6.776 High Speed Communication Circuits Lecture 22 Noise ...

70
6.776 High Speed Communication Circuits Lecture 22 Noise in Integer-N and Fractional-N Frequency Synthesizers Michael Perrott Massachusetts Institute of Technology May 3, 2005 Copyright © 2005 by Michael H. Perrott

Transcript of 6.776 High Speed Communication Circuits Lecture 22 Noise ...

Page 1: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

6.776High Speed Communication Circuits

Lecture 22

Noise in Integer-N and Fractional-N Frequency Synthesizers

Michael PerrottMassachusetts Institute of Technology

May 3, 2005

Copyright © 2005 by Michael H. Perrott

Page 2: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

2 M.H. Perrott MIT OCW

Outline of PLL Lectures

Integer-N Synthesizers- Basic blocks, modeling, and design- Frequency detection, PLL Type

Noise in Integer-N and Fractional-N Synthesizers- Noise analysis of integer-N structure- Sigma-Delta modulators applied to fractional-N

structures- Noise analysis of fractional-N structure

Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques- PLL Design Assistant Software- Quantization noise reduction for improved bandwidth

and noise

Page 3: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

3M.H. Perrott MIT OCW

Frequency Synthesizer Noise in Wireless Systems

Zin

Zo LNA To Filter

From Antennaand Bandpass

Filter

PC boardtrace

PackageInterface

LO signal

MixerRF in IF out

FrequencySynthesizer

ReferenceFrequency

VCO

f

PhaseNoise

fo

Synthesizer noise has a negative impact on system- Receiver – lower sensitivity, poorer blocking performance- Transmitter – increased spectral emissions (output spectrum must

meet a mask requirement)Noise is characterized in frequency domain

Page 4: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

4M.H. Perrott MIT OCW

Impact of Synthesizer Noise on TransmittersSx(f)

f

Sout(f)

ffLO

Sy(f)

ffRFfIF

x(t) y(t)

out(t)

Synthesizer

close-inphase noise

far-awayphase noise

reductionof SNR

out-of-bandemission

Synthesizer noise can be lumped into two categories- Close-in phase noise: reduces SNR of modulated signal- Far-away phase noise: creates spectral emissions

outside the desired transmit channelThis is the critical issue for transmitters

Page 5: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

5M.H. Perrott MIT OCW

Impact of Remaining Portion of TransmitterSx(f)

f

Sout(f)

ffLO

Sy(f)

ffRFfIF

x(t) y(t)

out(t)

Synthesizer

close-inphase noise

far-awayphase noise

reductionof SNR

out-of-bandemission

To Antenna

Band SelectFilter

PA

Power amplifier- Nonlinearity will increase out-of-band emission and create

harmonic contentBand select filter- Removes harmonic content, but not out-of-band emission

Page 6: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

6M.H. Perrott MIT OCW

Why is Out-of-Band Emission A Problem?

Near-far problem- Interfering transmitter closer to receiver than desired

transmitter- Out-of-emission requirements must be stringent to

prevent complete corruption of desired signal

Transmitter 2 Base

Station

Transmitter 1

Desired Channel( )

Interfering Channel( )

Relative PowerDifference (dB)

Desired Channel

Interfering Channel

Page 7: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

7M.H. Perrott MIT OCW

Specification of Out-of-Band Emissions

ffRF

MaximumRF OutputEmission

(dBm) M0 dBm

M1 dBm

M2 dBm

Channel Spacing= W Hz

IntegrationBandwidth= R Hz

M3 dBm

Maximum radiated power is specified in desired and adjacent channels- Desired channel power: maximum is M0 dBm- Out-of-band emission: maximum power defined as

integration of transmitted spectral density over bandwidth R centered at midpoint of each channel offset

Page 8: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

8M.H. Perrott MIT OCW

Example – DECT Cordless Telephone Standard

Standard for many cordless phones operating at 1.8 GHzTransmitter Specifications- Channel spacing: W = 1.728 MHz- Maximum output power: Mo = 250 mW (24 dBm)- Integration bandwidth: R = 1 MHz- Emission mask requirements

Page 9: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

9M.H. Perrott MIT OCW

Synthesizer Phase Noise Requirements for DECT

Calculations (see Lecture 16 of MIT OCW 6.976 for details)

Graphical display of phase noise mask

-8 dBm X1 = -29.6 dBcX2 = -51.6 dBc

-92 dBc/Hz-114 dBc/Hz

24 dBm

-30 dBm

ChannelOffset

MaskPower

Maximum Synth. NoisePower in Integration BW

Maximum Synth. Phase Noise at Channel Offset

01.728 MHz3.456 MHz

X3 = -65.6 dBc -128 dBc/Hz-44 dBm5.184 MHz

set by required transmit SNR

ffLO

SynthesizerSpectrum

(dBc)-92 dBc/Hz

-114 dBc/Hz

-128 dBc/Hz

Channel Spacing = 1.728 MHz

Page 10: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

10M.H. Perrott MIT OCW

Critical Specification for Phase Noise

Critical specification is defined to be the one that is hardest to meet with an assumed phase noise rolloff- Assume synthesizer phase noise rolls off at -20

dB/decadeCorresponds to VCO phase noise characteristic

For DECT transmitter synthesizer- Critical specification is -128 dBc/Hz at 5.184 MHz offset

ffLO

SynthesizerSpectrum

(dBc)-92 dBc/Hz

0 dBc

-114 dBc/Hz

-128 dBc/Hz

Channel Spacing = 1.728 MHz

Phase NoiseRolloff: -20 dB/dec

CriticalSpec.

Page 11: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

11M.H. Perrott MIT OCW

Receiver Blocking Performance

fRFf

Synthesizer

LNATo

IF ProcessingStage

Band SelectFilter

ChannelFilter

Band Select Filter MustPass All Channels

-73-58-39

RF Input(dBm)

fIF

fLO

f

Channel FilterBandwidth

IF Output(dBm)

f

SynthesizerSpectrum(dBc/Hz)

0 dBc

Radio receivers must operate in the presence of large interferers (called blockers)Channel filter plays critical role in removing blockers

Passes desired signal channel, rejects interferers

Page 12: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

12M.H. Perrott MIT OCW

Impact of Nonidealities on Blocking Performance

fRFf

Synthesizer

LNATo

IF ProcessingStage

Band SelectFilter

ChannelFilter

Band Select Filter MustPass All Channels

-73-58-39

RF Input(dBm)

fIF

fLO

f

Channel FilterBandwidth

IF Output(dBm)

Synthesizer Noise and Mixer/LNA Distortion

Produce Inband Interference

Phase Noise(dBc/Hz)

Spurious Noise(dBc)

f

SynthesizerSpectrum(dBc/Hz)

0 dBc

Blockers leak into desired band due to- Nonlinearity of LNA and mixer (IIP3)- Synthesizer phase and spurious noise

In-band interference cannot be removed by channel filter!

Page 13: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

13M.H. Perrott MIT OCW

Quantifying Tolerable In-Band Interference Levels

fRFf

Synthesizer

LNATo

IF ProcessingStage

Band SelectFilter

ChannelFilter

Band Select Filter MustPass All Channels

-73-58-39

RF Input(dBm)

fIF

fLO

f

Channel FilterBandwidth

IF Output(dBm)

Synthesizer Noise and Mixer/LNA Distortion

Produce Inband Interference

Phase Noise(dBc/Hz)

Spurious Noise(dBc)

f

SynthesizerSpectrum(dBc/Hz)

Min SNR: 15-20 dB

0 dBc

Digital radios quantify performance with bit error rate (BER)- Minimum BER often set at 1e-3 for many radio systems- There is a corresponding minimum SNR that must be achieved

Goal: design so that SNR with interferers is above SNRmin

Page 14: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

14M.H. Perrott MIT OCW

Example – DECT Cordless Telephone Standard

Receiver blocking specifications- Channel spacing: W = 1.728 MHz- Power of desired signal for blocking test: -73 dBm- Minimum bit error rate (BER) with blockers: 1e-3

Sets the value of SNRmin

Perform receiver simulations to determine SNRmin

Assume SNRmin = 15 dB for calculations to follow- Strength of interferers for blocking test

Page 15: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

15M.H. Perrott MIT OCW

Synthesizer Phase Noise Requirements for DECT

ffLO

SynthesizerSpectrum

(dBc)

X0 dBc

0 dBc

X1 dBcX2 dBc

RF

LO

IF

fRFf

RF Input(dBm)

fIFf

Channel FilterBandwidth

In-ChannelIF Output

(dBm)

Inband InterferenceProduced by

Synth. Phase Noise

W = 1.73 MHz

Channel Spacing= 1.73 MHz

Channel Spacing= 1.73 MHz

SNRmin: 15 dB

Y1 = 15 dB X1 = -30 dBcX2 = -49 dBcY2 = 34 dB

ChannelOffset

Relative BlockingPower

Maximum Synth. NoisePower at Channel Offset

1.728 MHz3.456 MHz

X3 = -55 dBcY3 = 40 dB5.184 MHz

0 dB X0 = -15 dBc0-92 dBc/Hz

-111 dBc/Hz

Maximum Synth. PhaseNoise at Channel Offset

-117 dBc/Hz

-77 dBc/Hz

-73 dBm-58 dBm-39 dBm-33 dBm

X3 dBc

Page 16: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

16M.H. Perrott MIT OCW

Graphical Display of Required Phase Noise Performance

Mark phase noise requirements at each offset frequency

Calculate critical specification for receive synthesizer- Critical specification is -117 dBc/Hz at 5.184 MHz offset

Lower performance demanded of receiver synthesizer than transmitter synthesizer in DECT applications!

ffLO

SynthesizerSpectrum

(dBc)

-92 dBc/Hz

0 dBc

-111 dBc/Hz

-117 dBc/Hz

Channel Spacing = 1.728 MHz

Phase NoiseRolloff: -20 dB/dec

CriticalSpec.

Page 17: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

17M.H. Perrott MIT OCW

Noise Modeling for Frequency Synthesizers

vin(t)vc(t)

vn(t)

PLL dynamicsset VCO

carrier frequency f

PhaseNoise

fo

Sout(f)

Extrinsic noise(from PLL)

out(t)

Intrinsicnoise

To PLL

PLL has an impact on VCO noise in two ways- Adds noise from various PLL circuits- Suppresses low frequency VCO noise through PLL feedback

Focus on modeling the above based on phase deviations- Simpler than dealing directly with PLL sine wave output

Page 18: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

18M.H. Perrott MIT OCW

Phase Deviation Model for Noise Analysis

vin(t)vc(t)

vn(t)

PLL dynamicsset VCO

carrier frequency f

PhaseNoise

fo

Frequency-domain viewSout(f)

Extrinsic noise(from PLL)

Intrinsicnoise

2πKvs

Φout

Φvn(t)

2cos(2πfot+Φout(t))out(t)

To PLL

Model the impact of noise on instantaneous phase- Relationship between PLL output and instantaneous phase

- Output spectrum

Note: Kv units are Hz/V

Page 19: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

19M.H. Perrott MIT OCW

Phase Noise Versus Spurious Noise

Phase noise is non-periodic

- Described as a spectral density relative to carrier power

Spurious noise is periodic

- Described as tone power relative to carrier power

SΦout(f)Sout(f)

f-fo fo

1dBc/Hz

Sout(f)

f-fo fo

dBc1

fspur

21 dspur

fspur

2

Page 20: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

20M.H. Perrott MIT OCW

Sources of Noise in Frequency Synthesizers

PFD ChargePump

e(t) v(t)

N

LoopFilter

DividerVCO

ref(t)

div(t)

f

Charge PumpNoise

VCO Noise

f

-20 dB/dec

1/Tf

ReferenceJitter

f

ReferenceFeedthrough

T

f

DividerJitter

Extrinsic noise sources to VCO- Reference/divider jitter and reference feedthrough- Charge pump noise

Page 21: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

21M.H. Perrott MIT OCW

Modeling the Impact of Noise on Output Phase of PLL

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

espur(t)Φjit[k] Φvn(t)Ιcpn(t)

Icp

VCO Noise

f0

SΦjit(f)

f0

SΙcpn(f)

f0

SEspur(f)

Divider/ReferenceJitter

ReferenceFeedthrough

Charge PumpNoise

1/T f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilter

Divider

VCO

Determine impact on output phase by deriving transfer function from each noise source to PLL output phase- There are a lot of transfer functions to keep track of!

Page 22: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

22M.H. Perrott MIT OCW

Simplified Noise Model

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

Φvn(t)en(t)

Icp

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilter

Divider

VCO

Refer all PLL noise sources (other than the VCO) to the PFD output- PFD-referred noise corresponds to the sum of these

noise sources referred to the PFD output

Page 23: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

23M.H. Perrott MIT OCW

Impact of PFD-referred Noise on Synthesizer Output

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

Φvn(t)en(t)

Icp

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilter

Divider

VCO

Transfer function derived using Black’s formula

Page 24: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

24M.H. Perrott MIT OCW

Impact of VCO-referred Noise on Synthesizer Output

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

Φvn(t)en(t)

Icp

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilter

Divider

VCO

Transfer function again derived from Black’s formula

Page 25: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

25M.H. Perrott MIT OCW

A Simpler Parameterization for PLL Transfer Functions

Define G(f) as

- A(f) is the open loop transfer function of the PLL

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

Φvn(t)en(t)

Icp

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilter

Divider

VCO

Always has a gainof one at DC

Page 26: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

26M.H. Perrott MIT OCW

Parameterize Noise Transfer Functions in Terms of G(f)

PFD-referred noise

VCO-referred noise

Page 27: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

27M.H. Perrott MIT OCW

Parameterized PLL Noise Model

Φvn(t)en(t)

Φout(t)Φc(t)Φn(t)

Φnvco(t)Φnpfd(t)

fo1-G(f)

foG(f)�πNα

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

Divider Controlof Frequency Setting

(assume noiseless for now)

PFD-referred noise is lowpass filteredVCO-referred noise is highpass filteredBoth filters have the same transition frequency values- Defined as fo

Page 28: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

28M.H. Perrott MIT OCW

Impact of PLL Parameters on Noise Scaling

Φvn(t)en(t)

Φout(t)Φc(t)Φn(t)

Φnvco(t)Φnpfd(t)

fo1-G(f)

foG(f)�πNα

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

Divider Controlof Frequency Setting

(assume noiseless for now)

Sen(f)�πNα

2

Rad

ians

2 /Hz

SΦvn(f)

f0

PFD-referred noise is scaled by square of divide value and inverse of PFD gain- High divide values lead to large multiplication of this noise

VCO-referred noise is not scaled (only filtered)

Page 29: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

29M.H. Perrott MIT OCW

Optimal Bandwidth Setting for Minimum Noise

Φvn(t)en(t)

Φout(t)Φc(t)Φn(t)

Φnvco(t)Φnpfd(t)

fo1-G(f)

foG(f)�πNα

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

Divider Controlof Frequency Setting

(assume noiseless for now)

Sen(f)�πNα

2

Rad

ians

2 /Hz

SΦvn(f)

f(fo)opt0

Optimal bandwidth is where scaled noise sources meet- Higher bandwidth will pass more PFD-referred noise- Lower bandwidth will pass more VCO-referred noise

Page 30: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

30M.H. Perrott MIT OCW

Resulting Output Noise with Optimal Bandwidth

Φvn(t)en(t)

Φout(t)Φc(t)Φn(t)

Φnvco(t)Φnpfd(t)

fo1-G(f)

foG(f)�πNα

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

Divider Controlof Frequency Setting

(assume noiseless for now)

Sen(f)�πNα

2

Rad

ians

2 /Hz

SΦvn(f)

f(fo)opt0

Rad

ians

2 /Hz SΦnpfd(f)

SΦnvco(f)

f(fo)opt0

PFD-referred noise dominates at low frequencies- Corresponds to close-in phase noise of synthesizer

VCO-referred noise dominates at high frequencies- Corresponds to far-away phase noise of synthesizer

Page 31: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

31M.H. Perrott MIT OCW

Analysis of Charge Pump Noise Impact

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

en(t) Φvn(t)Ιcpn(t)

Icp

VCO Noise

f0

SΙcpn(f)

Charge PumpNoise

f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilter

Divider

VCO

PFD-referredNoise

We can refer charge pump noise to PFD output by simply scaling it by 1/Icp

Page 32: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

32M.H. Perrott MIT OCW

Calculation of Charge Pump Noise Impact

Contribution of charge pump noise to overall output noise

- Need to determine impact of Icp on SIcpn(f)

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

en(t) Φvn(t)Ιcpn(t)

Icp

VCO Noise

f0

SΙcpn(f)

Charge PumpNoise

f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilter

Divider

VCO

PFD-referredNoise

Page 33: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

33 M.H. Perrott MIT OCW

Impact of Transistor Current Value on its Noise

M2M1

Ibias

currentsource

current bias

Id

idbias2 id

2

Cbig

WL

Charge pump noise will be related to the current it creates as

Recall that gdo is the channel resistance at zero Vds- At a fixed current density, we have

Page 34: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

34M.H. Perrott MIT OCW

Impact of Charge Pump Current Value on Output Noise

Recall

Given previous slide, we can say

- Assumes a fixed current density for the key transistors in the charge pump as Icp is varied

Therefore

- Want high charge pump current to achieve low noise- Limitation set by power and area considerations

Page 35: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

Fractional-N Frequency Synthesizers

M.H. Perrott MIT OCW

Page 36: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

36M.H. Perrott MIT OCW

Bandwidth Constraints for Integer-N Synthesizers

PFD LoopFilter(1/T = 20 MHz)

ref(t) out(t)

N[k]

Divider

1/T Loop FilterBandwidth << 1/T

PFD output has a periodicity of 1/T- 1/T = reference frequency

Loop filter must have a bandwidth << 1/T- PFD output pulses must be filtered out and average value

extracted

Closed loop PLL bandwidth often chosen to be afactor of ten lower than 1/T

Page 37: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

37M.H. Perrott MIT OCW

Bandwidth Versus Frequency Resolution

PFD LoopFilter

1.80 1.82 GHz

(1/T = 20 MHz)ref(t) out(t)

out(t)

Sout(f)

N[k]

N[k]9091

Divider

frequency resolution = 1/T

1/T

1/T Loop FilterBandwidth << 1/T

Frequency resolution set by reference frequency (1/T)- Higher resolution achieved by lowering 1/T

Page 38: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

38M.H. Perrott MIT OCW

Increasing Resolution in Integer-N Synthesizers

PFD LoopFilter

1.80 1.8002 GHz

(1/T = 200 kHz)ref(t) out(t)

out(t)

Sout(f)

N[k]

N[k]90009001

Divider

frequency resolution = 1/T

1/T

1/T Loop FilterBandwidth << 1/T

10020 MHz

Use a reference divider to achieve lower 1/T- Leads to a low PLL bandwidth ( < 20 kHz here )

Page 39: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

39M.H. Perrott MIT OCW

The Issue of Noise

PFD LoopFilter

1.80 1.8002 GHz

(1/T = 200 kHz)ref(t) out(t)

out(t)

Sout(f)

N[k]

N[k]90009001

Divider

frequency resolution = 1/T

1/T

1/T Loop FilterBandwidth << 1/T

10020 MHz

Lower 1/T leads to higher divide value- Increases PFD noise at synthesizer output

Page 40: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

40M.H. Perrott MIT OCW

Modeling PFD Noise Multiplication

Influence of PFD noise seen in above model- PFD spectral density multiplied by N2 before influencing PLL

output phase noise

Φvn(t)en(t)

Φout(t)Φc(t)Φn(t)

Φnvco(t)Φnpfd(t)

fo1-G(f)

foG(f)�πNα

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

Divider Controlof Frequency Setting

(assume noiseless for now)

Sen(f)�πNα

2

Rad

ians

2 /Hz

SΦvn(f)

f(fo)opt0

Rad

ians

2 /Hz SΦnpfd(f)

SΦnvco(f)

f(fo)opt0

High divide values high phase noise at low frequencies

Page 41: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

41M.H. Perrott MIT OCW

Fractional-N Frequency Synthesizers

Break constraint that divide value be integer- Dither divide value dynamically to achieve fractional values- Frequency resolution is now arbitrary regardless of 1/TWant high 1/T to allow a high PLL bandwidth

DitheringModulator

PFD LoopFilter

1.80 1.82 GHz

(1/T = 20 MHz)ref(t) out(t)

out(t)

Sout(f)

N[k]Nsd[k]

Nsd[k]90

90

91

91Divider

frequency resolution << 1/T

1/T

Page 42: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

42M.H. Perrott MIT OCW

A Nice Dithering Method: Sigma-Delta Modulation

Sigma-Delta dithers in a manner such that resulting quantization noise is “shaped” to high frequencies

M-bit Input 1-bitD/A

Analog Output

Input

QuantizationNoise

Digital InputSpectrum

Analog OutputSpectrum

Time Domain

Frequency Domain

Σ−∆

Digital Σ−∆Modulator

Page 43: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

43M.H. Perrott MIT OCW

Linearized Model of Sigma-Delta Modulator

x[k] y[k] y[k]x[k]q[k]

r[k]

z=ej2πfT

z=ej2πfT

NTF

STF

Σ−∆

Hn(z)

Hs(z)

1

Sr(ej2πfT)= 112

Sq(ej2πfT)= |Hn(ej2πfT)|2112

Composed of two transfer functions relating input and noise to output- Signal transfer function (STF)

Filters input (generally undesirable)- Noise transfer function (NTF)

Filters (i.e., shapes) noise that is assumed to be white

Page 44: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

44M.H. Perrott MIT OCW

Example: Cutler Sigma-Delta Topology

x[k] u[k]

e[k]

y[k]

H(z) - 1

Output is quantized in a multi-level fashionError signal, e[k], represents the quantization errorFiltered version of quantization error is fed back to input- H(z) is typically a highpass filter whose first tap value is 1

i.e., H(z) = 1 + a1z-1 + a2 z-2

- H(z) – 1 therefore has a first tap value of 0Feedback needs to have delay to be realizable

Page 45: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

45M.H. Perrott MIT OCW

Linearized Model of Cutler Topology

x[k] u[k]

e[k]

y[k]

H(z) - 1

x[k] u[k]r[k]

e[k]

y[k]

H(z) - 1

Represent quantizer block as a summing junction in which r[k] represents quantization error- Note:

It is assumed that r[k] has statistics similar to white noise- This is a key assumption for modeling – often not true!

Page 46: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

46M.H. Perrott MIT OCW

Calculation of Signal and Noise Transfer Functions

x[k] u[k]

e[k]

y[k]

H(z) - 1

x[k] u[k]r[k]

e[k]

y[k]

H(z) - 1

Calculate using Z-transform of signals in linearizedmodel

- NTF: Hn(z) = H(z)- STF: Hs(z) = 1

Page 47: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

47M.H. Perrott MIT OCW

A Common Choice for H(z)

m = 1

m = 2

m = 3

Mag

nitu

de

0Frequency (Hz)

1/(2T)

8

7

6

5

4

3

2

1

0

Page 48: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

48M.H. Perrott MIT OCW

Example: First Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with input of

00

Am

plitu

de

Mag

nitu

de (d

B)

Sample Number 200 0

1

Frequency (Hz) 1/(2T)

x[k] u[k]

e[k]

y[k]

H(z) - 1

Page 49: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

49M.H. Perrott MIT OCW

Example: Second Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with input of

x[k] u[k]

e[k]

y[k]

H(z) - 1

Mag

nitu

de (d

B)

0 Sample Number 200 0-1

Am

plitu

de

2

1

0

Frequency (Hz) 1/(2T)

Page 50: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

50M.H. Perrott MIT OCW

Example: Third Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with input of

x[k] u[k]

e[k]

y[k]

H(z) - 1

Mag

nitu

de (d

B)

0 0Sample Number 200

Am

plitu

de

4

3

2

1

0

-1

-2

-3Frequency (Hz) 1/(2T)

Page 51: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

51M.H. Perrott MIT OCW

Observations

Low order Sigma-Delta modulators do not appear to produce “shaped” noise very well- Reason: low order feedback does not properly

“scramble” relationship between input and quantization noise

Quantization noise, r[k], fails to be whiteHigher order Sigma-Delta modulators provide much better noise shaping with fewer spurs- Reason: higher order feedback filter provides a much

more complex interaction between input and quantization noise

Page 52: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

52M.H. Perrott MIT OCW

Warning: Higher Order Modulators May Still Have Tones

Quantization noise, r[k], is best whitened when a “sufficiently exciting” input is applied to the modulator- Varying input and high order helps to “scramble”

interaction between input and quantization noiseWorst input for tone generation are DC signals that are rational with a low valued denominator- Examples (third order modulator):

Mag

nitu

de (d

B)

0 Frequency (Hz) 1/(2T)

Mag

nitu

de (d

B)

0 Frequency (Hz) 1/(2T)

x[k] = 0.1 x[k] = 0.1 + 1/1024

Page 53: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

53M.H. Perrott MIT OCW

Cascaded Sigma-Delta Modulator Topologies

x[k]

y[k]

q1[k]Σ∆M1[k]

y1[k]

q2[k]Σ∆M2[k]

y2[k]

Σ∆M3[k]

y3[k]

M 1 1

Digital Cancellation LogicMultibitoutput

Achieve higher order shaping by cascading low order sections and properly combining their outputsAdvantage over single loop approach- Allows pipelining to be applied to implementation

High speed or low power applications benefitDisadvantages- Relies on precise matching requirements when combining

outputs (not a problem for digital implementations)- Requires multi-bit quantizer (single loop does not)

Page 54: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

54M.H. Perrott MIT OCW

MASH topology

x[k]

y[k]

r1[k]Σ∆M1[k]

y1[k]

r2[k]Σ∆M2[k]

y2[k]

u[k]

Σ∆M3[k]

y3[k]

M 1 1

1-z-1 (1-z-1)2

Cascade first order sectionsCombine their outputs after they have passed through digital differentiators

Page 55: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

55M.H. Perrott MIT OCW

Calculation of STF and NTF for MASH topology (Step 1)

Individual output signals of each first order modulator

Addition of filtered outputs

x[k]

y[k]

r1[k]Σ∆M1[k]

y1[k]

r2[k]Σ∆M2[k]

y2[k]

u[k]

Σ∆M3[k]

y3[k]

M 1 1

1-z-1 (1-z-1)2

Page 56: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

56M.H. Perrott MIT OCW

Calculation of STF and NTF for MASH topology (Step 1)

x[k]

y[k]

r1[k]Σ∆M1[k]

y1[k]

r2[k]Σ∆M2[k]

y2[k]

u[k]

Σ∆M3[k]

y3[k]

M 1 1

1-z-1 (1-z-1)2

Overall modulator behavior

- STF: Hs(z) = 1- NTF: Hn(z) = (1 – z-1)3

Page 57: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

57M.H. Perrott MIT OCW

Sigma-Delta Frequency Synthesizers

PFD ChargePump

Nsd[m]

out(t)e(t)

Σ−∆Modulator

v(t)

N[m]

LoopFilter

DividerVCO

ref(t)

div(t)

MM+1

Fout = M.F Fref

f

Σ−∆Quantization

Noise

Fref

Riley et. al.,JSSC, May 1993

Use Sigma-Delta modulator rather than accumulator to perform dithering operation- Achieves much better spurious performance than classical

fractional-N approach

Page 58: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

58M.H. Perrott MIT OCW

Background: The Need for A Better PLL Model

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)H(f)

1N

�πα e(t)

Φvn(t)en(t)

Icp

VCO-referredNoise

f0

SEn(f)

PFD-referredNoise

1/T f0

SΦvn(f)

-20 dB/dec

PFDChargePump

LoopFilterDivider

VCO

N[k]

Classical PLL model- Predicts impact of PFD and VCO referred noise sources- Does not allow straightforward modeling of impact due

to divide value variationsThis is a problem when using fractional-N approach

Page 59: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

59M.H. Perrott MIT OCW

A PLL Model Accommodating Divide Value Variations

Φdiv[k]

Φref[k] KV

jf

v(t) Φout(t)H(f)

1Nnom

2π z-1

z=ej2πfT1 - z-1n[k]

T1

Φd[k]

T2π

e(t)

PFD

Divider

LoopFilterC.P. VCO

α

Tristate: α=1XOR: α=2

Icp

en(t)f

0

SEn(f)

PFD-referredNoise

1/TΦvn(t)

VCO-referredNoise

f0

SΦvn(f)

-20 dB/dec

See derivation in Perrott et. al., “A Modeling Approach for Sigma-Delta Fractional-N Frequency Synthesizers …”, JSSC, Aug 2002

Page 60: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

60M.H. Perrott MIT OCW

Parameterized Version of New Model

Φvn(t)

T G(f)

2π z-1

1 - z-1

n[k]

en(t)

Φout(t)Φc(t)Φd(t)Φn(t)

Φnvco(t)Φnpfd(t)

fo1-G(f)

fo

fo

G(f)�πNnom

z=ej2πfT

α

T�πα

espur(t)

Φjit[k]

Ιcpn(t)

G(f)n[k] Φc(t)

jf1Fc(t)

Freq. PhaseD/A and Filter

Alternate Representation

fo

Noise

Dividevalue

variation

f0

SEn(f)

PFD-referredNoise

1/T

VCO-referredNoise

f0

SΦvn(f)

-20 dB/dec

Page 61: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

61M.H. Perrott MIT OCW

Spectral Density Calculations

y[k]x[k]H(ej2πfT)

y(t)x[k]H(f)

y(t)x(t)H(f)case (a): CT CT

case (b): DT DT

case (c): DT CT

Case (a):

Case (b):

Case (c):

Page 62: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

62M.H. Perrott MIT OCW

Example: Calculate Impact of Ref/Divider Jitter (Step 1)

∆tjit[k]

(∆tjit)rms= β sec.

�π Φjit[k]T

T�πT f

0

SΦjit(ej2πfT)

t

Div(t)

β22

Assume jitter is white- i.e., each jitter value independent of values at other time

instantsCalculate spectra for discrete-time input and output- Apply case (b) calculation

Page 63: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

63M.H. Perrott MIT OCW

Example: Calculate Impact of Ref/Divider Jitter (Step 2)

Φjit[k]fo

fo

G(f)Nnom

Φn (t)

SΦn(f)

Nnom

f0

2

T

TT1 �π

Tβ2

2

∆tjit[k]

(∆tjit)rms= β sec.

�π Φjit[k]T

T�πT f

0

SΦjit(ej2πfT)

t

Div(t)

β22

Compute impact on output phase noise of synthesizer- We now apply case (c) calculation

- Note that G(f) = 1 at DC

Page 64: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

64M.H. Perrott MIT OCW

Now Consider Impact of Divide Value Variations

Φvn(t)

T G(f)

2π z-1

1 - z-1

n[k]

en(t)

Φout(t)Φc(t)Φd(t)Φn(t)

Φnvco(t)Φnpfd(t)

fo1-G(f)

fo

fo

G(f)�πNnom

z=ej2πfT

α

T�πα

espur(t)

Φjit[k]

Ιcpn(t)

G(f)n[k] Φc(t)

jf1Fc(t)

Freq. PhaseD/A and Filter

Alternate Representation

fo

Noise

Dividevalue

variation

f0

SEn(f)

PFD-referredNoise

1/T

VCO-referredNoise

f0

SΦvn(f)

-20 dB/dec

Page 65: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

65M.H. Perrott MIT OCW

Divider Impact For Classical Vs Fractional-N Approaches

G(f)n[k] Fout(t)

D/A and Filter

T1n(t)

1/T1

fo

G(f)n[k] Fout(t)

D/A and Filter

T1

1/T1

foDitheringModulator

nsd(t) nsd[k]

Classical Synthesizer

Fractional-N Synthesizer

Note: 1/T block represents sampler (to go from CT to DT)

Page 66: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

66M.H. Perrott MIT OCW

Focus on Sigma-Delta Frequency Synthesizer

G(f)n[k]

n[k]

nsd[k]

nsd[k]

nsd(t) Fout(t)

Fout(t)

D/A and Filter

T1

1/T1

foΣ−∆

freq=1/T

Divide value can take on fractional values- Virtually arbitrary resolution is possible

PLL dynamics act like lowpass filter to remove much of the quantization noise

Page 67: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

67M.H. Perrott MIT OCW

Quantifying the Quantization Noise Impact

Calculate by simply attaching Sigma-Delta model- We see that quantization noise is integrated and then

lowpass filtered before impacting PLL output

Φvn(t)

T G(f)

2π z-1

1 - z-1

n[k]nsd[k] Φn[k]

En(t)

Φout(t)Φdiv(t)Φtn,pll(t)

fo1-G(f)

fo

fo

G(f)�πNnom

z=ej2πfT

α

f0 f0

-20 dB/decSEn

(f)

Sq(ej2πfT)

SΦvn(f)

1/T

f0

z=ej2πfT

Σ−∆

q[k]

r[k]

NTF

STF

Hn(z)

Hs(z)

Sr(ej2πfT)= 112

PFD-referredNoise

VCO-referredNoise

Σ−∆Quantization

Noise

Page 68: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

68M.H. Perrott MIT OCW

A Well Designed Sigma-Delta Synthesizer

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

Frequency

Spe

ctra

l Den

sity

(dB

c/H

z)

f0 1/T

10 kHz 100 kHz 1 MHz 10 MHz

PFD-referrednoise

SΦout,En(f)

VCO-referred noise

SΦout,vn(f)

Σ−∆noise

SΦout,∆Σ(f)

fo = 84 kHz

Order of G(f) is set to equal to the Sigma-Delta order- Sigma-Delta noise falls at -20 dB/dec above G(f) bandwidth

Bandwidth of G(f) is set low enough such that synthesizer noise is dominated by intrinsic PFD and VCO noise

Page 69: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

69M.H. Perrott MIT OCW

Impact of Increased PLL Bandwidth

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

Frequency

Spe

ctra

l Den

sity

(dB

c/H

z)

f0 1/T

10 kHz 100 kHz 1 MHz 10 MHz

PFD-referrednoise

SΦout,En(f)

VCO-referred noise

SΦout,vn(f)

Σ−∆noise

SΦout,∆Σ(f)

f0 1/T

10 kHz 100 kHz 1 MHz 10 MHz

Frequency

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

Spe

ctra

l Den

sity

(dB

c/H

z)

PFD-referrednoise

SΦout,En(f)

VCO-referred noise

SΦout,vn(f)

Σ−∆noise

SΦout,∆Σ(f)

fo = 84 kHz fo = 160 kHz

Allows more PFD noise to pass throughAllows more Sigma-Delta noise to pass throughIncreases suppression of VCO noise

Page 70: 6.776 High Speed Communication Circuits Lecture 22 Noise ...

70M.H. Perrott MIT OCW

Impact of Increased Sigma-Delta Order

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

Frequency

Spe

ctra

l Den

sity

(dB

c/H

z)

f0 1/T

10 kHz 100 kHz 1 MHz 10 MHz

PFD-referrednoise

SΦout,En(f)

VCO-referred noise

SΦout,vn(f)

Σ−∆noise

SΦout,∆Σ(f)

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

Spe

ctra

l Den

sity

(dB

c/H

z)f0 1/T

10 kHz 100 kHz 1 MHz 10 MHz

PFD-referrednoise

SΦout,En(f)

VCO-referred noise

SΦout,vn(f)

Σ−∆noise

SΦout,∆Σ(f)

Frequency

m = 2 m = 3

PFD and VCO noise unaffectedSigma-Delta noise no longer attenuated by G(f) such that a -20 dB/dec slope is achieved above its bandwidth