2052-47 Summer College on Plasma...

50
2052-47 Summer College on Plasma Physics Robert Bingham 10 - 28 August 2009 Rutherford Appleton Laboratory UK Neutrinos and Supernovae

Transcript of 2052-47 Summer College on Plasma...

Page 1: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

2052-47

Summer College on Plasma Physics

Robert Bingham

10 - 28 August 2009

Rutherford Appleton LaboratoryUK

Neutrinos and Supernovae

Page 2: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrinos and Supernovae

Bob BinghamSTFC – Centre for Fundamental Physics (CfFP)

Rutherford Appleton Laboratory.

SUPA– University of Strathclyde.

Page 3: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrinos are the most enigmatic particles in the UniverseAssociated with some of the long standing problems in astrophysics

Solar neutrino deficitFormation of structure in the UniverseSupernovae II (SNe II)Stellar/Neutron Star core coolingDark Matter/Dark Energy

Intensities in excess of 1030 W/cm2 and luminosities up to 1053 erg/s

MotivationMotivation

Page 4: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Extra Solar NeutrinosExtra Solar Neutrinos

1st observation of neutrinos from outside solar system

1987

Robert BinghamRutherford Appleton Laboratory, Space Science & Technology Department

Page 5: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Rapidly falling Region cooled by material neutrino Landau

damping

Stalledshock front

Hotneutrinos

Proto-neutronStar

Region heated by neutrino-plasma coupling

SupernovSupernovææ ExplosionExplosion

Page 6: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

A supernova releases 5 ×1053 erg(gravitational binding energy of the original

star)• neutrinos 99 % •

• kinetic energy+light ~ 1051 erg •

How to turn an implosion into an explosion?

⇒ Neutrino-plasma scattering instabilities

in dense plasmas

NeutrinoNeutrino--plasma plasma heatingheating Neutrinosphere+protoNeutrinosphere+protoNeutrinosphere+proto

neutron starneutron starneutron star

Plasma pressurePlasma Plasma Plasma pressurepressurepressure

Shock Shock Shock frontfrontfront

Supernova ExplosionSupernova Explosion

Page 7: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

The interaction can be easily represented by neutrino refractiveThe interaction can be easily represented by neutrino refractive index.index.

The dispersion relation:The dispersion relation: ( ) 042222 =−−− cmcpVE ννν (Bethe, 1986)E is the neutrino energy, p the momentum, E is the neutrino energy, p the momentum, mmνν the neutrino mass.the neutrino mass.

The potential energy The potential energy

GGFF is the Fermi coupling constant, nis the Fermi coupling constant, nee the electron densitythe electron density

⇒⇒ Refractive indexRefractive index

eF nGV 2=

22

⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛=

ν

ν

ν

νν ω E

cpckN

eF n

ckGN

νν

221−≅ Note: cut-off density εν neutrino energy

Fec G

n22νε

>

Electron neutrinos are refracted away from regions of dense plasma -similar to photons.

∇ne

nν ⇒

Neutrino Refractive IndexNeutrino Refractive Index

Page 8: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino Neutrino PonderomotivePonderomotive ForceForce

For intense neutrino beams, we can introduce the concept of the Ponderomotive force to describe the coupling to the plasma. This can then be obtained from the 2nd order term in the refractive index.Definition [Landau & Lifshitz, 1960]

where ξ is the energy density of the neutrino beam.

nν is the neutrino number density.

ξ∇−

=2

1F NPOND

eF nGN

νε22 1 −= ξ

εν

∇−=⇒ eF nG2 F Pond

νnnG eF ∇−≡ 2 FPondBingham et al., 1997.

Page 9: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Dynamics governed by Hamiltonian (Bethe, ‘86):

)(r,24222 tnGcmcH eFeff ++= ννp

¶ Effective potential due to weak interaction with background electrons¶ Repulsive potential

GF - Fermi constantne - electron density

Neutrinos bunch in regions of lower electron density

Ponderomotive force* due to neutrinos pushes electrons to

regions of lower neutrino density

Fpond = − 2GF∇nν (r,t )

Force on a single electron due to neutrino distribution

F = − 2GF∇ne (r, t)Force on a single neutrino due to electron density modulations

* ponderomotive force derived from semi-classical (L.O.Silva et al, ‘98) or quantum formalism (Semikoz, ‘87)

Neutrino Dynamics in Dense PlasmaNeutrino Dynamics in Dense Plasma

Page 10: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino Neutrino PonderomotivePonderomotive Force (2)Force (2)

Force on one electron due to electron neutrino collisions fcoll

Total collisional force on all electrons is

|kmod| is the modulation wavenumber.

For a 0.5 MeV plasma

σνe ⇒ collisional mean free path of 1016 cm.

2

222 ⎟

⎠⎞

⎜⎝⎛=

cTkG eBF

e πσν

ξσν eecolle nfn Fcoll ==

ν

πk

kTkG

c Mod

BF22

33

coll

Pond 2 FF

=

10

coll

Pond 01 FF

ξσν ecollf = σνe is the neutrino-electron cross-section

Page 11: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

¶ Electron density @ 100-300 km: ne0 ~ 1029 - 1032 cm-3

¶ Electron temperature @ 100-300 km: Te ~ 0.1 - 0.5 MeV

¶ νe luminosity @ neutrinosphere~ 1052 - 5×1053 erg/s

¶ νe intensity @ 100-300 Km ~ 1029 - 1030 W/cm2

¶ Duration of intense νe burst ~ 5 ms(resulting from p+e→n+νe)

¶ Duration of ν emission of all flavors ~ 1 - 10 s

To form a neutron star 3 ×1053 erg must be released

(gravitational binding energy of the original star)• light+kinetic energy ~ 1051 erg •• gravitational radiation < 1% •

• neutrinos 99 % •

Supernova II Physical ParametersSupernova II Physical Parameters

Page 12: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino heating is necessary for a strong explosionNeutrino heating is necessary for a strong explosion

The shock exits the surface of the proto-neutron star and beginsto stall approximately 100 milliseconds after the bounce.

The initial electronneutrino pulse of5x1053 ergs/second isfollowed by an “accretion”pulse of all flavours ofneutrinos.

This accretion pulse of neutrinos deposits energybehind the stalled shock,increasing the matter pressure sufficiently to drive the shockcompletely through the mantle of the star.

Page 13: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Supernova ExplosionSupernova Explosion

ShockNeutrino-plasma coupling

Neutrinosphere(proto-neutron

star)Plasma pressure

Bingham et al., Phys. Lett. A, 220, 107 (1996)Bingham et al., Phys. Rev. Lett., 88, 2703 (1999)

• How to turn an implosion into an explosion– New neutrino physics– λmfp for eν collisions ~ 1016 cm

in collapsed star– λmfp for collective

plasma-neutrino coupling ~ 100m

• How?– New non-linear force —

neutrino ponderomotiveforce

– For intense neutrino flux collective effects important

– Absorbs 1% of neutrino energy

⇒ sufficient to explode star

Page 14: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Electroweak plasma instabilitiesElectroweak plasma instabilities

Two stream instabilityNeutrinos driving electron plasma waves vφ ~ cAnomalous heating in SNe II

Collisionless damping of electron plasma wavesNeutrino Landau dampingAnomalous cooling of neutron stars

Electroweak Weibel instabilityGeneration of quasi-static B fieldPrimordial B and structure in early Universe

Page 15: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Kinetic equation for neutrinos (describing neutrino number density conservation / collisionless neutrinos)

Kinetic equation for electrons driven by neutrino pond. force(collisionless plasma)

∂fν

∂t+ vν ⋅

∂fν

∂r− 2GF ∇ne (r, t) +

1c 2

∂Je (r, t)∂t

−vν

c× ∇ ×

Je (r, t)c

⎝ ⎜

⎠ ⎟ ⋅

∂fν

∂pν

= 0

∂f e

∂t+ v e ⋅

∂f e

∂r− 2G F ∇nν (r, t) +

1c 2

∂Jν (r, t)∂ t

−v e

c× ∇ ×

Jν (r, t )c

⎝ ⎜

⎠ ⎟ ⋅

∂f e

∂p e

− e E +v e

c× B

⎛ ⎝ ⎜

⎞ ⎠ ⎟ ⋅

∂f e

∂p e

= 0

+Maxwell’s Equations

Neutrino kinetics in a dense plasmaNeutrino kinetics in a dense plasma

(Silva et al, ApJ SS 1999)

Page 16: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Two stream instability driven by Two stream instability driven by a a neutrino beamneutrino beam

χν (ωL , kL) = −2GF2 kL

3ne 0nν 0

meω pe02 1 −

ωL2

c2kL2

⎝ ⎜ ⎞

⎠ ⎟

2

χe dpν

kL ⋅∂ˆ f ν 0

∂pν

ω L − kL ⋅ vν∫

Dispersion relation for electrostatic plasma waves0),(),(1 =++ LLLLe kk ωχωχ ν

Electron susceptibility Neutrino susceptibility

ne = n0 + ne1

v e = v1

vν = vν0 + vν1

fe = fe0 (pe ) + fe1

fν = fν 0(pν ) + fν1

E = E1

Usual perturbation theory over kinetic equations + Poisson’s equation

(Silva et al, PRL 1999)

Page 17: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

vφ, vν

Nν 2σv

Unstable PW modes (ωL,kL)

If region of unstable PW modesoverlaps neutrino distribution

function kinetic regime becomes important

νσω

ν vL

L vk

>>− 0Hydro instability γ ∝ GF 2/3 if

νσω

ν vL

L vk

<<− 0Kinetic instability γ ∝ GF 2 if

vν0

where vν= pν c2/Eν= pν c2/(pν2c2+mν

2c4) 1/2

- for mν → 0, σ → 0 hydro regime -

σvν/c ≈10−16

ωL

ckL

−vν 0

c≈

γ max

ωpe0

βφ ≈ 10−14 −10−11

<Eν> =10 MeVTν = 3 MeVmν = 0.1 eV

Ne0 = 1029 cm-3

Lν = 1052 erg/sRm = 300 Km

Instability Regimes: hydrodynamic Instability Regimes: hydrodynamic vsvskinetickinetic

Page 18: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Te< 0.5 MeV

Te< 0.25 MeV

Te< 0.1 MeV

ne0=1029 cm-3

Lν = 1052 erg/sRm = 300 Km<Eν>=10 MeV

Growth distance ~ 1 m(without collisions)

Growth distance ~ 300 m(with collisions)

- 6 km for 20 e-foldings -Mean free path for

neutrino electron single scattering~ 1011 km

Te= 0.25 MeV

Collective mechanism much stronger than single particle processes

Single ν-electron scattering ∝ GF2

Estimates of the Instability Estimates of the Instability Growth RateGrowth Rate

Page 19: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Saturation MechanismSaturation Mechanism

Page 20: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Electron HeatingElectron Heating

Page 21: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino emission of all flavorsLν ~ 1052 erg/s , τ ~ 1 s

e-Neutrino burstLν ~ 4×1053 erg/s , τ ~ 5 ms

drives plasma waves through neutrino streaming instability

plasma waves are damped(collisional damping)

Plasma heating@ 100-300 km from center

Revival of stalled shock in supernova explosion

(similar to Wilson mechanism)

Supernova Explosion!

Stimulated “Compton”scattering

Pre-heating of outer layers by short νe burst (~ms)

Less energy lost by shock to dissociate iron

Anomalous pressure increase behind shock

Due to electron Landau damping, plasma waves only grow in the

lower temperature regions

SupernovSupernovææ explosion and neutrino driven explosion and neutrino driven instabilitiesinstabilities

Page 22: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino play a critical role in Neutrino play a critical role in Type II Type II SupernovSupernovææ

• Neutrino spectra and time history of the fluxes probe details of the core collapse dynamics and evolution.

• Neutrinos provide heating for “delayed” explosion mechanism.

• Sufficiently detailed and accurate simulations provide information on convection models and neutrino mass and oscillations.

Page 23: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Plasma waves driven by electrons, Plasma waves driven by electrons, photons, and neutrinos photons, and neutrinos

Electron beam

Photons

Neutrinos

Kinetic/fluid equations for electron beam, photons, neutrinos coupled with electron density perturbations due to PW

Self-consistent picture of collective e,γ,ν-plasma interactions

( ) beamepeepet nn −−=+∂ 20

20

2 ωδω

δne Perturbed electron plasma density

( )( ) k

kωπ

ωδω γNd

mn

e

peepet ∫∇=+∂ 3

22

020

2

22

Ponderomotive forcephysics/9807049, physics/9807050

( ) νδω nm

Gnne

Feepet

2020

2 2∇=+∂

Page 24: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Conclusions & Future DirectionsConclusions & Future Directions

In different astrophysical conditions involving intense neutrino fluxes, neutrino driven plasma instabilities are likely to occur

Anomalous heating in SNe IIElectroweak Weibel instability in the earlyuniverseEnhanced Mixing by Turbulent structures

Challenge: reduced description of neutrino driven anomalous processes to make connection with supernovae numerical models

Page 25: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino Landau Damping INeutrino Landau Damping I

General dispersion relation describes not only the neutrino fluid instability but also the neutrino kinetic instability

Collisionless damping of EPWs by neutrinos moving resonantly with EPWs

vν = vφ

Physical picture for electron Landau damping

(Dawson, ‘61)

What if the source of free energy is in the plasma?Thermal spectrum of neutrinos interacting with turbulent plasma

(Silva et al, PLA 2000)

Page 26: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

0max8 2dp F eE L G nν εΔ ≈ ≈F

Equivalent to physical picture for RFS of photons (Mori, ‘98)

2

32 30

2 2

20

10

1010

3 10

/ 8 2 /( ) 200 /

e

dp p

F e p

n cm

L cm

dE dL G n eV cmφ

φ

φ

ν

γ

ε

λ γ

ε λ γ

=

=

=

= ≈ ×

≈ ≈

ε = δne/n0

γφ

ν

Neutrino surfing electron plasma wavesNeutrino surfing electron plasma waves

ν bunching

Page 27: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino Landau damping IINeutrino Landau damping II

For a Fermi-Dirac neutrino distribution

γ Landau ≈ −

kLc2

πGF

2ne0nν 0

mec2kBTν

1−ω L

2

c2kL2

⎝ ⎜

⎠ ⎟

2Li2 (−exp EF / Tν )Li3(−exp EF / Tν )

χν (ωL , kL) ∝ dpν

k L ⋅ ∂ˆ f ν 0 / ∂pν( )ω L − kL ⋅ vν

∫ dp⊥ | p⊥ |∫ P∂ˆ f ν 0 /∂p||( )p|| − p||0

dp|| + iπ ∂ˆ f ν 0

∂p||

⎝ ⎜

⎠ ⎟

p ||0

∫⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

EPW wavevector kL = kL|| defines parallel directionneutrino momentum pn = pν|| + pν⊥arbitrary neutrino distribution function fν0Landau’s prescription in the evaluation of χν

Neutrino Landau damping reflects contribution from the pole in neutrino susceptibility

Page 28: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Intense fluxes of neutrinos in SupernovaeNeutrino dynamics in dense plasmas (making the bridge with HEP)Plasma Instabilities driven by neutrinos Supernovae plasma heating: shock revivalNeutrino mode conversion (Neutrino oscillations)

OutlineOutline

Neutrino Landau dampingNeutron star coolingSolar neutrino deficitGamma-ray bursters: open questionsConclusions

Page 29: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

WeibelWeibel instabilityinstability

Free energy in particles (e, i, e+) transferred to the fields (quasi-static B field)

Fundamental plasma instabilitylaser-plasma interactionsshock formationmagnetic field generation in GRBs

Signatures: B field + filamentation + collisionless drag

Free energy of neutrinos/anisotropy in neutrino distribution transferred to electromagnetic field

Page 30: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Usual perturbation theory over kinetic equations + Faraday’s and Ampere’s law

Cold plasma

φ ˆ f ν0( )= dp∫ ν

vν⊥

ω − kvνz

cos2 θ∂ˆ f ν 0

∂pν⊥

+kω

vν⊥

∂ˆ f ν 0

∂pνz

−kω

vνz∂ˆ f ν 0

∂pν⊥

⎧ ⎨ ⎩

⎫ ⎬ ⎭

ω 2 − k2c2( )1 −ω Δν φ ˆ f ν 0( )( )= ω pe02

Monoenergetic ν beam (mν = 0)

ω 2 − k2c2( ) 1 +Δνk2c2

ω 2 βνx02⎛

⎝ ⎜ ⎞

⎠ = ω pe0

2

ˆ f ν 0 = ˆ f ν 0 pν⊥, pνz( )

k = kez

γ Weibel = βνx0k2c2

k2c2 + ω pe02

Δν1 / 2 ∝ GF

ω ≈ iγ Weibel & γ Weibel << k

(Silva et al, PFCF 2000)

Electroweak Electroweak WeibelWeibel InstabilityInstability

Page 31: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Detailed SimulationsDetailed Simulations

The graphic shows a slice through the core region of a supernova 50 ms after the bounce. Each arrow represents a parcel of matter and the length and direction show velocity (colour represents entropy, S). Regions of higher entropy indicate heating. The shock front is apparent from the position where yellow arrows meet green ones (about 300 km from the core). Low entropy, high velocity material (blue arrows) is the rest of the star raining down onto the core. Neutrinos are present in the blue-green region about 40 km from the core where they are being absorbed in the quasi-static layer which then becomes heated (yellow).

Page 32: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

e.g. in a plasma density gradient

Neutrino OscillationsNeutrino Oscillations

Probability of detecting a particular flavour of neutrino as they move out from the core through the body of the Sun:- electron neutrinos (purple), muon neutrinos (red), tau neutrinos (yellow).

MSW MSW –– Matter EffectMatter EffectAll neutrinos interact through neutral currents, Z boson.Only electron neutrinos interact through charge current, W boson.Refractive index for all flavours

( ),,

21 , ,Fe p n

GN f n n npμ τ

μ τ

= +

( )2 21 , ,e

e e

F Fe p n e

G GN f n n n np pν

ν ν

= + −

Resonance coupling for ,ep pν μ τ=

2 2 2, 02 2

e F em m m G n Eμ τ ν∴Δ = − =

11n

dnLn dx

−⎛ ⎞= ⎜ ⎟⎝ ⎠

2

21 exp n

F

m ELC AG p

⎡ ⎤Δ= − −⎢ ⎥

⎣ ⎦

Conversion probability: Neutrino oscillate

Solar data Δm2 ≈ 8.9x10-5 eV2

Atmospheric data Δm2 ≈ 2.4x10-4 eV2

MSW MSW –– Matter EffectMatter Effect

Page 33: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

The MSW effect The MSW effect –– neutrino flavor neutrino flavor conversionconversion

Flavor conversion - electron neutrinos convert into another ν flavorEquivalent to mode conversion of waves in inhomogeneous plasmas

d 2ψ i

dx 2 + ki2ψ i = 0

ki

2 =Ei

2 − mi2c 4 − Veff i

c 2 2i = 1, 2, 3 (each ν

flavor)

Mode conversion when k1 = k2, E1 = E2

d 2ψ1

dx 2 + k12ψ1 = λ1ψ2

d 2ψ2

dx 2 + k22ψ2 = λ2ψ1

λi =

12

Δm 2c2

Ei

pi

sin 2θ

Fully analytical MSW conversion probabilities derived in unmagnetizedplasma and magnetized plasma

(Bingham et al., PLA 97, 2002)

Page 34: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

AcknowledgementsAcknowledgements

• R A Cairns, L O Silva, P K Silva, J T Mendonca, A Serbeto, M Marklund, G Brodin

Page 35: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Typical Density ProfileTypical Density Profile

Typical density profile for a SN model at 0.15s after the core bounce (Fuller et al., 1992).

Page 36: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Length scalesLength scales

← Compton ScaleHEP

Hydro Scale →Shocks

Plasma scaleλD, λp, rL

Can intense neutrino winds drive collective and kinetic mechanisms at the plasma scale ?

Bingham, Bethe, Dawson, Su (1994)

Page 37: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Detailed SimulationsDetailed Simulations

The graphic shows a slice through the core region of a supernova 50 ms after the bounce. Each arrow represents a parcel of matter and the length and direction show velocity (colour represents entropy, S). Regions of higher entropy indicate heating. The shock front is apparent from the position where yellow arrows meet green ones (about 300 km from the core). Low entropy, high velocity material (blue arrows) is the rest of the star raining down onto the core. Neutrinos are present in the blue-green region about 40 km from the core where they are being absorbed in the quasi-static layer which then becomes heated (yellow).

Page 38: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Anomalous heating by neutrino Anomalous heating by neutrino streaming instabilitystreaming instability

Neutrino heating to re-energize stalled shock

Sufficient neutrino energy deposited into electron energy to restart the stalled shock and explode the star.

ΔEν

1050erg

⎝ ⎜

⎠ ⎟ ≈1− 0.1

T2MeV

⎛ ⎝ ⎜

⎞ ⎠ ⎟ ×

R500Km

⎝ ⎜

⎠ ⎟

3

0.145 n1030cm-3

⎝ ⎜

⎠ ⎟

ΔEν

1050erg⎛

⎝ ⎜

⎠ ⎟ ≈1.2 ×10−1

T2MeV

⎛ ⎝

⎞ ⎠

3}{ +

(Silva et al., PoP 2000)

Page 39: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

SupernovSupernovææ II NeutrinosII Neutrinos

• A massive star exhausts its fusion fuel supply relatively quickly.

• The core implodes under the force of gravity.

• This implosion is so strong it forces electrons and protons to combine and form neutrons – in a matter of seconds a city sized superdense mass of neutrons is created.

• The process involves the weak interaction called “electron capture”

• A black hole will form unless the neutron degeneracy pressure can resist further implosion of the core. Core collapse stops at the “proto-neutron star” stage – when the core has a ~10 km radius.

• Problem: How to reverse the implosion and create an explosion?

ep e n ν+ −+ → +

Page 40: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrinos in the Standard ModelNeutrinos in the Standard Model

An electron beam propagating through a plasma generates plasma waves, which perturb and eventually break up the electron beam

A similar scenario should also be observed for intense neutrino bursts

Electroweak theory unifies electromagnetic

force and weak force

Leptons Electron eElectron neutrino νe

Muon μMuon neutrino νμ

Tau τTau neutrino ντ

Electrons and neutrinos interact via the weak force

In a plasma neutrinos acquire an induced charge - dressed particle

0

8F e electron

B e

e G n ek Tν

π= −

Page 41: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

SketchSketch

30 Km 300 Km

Collapsing material

Stalled Shock

Intense flux of ν

Neutron Core

Plasma Heating by Neutrino Streaming Instability Cooling by

Neutrino Landau damping

Page 42: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Bullet ClusterBullet Cluster

Page 43: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Monoenergetic neutrino beam )( 000 νννν δ pp −= nf

θ ≡ kL^pν0

Dispersion Relation

ωL2 = ω pe0

2 +mν

2c4 cos2 θEν 0

2 +sin2 θ⎛

⎝ ⎜

⎠ ⎟

ℵkL4c4

ωL − kLccosθpν 0cEν0

⎝ ⎜

⎠ ⎟

2

ℵ=2GF

2nν 0ne0

mec2Eν 0

¶ If mν→ 0 direct forward scattering is absent¶ Similar analysis of two-stream instability:

• maximum growth rate for kL vν0|| = k c cos θ ≈ ωpe0 • ω = ωpe0+ δ = kL vν0|| + δ

Weak Beam (δ/ ωpe0 <<1) Growth rateStrong Beam (δ/ ωpe0 >>1) γmax ∝ GF

1/2

Single ν-electron scattering ∝ GF2

Collective plasma process much stronger than single particle processes

γ max =3

2ω pe0

tan2θsin2θ

ℵ⎛ ⎝ ⎜

⎞ ⎠ ⎟

1/ 3

∝ GF2 / 3

Neutrino BeamNeutrino Beam--Plasma Plasma Instability Instability

Page 44: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Big Bang NeutrinosBig Bang Neutrinos

• The “Big Bang” Model of cosmology predicts that neutrinos should exist in great numbers – these are called relic neutrinos.

• During the Lepton era of the universe neutrinos and electrons (plus anti particles) dominate:

• ~1086 neutrinos in the universe

• Current density nν ~ 220 cm-3 for each flavour!

• Neutrinos have a profound effect on the expansion of the universe:– Galaxy formation

– Magnetic field generation

– Dark matter

– Dark energy

in the early universe

Shukla et al., 1998. Semikoz et al., 2004.

Page 45: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrinos from the Sun Neutrinos from the Sun –– SuperSuper--KamiokandeKamiokande

• Super-Kamiokande obtained this neutrino image of the Sun!

• Scientists checking one of the 11,146 50-cm diameter photomultiplier tubes that surround the walls of the tank.

• In November, 2001, one of these PMTs imploded and the resulting shockwave caused about 60% of the other PMTs to implode also. The “shock” in the tank was so large that it was recorded on one of Japan’s earthquake monitoring stations 8.8 km away!

•• Japanese SuperJapanese Super--KamiokandeKamiokande experiment experiment –– a large a large spherical spherical ““swimming poolswimming pool”” filled with ultrafilled with ultra--pure pure water which is buried 1000 water which is buried 1000 metresmetres below ground!below ground!

Page 46: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Solar NeutrinosThe p-p chain

3% of the energy is carried away by neutrinos

One neutrino is created for each ≈13 MeV of thermal energy

The “Solar Constant”, S (Flux of solar radiation at Earth) is

Neutrino flux at Earth, φν,

These are all electron neutrinos (because the p-p chain involves electrons).

PROBLEM: Only about one-thirds of this flux of neutrinos is actually observed.

SOLUTION: The MSW Effect

Neutrinos interact with the matter in the Sun and “oscillate” into one of the other neutrino “flavours” – Neutrino matter oscillations – electron neutrinos get converted to muon or tau neutrinos and these could not be detected by the early neutrino detectors!

Neutrinos from the SunNeutrinos from the Sun

44 2 2 2 26.7MeVep e He ν γ−+ → + + +

6 21.37 10 erg/cm sS = ×

10 2/13 MeV 6.7 10 neutrinos/cm sSνϕ = ≈ ×

Page 47: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Three Types of Evidence for Three Types of Evidence for Neutrino OscillationsNeutrino Oscillations

EarthEarthSunSunSolar Solar

corecorePrimary neutrino source

p + p D + e+ + νe

150 million km

1) Solar neutrinos – a disappearance experiment.The flux of electron neutrinos produced in the Sun’s core was measured in large underground detectors and found to be lower than theory predicted. Neutrino oscillations can explain the result –electron neutrinos oscillate into other flavours.

Underground νe detector

Underground νe, νe, νμ, νμ

detector

2) Atmospheric neutrinos – a disappearance experiment. Collisions between high energy cosmic rays in the upper atmosphere can create pions. These pionsdecay into muons which decay into electrons. These decays produce twice as many muonneutrinos as electron neutrinos. However, underground detectors sensitive to both types of neutrinos see a much smaller ration than 2:1. the oscillation of muon neutrinos into tau neutrinos could explain the deficit

AtmosphereAtmosphere cosmic ray

pionsmuons

e-

νμ νμνe

Proton

beam

Water target pions muons and e-

Cooper beam stopνe detector

3) LSND – an appearance experiment. Positive pions decay at rest into positive muons, which then decay into muon neutrinos, positrons and electron neutrinos. Negative pions decay and produce electron antineutrinos, but the rate is almost negilible. A giant liquid-scintillator neutrino detector located 30 metres downstream looks for the appearance of electron antineutrinos as the signal that the muon antineutrinos have oscillated.

neutrinos νe, νμ, andνμ

Page 48: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

• Neutrino Landau Damping – resonance between neutrinos & plasma turbulence

• Neutrino Cooling: Stellar Evolution, Neutron Star Cooling• In dense stellar interiors escaping neutrinos carry off excess

energy.• Kinetic Theory of Neutrino Plasma Coupling

• Neutrino Luminosity: Lν = 1042 ergs/sec• Interacting with Plasma: Te = 10 keV, ne = 1028 cm-3

• Neutrino Landau Damping Cooling Time: τc = 105 Yrs• Compton production of neutrino pairs + photon-neutrino scattering:

τc = 107 Yrs

Neutrino AstrophysicsNeutrino Astrophysics

Neutrino Landau DampingNeutrino Landau DampingTurbulent Plasma; Relativistic Electron Turbulent Plasma; Relativistic Electron Plasma Waves are resonant with Plasma Waves are resonant with neutrinos neutrinos neutrinosneutrinos damp waves.damp waves.

γ

νν

γ

Page 49: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Neutrino AstrophysicsNeutrino Astrophysics

• Magnetic Field Effects:Filamentation Instability

Transverse photon emissionγ-rays

New asymmetric ponderomotive forceRadially uniform emission of neutrinosExerts a macroscopic forceThe force is in the opposite direction to the magnetic fieldCan contribute to birth velocity of pulsars

Breaking up of uniform Breaking up of uniform beam of neutrinosbeam of neutrinos

νν

γ

P Bν∝ ⋅

Pulsar driven bow shock in the interstellar medium

Page 50: 2052-47 Summer College on Plasma Physicsindico.ictp.it/.../a08175/session/122/contribution/86/material/0/0.pdf · Definition [Landau & Lifshitz, ... Neutrino kinetics in a dense plasma

Natural Plasma LaboratoriesNatural Plasma Laboratories

Density, n (cm-3)

Quantum Plasmas

Classical Plasmas

Relativistic Plasmas

2 1 3FE e n=

2Bk T mc=

Strongly coupled plasmas

White White DwarfsDwarfs

Inertial Inertial FusionFusion

LightningLightningGlow Glow

DischargeDischargeSolar Solar WindWind

NonneutralNonneutralPlasmasPlasmas

IonosphereIonosphere

Solar Solar CoronaCorona

100 1010 1020 1030

Electrons Electrons in metalsin metals

Magnetic Magnetic FusionFusion

Pulsar Pulsar MagnetospheresMagnetospheres1010

108

106

104

102

100

Tem

pera

ture

, T(K

) EarthEarth’’s s MagnetosphereMagnetosphere

Supernova Supernova ExplosionExplosion

Neutron Neutron starsstars

Thermal Thermal Processing Processing

PlasmasPlasmas

γγ--ray ray BurstsBursts

Solar Solar InteriorInterior