R R R R n where ˆ ˆRn z

23 2jjD R E QED

Comments:

• IRs are obtained for region near E w/o considerations of global properties

• SO(3): Group manifold doubly connected Double-valued IRs

• SO(2): Group manifold infinitely connected m–valued IRs ( m=1,2,3,… )

k = integer

Page 25: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.4 Properties of the Rotational Matrices DJ(,,)

Unitarity: 1 †, , , ,j jD D

, ,jD

3 3 3 32 2i J i J i J i Ji J i Je e e e e e E

Speciality (Unit Determinant):

1ˆ 3det detj jD R D R R R n ˆ ˆRn z 3det jD R

1j

i m

m j

e

1

ji m i m

m

e e

3det i JjD e

3 , 1, , 1,jD J diag j j j j wrt basis { | j m }

Orthogonality of d j() ( Condon-Shortley convention ):

Dj(J2) set to be imaginary & anti-symmetric Dj(J) are real

2i Jj jd D e are real & orthogonal

i.e., 1j j T jd d d

1/ 22 2

1

2D J

Page 26: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Complex Conjugation of Dj ( Condon-Shortley convention ):

3* *3

i Jj jD R D e Dj(J3) is real 3i JjD e 3jD R

2 3 2jD R R R 2 ˆ ˆR z z

2* *2

i Jj jD R D e Dj(J2) is imaginary 2i JjD e 2jD R

2 2 2jD R R R ˆ ˆ ˆ ˆR a R b R b R an n n n

Let 2j jY D R m j mj m

mmY

1* , , , ,j j j jD Y D Y

3 2 3, ,j jD D R R R 3 2 3j j jD R D R D R

Ex. 7.7

Error in eq(7.4-4) See: A.R.Edmonds, "Angular momentum in quantum mechanics", p.59

Page 27: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Symmetry Relations of d j() ( Condon-Shortley convention ):

2m i Jj j

md D e mj

md m j mj

md

m m mj

md

mm j mj j m

mm md Y

Relation to Spherical Harmonics (To be derived in Chapter 8):

1) Integer j = l :

*

0

2 1, , ,0

4ml

lm

lY D

0

!cos

!m ml

lm

l mP d

l m

00 0cos cos l

l lP P d

2) Arbitary j :

, cosm m m m mj

lmd P Jacobi Polynomials

3) Orthonormality & completeness : See § 7.7

Error in eq(7.4-6). See Edmonds

Page 28: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Characters:

All rotations of the same angle belong to the same class.

3

jmj j

mm j

D R

j

i m

m j

e

1

1

i ji j

i

e e

e

1/ 2 1/ 2

/ 2 / 2

i j i j

i i

e e

e e

1sin

2

sin2

j

j = 1/2:

1/ 2 sin

sin2

2cos2

j = 1: 1

3sin2

sin2

sin cos cos sin2 2

sin2

22cos cos

2

2cos 1

Page 29: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.5. Application to a Particle in a Central Potential

V = V(r) Spherical symmetry

, 0H U R 3R SO

, 0iH J 1,2,3i

Page 30: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.5.1. Characterization of States

CSCO = { H, J2, J3 }

, , , ,H E l m E l m E

Eigenstates = { | E, l, m }

2 , , , , 1J E l m E l m l l

3 , , , ,J E l m E l m m

0,1, 2,l

, 1, , 1,m l l l l

x-rep wave function: , ,Elm E l m x x

Spherical coordinates:

, ,r x ˆ, , 0U r z 3 20, 0,i J i Je e r

3 ˆ ˆi Je r r z z 3 ˆ 0J r z

, , , , , ,E lm r r E l m †ˆ , , 0 , ,r U E l m z

†ˆ , , , , 0ml

mr E l m D

z

0 arbitrary

Page 31: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

3ˆ ˆ, , , ,i Jr E l m r e E l m z z ˆ , , i mr E l m e z

Since this holds for all , we must have

0ˆ ˆ, , , , 0mr E l m r E l z z

0m El r ˆ , , 0E l r r E l z

†ˆ, , , , , , 0m

Elm l mr r E l m D

z 0† , , 0El l m

r D

*

0, , 0

mlE l r D 4

,2 1El lmr Yl

,El lmr Y

4

2 1El E lr rl

Page 32: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.5.2. Asymptotic Plane Wave States

1V r

r then (x) ~ plane wave as r

If for r

Let P p p p

, ,p p

& ˆ ,p p p

ˆ, , 0U p z

*2 1

00 1

2 1, , cos , , , , 0

4mll

p l m d d p D

2

2plane waveHm

P

p p2

2E

m

pp p

Relation to angular momentum eigenstates (To be derived in Chapter 8):

Linear momentum eigenstates

, , ,lmd p Y cosd d d

Inverse: *

0

, , , , ,l

lml m l

p p l m Y

Page 33: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.5.3. Partial Wave Decomposition

Scattering of a particle by V(r):

Initial state: ˆ , 0,i i ip p arbitrary p z final state:

, ,f p p

Scattering amplitude: ˆ, ,f iT p T p p p z

T is the T-matrix. In the Born approximation, T = V.

V = V(r) T is invariant under rotation, i.e.,

, , , , l l mm lp l m T p l m T p

23, , 0T J T J

*0, , , , , 0 0,0f i lm l

l m l

T Y p l m T p l Y

p p

*

0

, , , , ,l

lml m l

p p l m Y

*0 0, , , 0 , , 0 0,0l l

l

Y p l T p l Y

*0

0

ˆ , , 0 0, 0ll

p p l Y

z

0

2 1, cos

4l l

lY P

2 1cos

4 l ll

lT E P

where , , 0 , , 0lT E p l T p l

Page 34: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.5.4. Summary

Group theoretical technique:

• Separates kinematic ( symmetry related ) & dynamic effects.

• For problems with spherical symmetry,

angular part ~ symmetry

radial part ~ dynamics

Computational tips:

,l ml m Y

0

l

l m l

l m l m I

d I

0 0ˆ ,l ml m Y z *

0

2 1, , 0

4mll

D

ˆ, , , , 0 ,r E l m r E l l m z

Page 35: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.6. Transformation Properties of Wave Functions & Operators

U R R x x xRx x i i jjx R x 3R SO

3d x x x 3d x x x

' U R 3 'd x x x

Theorem 7.6: Transformation Formula for Wave Functions

1' R x x

Proof:

3' U R d x U R x x 3d x x x

3 1d x R x x 3 1d x R x x

3 'd x x x QED

3 3d x d x

' x x

since detR = 1

Page 36: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Example 1: Plane Waves p p

p x x p ie p x

p px x

1R p x1i Re p x Ti Re p x i Re p x

U R px U R x p R x p

p x Rp p

Example 2: Angular Momentum States E l m

, ,r E l m x ˆE l l mr Y x

' U R E l m ml

mE l m D R

' , , 'r x ˆ mlE l l m mr Y D R

x

1R x 1 ˆE l l mr Y R x

1 ˆ ˆml

l m l m mY R Y D R

x x ( See § 8.6 )

ˆ , , 0 ,r E l l m z

Page 37: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Extension: Pauli Spinors Basis vectors:

,x 1

2

1/ 2, ,U R R D R

x x

3 , ,d x x x 3 ,d x x x

' U R 3 1/ 2,d x R D R x x

sum over implied

3 1/ 2 1,d x D R R x x

3 , 'd x x x

1/ 2 1' D R R x x

This forms a representation for SO(3). See Problem 7.10

Page 38: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Definition 7.3: Irreducible Wave Functions & Fields

1'mm j n

nD R R x x

, ,m m j j x is an irreducible wave function or field of spin j

if it transforms under rotations as

Examples:

Spin 1 ( vector ) fields: E, B, v.

Spin ½ fields: Pauli spinors.

Direct sum of two spin ½ fields: Dirac spinors

Spin 2 ( tensor ) fields: Stress tensor

Page 39: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Coordinate operators X x x x

Theorem 7.7: Transformation Formula for Vector Operators

j jX xx x

1 ji j iU R X U R X R

i, j = 1, 2, 3

Proof:

1i iU R X U R X U R U Rx x 1iU R X U R

x

i iU R x x x x 1 i j

jR x x

1 1 ii j

jU R X U R R X

1 i j

jR X x

j ijX R QED

This also forms a representation of SO(3) on the operator space

Any operator that transforms like X is a vector operator.

1 ji j iU R P U R P R

E.g.,

Other tensor operators can be similarly defined

c.f.i i j

jx R x

Page 40: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Field operators

xPauli-spinor field operator

0 x x

annihilates a particle of spin at x

| 0 = vacuum

1 10 U R U R U R U R x

10 'U R U R x

'U R

0 0U R

1/ 2 1 'D R R

x [ (x) is a spin ½

field ] 1/ 2 1 0 'D R R

x

1 1/ 2 1U R U R D R R

x x 1/ 2 1' D R R x x

c.f.

1/ 2 1 1/ 2D R D R

*1/ 2D R

1 1/ 2U R U R R D R

x x

1 1/ 2U R U R D R R

x x

1 ji j iU R X U R X R

c.f.

1U U

Page 41: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Generalization

1, 2, ...,mA m Nx

1 1 mm n

nU R A U R D R A R

x x

Let transforms under SO(3) as

D(R) is N-D

If D is an IR equivalent to j = s, then A is a spin–s field.

Examples:

• E(x), B(x), A(x) are spin-1 fields

• Dirac spinors: D = D½ D½

Page 42: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.7. Direct Product Representations and their Reduction

Let Dj & Dj be IRs of SO(3) on V & V, with basis | j m & | j m , resp.

The direct product rep Dj j on VV, wrt basis

,U R m m U R j m U R j m

',n nj j

m mn n D R D R

Dj j is single-valued if j + j = integer,

double-valued if j + j = half-integer

Dj j is reducible if neither j nor j = 0.

,j m j m m m is given by

'n nj j

m mj n D R j n D R

,'

,,

n nj j

m mn n D R

i.e.,

,' '

,

n n n nj j j j

m m m mD R D R D R

' 'j j j jD R D R D R

Page 43: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Example: j = j = ½ | m m' = | + + , | + – , | – + , | – –

Let a

1/ 2 1/ 2 1/ 2 1/ 2,n n n n

U R a n n D R D R D R D R

1/ 2 1/ 2 1/ 2 1/ 2, D R D R D R D R

1/ 2 1/ 2 1/ 2 1/ 2, D R D R D R D R

1/ 2 1/ 2 1/ 2 1/ 2, D R D R D R D R

1/ 2 1/ 2 1/ 2 1/ 2, D R D R D R D R

1/ 2 1/ 2 1/ 2 1/ 2, , D R D R D R D R

1/ 2deta D R a

| a spans a 1-D subspace invariant under SO(3) .

1/ 2 1/ 2 0 1D D D D½ ½ is reducible. To be proved:

Page 44: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Proof:

' 'j j j jD R d D R d D R d n n n

' 'j j j jLHS E i d J E i d J n n

' ' 'j j j j j jE E i d J E E J n n

' ' 'j j j j j jJ J E E J n n n

' 'j j j jRHS E i d J n

'j jJ J n n

Theorem 7.8:

' ' 'j j j j j jJ J E E J n n n

Page 45: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Reduction of Dj j ' :

' '3 3 3, j j j jJ m m J E E J m m

' '3 3j j j jJ m E m E m J m

m m m m m m m m m m

,m m m m

, ' 'j m j j m j

,M m m

max 'M j j with 1 state 3 , ' ' , 'J j j j j j j

' 1M j j with 2 states 3 1, ' ' 1 1, 'J j j j j j j

3 , ' 1 ' 1 , ' 1J j j j j j j

min 'M j j with 1 state 3 , ' ' , 'J j j j j j j

' 1M j j with 2 states 3 1, ' ' 1 1, 'J j j j j j j

3 , ' 1 ' 1 , ' 1J j j j j j j

Page 46: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Let || J M be eigenstates of { J2, J3 }

2 , 1 ,J J M J J J M

3 , ,J J M M J M

Linked states have same M.

Only 1 state for M = j + j ' it belongs to J = j + j ' &

', ' , 'j j j j j j

22 '', ' , 'j jJ j j j j J J j j

Justification:

'3 3 3', ' , 'j jJ j j j j J J j j ' , 'j j j j

' ' 1 ', 'j j j j j j j j

(Problem 7.8)

' ', 'j j j j j j

Page 47: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Other members in the multiplet

' , ', ' 1, , ' 1, 'j j M M j j j j j j j j

can be generated by repeated use of J– . E.g., ', ' 2 ' ', ' 1J j j j j j j j j j j 1 1 2J J J J J

' , 'j jJ J j j 2 1, ' 2 ' , ' 1j j j j j j

'

', ' 1 1, ' , ' 1' '

j jj j j j j j j j

j j j j

{ || j+j', M } thus generated spans an [ 2(j+j')+1 ]–D invariant subspace corresponding to J = j + j'.

Using a linear combination of

1, ' & , ' 1j j j j

that is orthogonal to ', ' 1j j j j

we can generate the multiplet corresponding to J = j + j' – 1.

as ' 1, ' 1j j j j

Arbitrary phase factor to be fixed by, say, the Condon-Shortley convention.

(Problem 7.8)

Page 48: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Dimension of D j j = ( 2 j+1 ) ( 2 j+1 )

'

'

2 1 ' ' ' 1 ' ' 1 'j j

J j j

J j j j j j j j j j j j j

' 1 ' ' 1 'j j j j j j j j

2 2' 1 'j j j j 2 1 2 ' 1j j

'

'

'

j jj j J

J j j

D D

Clebsch–Gordan Coefficients:

, ,J M m m m m J M , 'm m m m j j J M

, ,m m J M J M m m 'J M J M j j m m

Transformation between | J M & | m, m' :

*' 'm m j j J M J M j j m m M m m

Page 49: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Condon-Shortley convention:

Both { | m, m' } and { | J M } are orthonormal.

' 'm m j j J M J M j j m m real

, ' 0j J j j j J J , ',j j J

Other notations for the CGCs:

' ',J M j j m m J M j j m m , 'J M j m j m

; , 'C J M j m j m ' ;C J j j M m m

( Largest M & m )

Page 50: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

D½ ½ re-visited: | m, m' = | + + , | + – , | – + , | – –

11

J = 1, 0

11 2 10J 1/ 2 1/ 2J J

110

2 10 2 1, 1J 1

2

1 1

10 0

2 ( orthogonal to | 1 0 )

1 1 1 111 1

2 2 2 2

1 1 1 1 1 1 1 1 110 10

2 2 2 2 2 2 2 2 2

1 1 1 11 1 1

2 2 2 2

1 1 1 1 1 1 1 1 10 0 0 0

2 2 2 2 2 2 2 2 2

CGCs:

Page 51: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Appendix V

A square root is to be understood over every coefficient.

1 1 1 1 1 1 1 1 10 0 0 0

2 2 2 2 2 2 2 2 2

Page 52: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Other methods to calculate the CGCs are discussed in books by Edmond, Hamermesh, Rose, ….

Some special values we've calculated:

' ' ', ' 1j j j j j j j j

1, ' ' ', ' 1'

jj j j j j j j j

j j

', ' 1 ' ', ' 1

'

jj j j j j j j j

j j

Page 53: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

General Properties of the CGCs

Angular Momentum Selection Rule:

' 0m m j j J M

unless m m M and ' 'j j J j j

Orthogonality and Completeness:

' ' J MJ MJ M j j m m m m j j J M

' ' m mn nm m j j J M J M j j n n

Page 54: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Symmetry Relations:

'' '

j j Jm m j j J M m m j j J M

', ' ,

j j Jm m j j J M

' 2 1, '

2 1j J m J

M m J j j mj

Wigner 3-j Symbols:

'

''

2 1

j j Mj j J

m m j j J Mm m M j

is invariant under:

• Cyclic permutation of the columns.

• Change sign of 2nd row & multiply by (–) j+j'+J

• Transpose 2 columns & multiply by (–) j+j'+J

See Edmond / Hamermesh / Messiah for proof.

Page 55: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Reduction of a direct product representation ( c.f. Theorem 3.13 )

' ' 'm m Mj j J

n n ND R D R m m j j J M D R J N j j n n

'' 'M m mJ J j j

J M n nD R J M j j m m D R D R n n j j J M

, ,U R n n U R J N J N n n

', ,m m Mj j J

n n Nm m D R D R J M D R J N n n

' , ,m m Mj j J

n n ND R D R m m J M D R J N n n

Page 56: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

7.8. Irreducible Tensors & the Wigner-Eckart Theorem

Definition 7.4: Irreducible Spherical tensor

Operators { Os | = –s, …, s } form an irreducible spherical tensor of

angular momentum s wrt SO(3) if

1s s sU R O U R O D R

3R SO

Os is the th spherical component of the tensor.

Page 57: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Theorem 7.9: Differential Characterization of Irreducible Spherical tensor

2 , 1s sJ O s s O 3 ,s sJ O O

1, 1 1s sJ O s s O

Proof:

For an infinitesimal rotation about the kth axis,

1s s sU R O U R O D R

sk kLHS E i d J O E i d J ,s s

kO i d J O

s skRHS O i d D J

s s s

kO i d O D J

, s s sk kJ O O D J

3sD J

1 1 1sD J s s

Using

23 3 1J J J J J

completes the proof.

Page 58: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Examples:

, 0sO U R 3R SO 0s 1.

2. 3

1 1, ,

2 2J J J

is an irreducible spherical vector with s = 1 & = { 1, 0, –1}

3 ,J J J

, 02

JJ

3, 2

2

JJ J

3, 2J J J

3 3, 0J J

This is easily proved using

3 ,s sJ O O 3 ,

2 2

J JJ

1, 1 1s sJ O s s O

3, 22

JJ J

3, 22

JJ J

3, 22

JJ J

, 02

JJ

Page 59: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Definition 7.5: Vector Operator – Cartesian Components

1. Operators 1, 2, 3lA l are the Cartesian components of a vector if

, k l mk l mJ A i A

2.

11, 2, 3

nl l jT l are the Cartesian components of a nth rank tensor if

1

1 2 1 1, n

n n n

k l m k l m

k l l m l l l l mJ T i T T

Actually, the above can be derived from the more familiar definition of Cartesian tensors in terms of rotations in E3

1 m

k l k m k lR A R A R

using ki JkR e and ji i j kk

J i

1

1 1 1

1 n

n n n

m m

k l l k l l k kl lR T R T R R

c.f. Theorems 7.2, 3

Page 60: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

Examples:

• { Jk } are Cartesian components of a vector operator (Theorems 7.2)

• Ditto { Pk } .

• A 2nd rank ( Cartesian) tensor Tj k transforms under rotation according to the D11 rep.

It is reducible.1 1 0 1 2D D D D 1 1 0 1 2D D D D or

Properties of a 2nd Rank Cartesian Tensor:

• Its trace is invariant under SO(3); it transforms as D0.

• The 3 independent components of its anti-symmetric part transforms like a spherical vector ( as D1 ) under SO(3).

• The 5 independent components of its traceless symmetric part transforms like a spherical tensor of s = 2 ( as D2 ) under SO(3).

Higher rank Cartesian tensors can be similarly reduced ( Chap 8 )

Page 61: 7. Rotations in 3-D Space – The Group SO(3) 7.1 Description of the Group SO(3) 7.1.1 The Angle-and-Axis Parameterization 7.1.2 The Euler Angles 7.2 One.

A physical system admits a symmetry group

Operators belonging to the same IR are related

Observables must be irreducible tensors

Matrix elements of { Os } satisfy the Wigner-Eckart theorem ( § 4.3 )

' ' , 's sj m O j m j m s j m j O j

Selection Rules:

' 0sj m O j m

unless 'j s j j s & m m

Branching Ratios:

' ,'

' ' ,

s

s

j m s j mj m O j m

j n O j n j n s j m