3. Statistical mechanics Lasers and Fiber Optics.pptx

download 3. Statistical mechanics  Lasers and Fiber Optics.pptx

of 35

Transcript of 3. Statistical mechanics Lasers and Fiber Optics.pptx

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    1/35

    Statistical mechanicsIntroduction to MB, BE, FD distributions

    Application of probability theory (largepopulations)hermodynamics as a natural result ofstatistics and mechanics (classical and!uantum) at the microscopic le"el

    #hat is most li$ely to happen (no actualmotions or interactions )%"erall beha"ior of system properties ofparticles

    &annot re"eal the history but can say for

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    2/35

    Statistical distributions

    o determine the most probable ay in hich agi"en amount of energy Eis distributed among Nmembers of the system of particles in thermale!uilibrium at absolute temperature T

    (no. of differentways in which

    particles can be

    arranged)

    P W

    Eg. Rolling two dices: Total 36 possibilities

    To get 12: (6,6)

    (12) 1 36P

    =

    ( ) ( ) ( )To get !: (1, "), 2,3 , 3, 2 , ",1

    (!) " 36P =

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    3/35

    eneral formula for WMost probable distribution is the one ha"ing ma*imum W

    #$%ber of particles of energy

    ( ) ( ) ( )n g f

    =

    ( ) & n$%ber of states of energy

    & statistical weigth corresponding to energy

    g

    ( ) & distrib$tion f$nction

    & a'erage n$%ber of particles in each state of energy

    & probability of occ$pancy of each state of energy

    f

    Three types of distrib$tion f$nctions eist

    according to their properties of the particles

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    4/35

    Distribution function

    Maxwell-Boltzmann

    Bose-Einstein Fermi-Dirac

    Applies tosystems of

    Identical,distinguishableparticles

    Identical,indistinguishableparticles that do not

    obey +auli principle

    Identical,indistinguishableparticles that obey

    +auli principle

    1

    ep( )A kT

    1

    ep( ) 1)*F kT

    1

    ep( ) * 1)F kT +( )f

    &ategoryof particles

    &lassical Bosons Fermions

    +ropertiesof particles

    Any spin, particlesare far enoughapart so a"efunctions do not

    o"erlap

    Integral spin a"efunctions aresymmetric tointerchange of

    particles

    -alf.integral spina"e functions areantisymmetric tointerchange of

    particlesE*amples

    Molecules of a gas +hotos in a ca"ity,phonons in a solid,li!uid -e at lo

    Free electrons in ametal, nucleons innucleus

    +ropertiesofdistribution

    /o limit to numberof particles perstate

    /o limit to numberof particles perstate moreparticles per statethanf

    MB

    at lo

    energies

    /e"er more than 0particle per statefeer particles perstate than fMBat lo

    energiesapproachesfMBat

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    5/35

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    6/35

    Fermi.Dirac distribution

    ( )

    1( )

    1FFD kT

    fe

    = +

    ( )

    1+, ( )

    1FF FD kT

    T fe

    = =

    +

    1

    To appreciate the significance of the -er%i energy, let $s consider a syste%of fer%ions at T & + and in'estigate the occ$pancy of states whose energies

    are less than Fand greater than F

    1

    1e=

    +

    1

    + 1=

    +

    1=

    ( )

    1+, ( )

    1FF FD kT

    T fe

    = = +2

    1

    1e=

    +1

    =

    +=

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    7/35

    3ASE4 5 Basics

    6ery nearlymonochromatic

    -ighly coherent

    Does not di"erge

    E*tremely intense

    Light Ampli7cation by Stimulated Emission ofRadiation

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    8/35

    approach

    ( )i j i ijN N B u v = j jiN A ( )j jiN B u v

    ( )*j i j ji jiN N A B u v = +.t e/$ilibri$%,

    i j j iN N = ( ) ( )*i ij j ji jiN B u v N A B u v = +

    0i'iding both sides by

    and sol'ing for ( )

    j jiN B

    u v ( ) ( )ij jii

    j ji ji

    B AN

    u v u vN B B

    = +

    ( )

    1

    ji ji

    iji

    j ji

    A Bu v

    BN

    N B

    =

    Njato%s

    Niato%s

    ti%$lated

    absoption

    pontaneo$s

    e%ission

    ti%$lated

    e%ission

    #o of ato%s that

    absorb photons

    oefficient of proportionality

    Energy density

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    9/35

    Einstein9s approach (contd')

    ep( ) ep( )i i j jN C E kT N C E kT = =

    ato%s%olec$les in a gas follow 4 distrib$tion

    ep ( ) *i i jj

    NE E kT

    N= ep( ) *j iE E kT= ep( )hv kT=

    ( )1

    ji ji

    iji

    j ji

    A B

    u v BN

    N B

    =

    ep( ) 1

    ji ji

    ij

    ji

    A B

    Bhv kT

    B

    =

    3

    3

    5

    6lanc7 radiation law: ( ) ep( ) 1

    h v dv

    u v dv c hv kt

    =

    onsistency between abo'e two epressions de%and

    4ij jiB=

    3

    3

    5

    and

    ji

    ji

    A hv

    B c

    =

    i i : i

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    10/35

    Einstein9s coe:cients

    Stimulated emission does occur and itsprobability is e!ual to the probability forabsorption

    he ratio beteen to probabilities "ariesith v3, so the relati"e li$elihood ofspontaneous emission increases rapidly

    ith the energy di;erence beteen theto states

    All e need to $no is one of theprobabilitiesAij, Bij, Bjito 7nd others

    4ij ji

    B=3

    3

    5and

    ji

    ji

    A hv

    B c

    =

    bl

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    11/35

    Metastable state< le"els are re!uired to achie"e population in"ersion

    0 5 %rdinary e*cited state= 5 Metastable state< 5 Stable (ground) state

    An atom can e*ist in a metastable state for alonger time before radiating than it can in anordinary energy le"el

    + i i l f < l l l

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    12/35

    +rinciple of

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    13/35

    4uby laser (

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    14/35

    Four le"el laser

    ntinuous operation is possible

    - li / l

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    15/35

    -elium./eon laser

    f l

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    16/35

    ypes of lasersas lasers

    &hemical lasers

    E*cimer lasers

    Solid.state lasers

    Fiber.hosted lasers

    +hotonic crystal lasers

    Semiconductor lasers

    Dyelasers

    Free e.

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    17/35

    poer

    &D>D6D 4># ti

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    18/35

    &D>D6D 5 4># operation

    - l h

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    19/35

    -olography%rdinary photograph8 only intensity is recorded =D imageHologram8 Images are formed by interference,

    ithout lenses

    Interference of to beams allos the 7lm to recordboth intensity and relati"e phase

    &oherency is crucial

    - l h ( td )

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    20/35

    -olography (contd')After de"eloping such a 7lm and placing it in laser

    light, e get a

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    21/35

    &ommunication "ia light

    -uman e e

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    22/35

    -uman eye

    he rods and cones ofthe eye pass opticalsignals

    Fiberscope

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    23/35

    Fiberscope

    Endoscope is a familiar e*ampleState.of.art 7berscope has 0?,???

    7bers of bundle ith 0mm dia

    &apable of resol"ing ob@ects ?m across

    otal internal reection

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    24/35

    otal internal reection

    1 1 2 2sin sin 8nell9s lawn n =

    2 1-or total internal reflection, + , C = =

    1 2sin Cn n =2

    1

    sin Cn

    n = 1 2

    1

    sinC

    n

    n

    =

    he optical 7ber

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    25/35

    he optical 7ber

    /umerical aperture

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    26/35

    /umerical aperture

    2

    1

    -or total internal reflection, sin cos n

    n = =

    2

    2 2

    1

    cos n

    n

    =

    2

    2 2

    1sin 1

    n

    n

    =

    2

    2

    1sin 1

    n

    n

    =

    2 2

    1 1 2sinn n n =

    + 1 +-or air;core interface, sin sin 8 1n i n n= =

    2 2

    1 2#$%erical apert$re sin mNA i n n = =

    Some details

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    27/35

    Some details

    /umber of Modes in a Fiber

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    28/35

    /umber of Modes in a Fiber

    +.!

    core dia%eter

    operating wa'elength

    n$%erical apert$re

    m

    D NAN

    D

    NA

    =

    ypes of 7bers

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    29/35

    ypes of 7bers

    Ad"antages of Fiber %ptics

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    30/35

    Ad"antages of Fiber %pticsLess expensive. Se"eral miles of optical cable canbe made cheaper than e!ui"alent lengths of copper

    ire' his sa"es your pro"ider (cable 6, Internet) andyou money'

    Thinner. %ptical 7bers can be dran to smallerdiameters than copper ire'

    Higher carring capacit. Because optical 7bers arethinner than copper ires, more 7bers can be bundledinto a gi"en.diameter cable than copper ires' hisallos more phone lines to go o"er the same cable or

    more channels to come through the cable into yourcable 6 bo*'

    Less signal !egra!ation. he loss of signal inoptical 7ber is less than in copper ire'

    Light signals. nli$e electrical signals in copper

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    31/35

    (contd')

    Low power. Because signals in optical 7bers degradeless, loer.poer transmitters can be used instead ofthe high."oltage electrical transmitters needed forcopper ires' Again, this sa"es your pro"ider and youmoney'

    Digital signals. %ptical 7bers are ideally suited forcarrying digital information, hich is especially useful incomputer netor$s'

    "on-#amma$le. Because no electricity is passedthrough optical 7bers, there is no 7re haard'

    Lightweight. An optical cable eighs less than acomparable copper ire cable' Fiber.optic cables ta$eup less space in the ground'

    Flexi$le

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    32/35

    Medium

    E"olution of 7ber lin$s

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    33/35

    E"olution of 7ber lin$s

    &urrent status

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    34/35

    &urrent status

    State.of.the.art numbers8

    E*perimental trial8 Simens demonstrated bi.directional bps'

    /E& demonstrated 'G bps (G? o"er 0?H9s in ?.- spacing) o"er 0J $m

    &ommercial systems can go up to =bps

    Single H8 /ortel demonstrated J? transmission o"er GJ? $m

    Se"eral abo"e.tera.bps lin$s are beinginstalled orldide

    Future trend8 More than 0?? H9s ill

    be used

    4eferences

  • 7/24/2019 3. Statistical mechanics Lasers and Fiber Optics.pptx

    35/35

    4eferences

    A' Beiser 5 KConcepts of Modern PhysicsL, Ed',ata Mcra.-ill (/e Delhi, =??