3.Compressed Air System

20
Screw compressor

Transcript of 3.Compressed Air System

Page 1: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 1/20

Screw compressor

Page 2: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 2/20

Centrifugal Compressor

Page 3: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 3/20

Compressor efficiency

¼½

»¬«

¹ º

 ¸©ª

¨v 1-P

P 0.612/PQ1-K  NK /  NK 

1-K 

s

ds

 N = No. of stagesK = Ratio of specific heats (1.35 for air)

Ps = suction pressure in kg/cm2

Pd = Discharge pressure in kg/cm2

Q = Actual air flow (m3/min.)

Actual kW = � 3 V I v PF as measured

Efficiency of compressor and motor combination =kWActual

kWlTheoretica100 v

Theoretical kW =

Page 4: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 4/20

Energy Efficiency practices incompressed air systems

Page 5: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 5/20

Effect of Intake Air temperatureon Power Consumption

Inlet

Temperature (0C)

Relative Air

Delivery (%)

Power Saved

(%)

10.0 102.0 + 1.4

15.5 100.0 Nil

21.1 98.1 - 1.3

26.6 96.3 - 2.5

32.2 94.1 - 4.0

37.7 92.8 - 5.0

43.3 91.2 - 5.8

Every 40C rise in inlet air temperature results in a higher energy consumption by 1 % to

achieve equivalent output. Hence, cool air intake leads to a more efficient compression.

Page 6: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 6/20

  Air Inlet Filter on Power

Consumption

Pressure Drop

Across air filter

(mmWC)

Increase in Power

Consumption (%)

0 0

200 1.6

400 3.2

600 4.7800 7.0

For every 25 mbar pressure lost at the inlet due to choked filters, the

compressor performance is reduced by about 2 percent.

Page 7: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 7/20

ElevationPerce tage elative

Vol metric Efficie cy

om are ith ea Levelltit e

Meters

Barometric

Press re

Mbart 4 bar t 7 bar

Sea level 1013 100.0 100.0500 945 98.7 97.7

1000 894 97.0 95.2

1500 840 95.5 92.7

2000 789 93.9 90.0

2500 737 92.1 87.0

It is evident that compressors located at higher altitudes consume more power 

to achieve a particular delivery pressure than those at sea lvel, as the

compression ratio is higher.

Page 8: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 8/20

Efficacy of Inter and AfterCoolers

DetailsImperfect

Cooling

Perfect

Cooling

C illed Water

Cooling

1 Stage inlet temperature 0C 21.1 21.1 21.1

2 Stage inlet temperature 0C 26.6 21.1 15.5Capacity (m3/min) 15.5 15.6 15.7

Shaft Power (kW) 76.3 75.3 74.2

Specific energy consumption

kW (m3/min)

4.9 4.8 4.7

Percent Change + 2.1 - - 2.1

It can e seen from t e ta le t at an increase of 5.50C in t e inlet to t e second stage

results in a 2 % increase in t e specific energy consumption. Use of cold water

reduces power consumption.

Page 9: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 9/20

Cooling WaterRequirement

Com ressor y e

Mi im m q a tity of  

Cooli g ater req ire

for 2.85 m3

/mi . F at 7bar (l m)

Single-stage 3.8

T o-stage 7.6

Single-stage ith a ter-cooler 15.1

T o-stage ith a ter-cooler 18.9

Page 10: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 10/20

Power Reduction throughPressure Reduction

Pressure

ReductionPower Reduction (%)

rom( ar)

To ( ar)

Single-

stageWater-

cooled

Two-stageWater-

cooled

Two-stage Air-

cooled

6.8 6.1 4 4 2.6

6.8 5.5 9 11 6.5

A reduction in the delivery pressure of a compressor would

reduce the power consumption.

Page 11: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 11/20

Expected Specific Power Consumption ofReciprocating Compressors (based on motor

input)

Press re bar No. of tages ecific Po er

k /170 CMH

1 1 6.29

2 1 9.64

3 1 13.04

4 2 14.57

7 2 18.34

8 2 19.16

10 2 21.74

15 2 26.22

Page 12: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 12/20

Energy Wastage due toSmaller Pipe Diameter

Pi e

Nomi al

Bore (mm)

Press re ro (bar)

er 100 meters

Eq ivale t o er

losses (k )

40 1.80 9.5

50 0.65 3.4

65 0.22 1.2

80 0.04 0.2

100 0.02 0.1

Typical acceptable pressure drop in industrial practice is 0.3 bar in

mains header at the farthest point and 0.5 bar in distribution system

Page 13: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 13/20

Discharge of Air throughOrifice

Gauge

Pressure

ar

0.5 mm 1 mm 2 mm 3 mm 5 mm 10 mm 12.5 mm

0.5 0.06 0.22 0.92 2.1 5.7 22.8 35.5

1.0 0.08 0.33 1.33 3.0 8.4 33.6 52.5

2.5 0.14 0.58 2.33 5.5 14.6 58.6 91.4

5.0 0.25 0.97 3.92 8.8 24.4 97.5 152.0

7.0 0.33 1.31 5.19 11.6 32.5 129.0 202.0

Page 14: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 14/20

Cost of Air Leakage

Orifice Size

mm

KW

Wasted

* nergy Waste

(Rs/Year)

0.8 0.2 8000

1.6 0.8 32000

3.1 3.0 120000

6.4 12.0 480000

* based on Rs. 5 / kWh ; 8000 operating hours; air at 7.0 bar 

Page 15: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 15/20

Heat Recovery 

 A s noted earlier, compressing air generates heat. In fact,industrial-sized air compressors generate a substantial amount of heat that can be recovered and put to useful work. More than80% of the electrical energy going to a compressor becomesheat. Much of this heat can be recovered and used for

producing hot water or hot air.

Typical uses for recovered heat include supplemental spaceheating, industrial process heating, water heating, makeup airheating, and boiler makeup water preheating. Recoverable heat from a compressed air system is not, however, normally hot 

enough to be used to produce steam directly. A s much as 80-93% of the electrical energy used by anindustrial air compressor is converted into heat. In many cases,a properly designed heat recovery unit can recover anywherefrom 50-90% of this available thermal energy and put it touseful work heating air or water

Page 16: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 16/20

Heat Recovery with Air-Cooled Rotary Screw

Compressors Air-cool ed packaged rotary scr ew compr essors  ar e very  amenabl e to heat  r ecovery for  spac e heating or  other  hot  air us es. Ambi ent  atmospheric  air  is  heat ed by  passing it  across  the syst em's  aft ercool er  and  lubricant  cool er, wher e it extracts  heat  from both the compr ess ed  air  and  the lubricant  that  is  us ed  to lubricat e and  cool  the compr essor.

Sinc e packaged  compr essors  ar e typically  enclos ed  in  cabin ets  and  

alr eady  includ e heat exchangers  and  fans, the only  syst em modifications  n eed ed  ar e the addition  of  ducting and  another  fan  to handl e the duct  loading and  to eliminat e any back  pr essur e on  thecompr essor  cooling fan. T hes e heat  r ecovery  syst ems  can bemodulat ed with a simpl e thermostatically-controll ed  hinged vent. When  heating is  not  r equir ed  -- such as  in  the summer  months  -- thehot  air  can be duct ed  outsid e the building. T he vent  can  also bethermostatically  r egulat ed  to prov id e a constant  t emperatur e for  a heat ed  ar ea.

Hot  air  can be us ed  for  spac e heating, industrial  drying, pr eheating aspirat ed  air  for  oil burn ers, or  any  other  application  r equiring warm air.  As  a rul e of  thumb, approximat ely  50,000 B tu/hour  of en ergy  is  av ailabl e for each 100 cfm of  capacity  (at  full-load).  Air  t emperatur es  of 30 to 40oF  above the cooling air  inl et  t emperatur e can be

obtain ed. Recovery effici enci es  of 80-9 0% ar e common 

Page 17: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 17/20

Steps n s mp e s op- oormethod for leak

quantificationShut off compressed air operated equipments (or conduct test when no equipment is using compressed air).

Run the compressor to charge the system to set pressure of operation

Note the sub-sequent time taken for on load and off load  cycles of the compressors. For accuracy, take ON & OFF timesfor 8 10 cycles continuously. Then calculate total ON Time(T) and Total OFF time (t).

The system leakage is calculated asSystem leakage (cmm) = Q v T / (T + t)

Q = A ctual free air being supplied during trial, in cubicmeters per minute

T = Time on load in minutes

t = Time unload in minutes

Page 18: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 18/20

Leak test: exampleCompressor capacity (CMM) = 35Cut in pressure kg/SQCMG = 6.8

Cut out pressure kg/SQCMG = 7.5

On load kW drawn = 188 kW  

Unload kW drawn = 54 kW  

 Average On-load time = 1.5 minutes Average Unload time = 10.5 minutes

Comment on leakage quantity and avoidable loss of power due toair leakages.

a) Leakage quantity (CMM) =

= 4.375 CMM

b) Leakage per day = 6300 CM/day

c) Specific power for compressed air generation=

= 0.0895 kwh/m3

d) Power lost due to leakages/day = 563.85 kWh

355.105.1

1.5v

CMH6035

k h188

v

Page 19: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 19/20

Capacity Assessment inShop-floor

Isolate the compressor along with its individual receiver being taken for test 

from main compressed air system by tightly closing the isolation valve orblanking it, thus closing the receiver outlet.

Open water drain valve and drain out water fully and empty the receiver and thepipe line. Make sure that water trap line is tightly closed once again to start  the test.

Start the compressor and activate the stop watch.

Note the time taken to attain the normal operational pressure P  2 (in the

receiver) from initial pressure P 1.Calculate the capacity as per the formulae given below :

Actual ree air disc arge Min./ NMT

V

P

PP Q 3

0

12v

!

Wher e

P2 = Final pr essur e af er  f illing ( g/cm2

a) 

P1 = Initial pr essur e ( g/cm2a) af ter bleeding

P0 = Atmospher ic Pr essur e ( g/cm2

a) 

V = Stor age volume in m3

which includes r eceiver  af ter cooler  and deliver  piping

T = Time take to build up pr essur e to P2 in minutes

Page 20: 3.Compressed Air System

8/6/2019 3.Compressed Air System

http://slidepdf.com/reader/full/3compressed-air-system 20/20