2015-04-20_EEE IAS Stationary Battery Sizing

66

Transcript of 2015-04-20_EEE IAS Stationary Battery Sizing

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 1/66

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 2/66

Stationary Battery SizingStationary Battery Sizing

Presented by:

Lesley Varga, P.E.

Quality Standby Services, LLC1649 Sands Place, SE, Suite C

Marietta, GA 30067

(770) 916-1747

[email protected]

www.qualitystandbyservices.com

IEEE IAS Atlanta Chapter 

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 3/66

Safety First!

Basic PPE

Safety First!

Basic PPE

Personal Protective Equipment –example:

 – Goggles and face shields, eye protection

 – Acid-resistance gloves

 – Protective aprons

 – Emergency eye-wash and safety showers

 – Bicarbonate soda and water for neutralization

(mixed to the ratio of 1 lb. to 1 gallon)

 – Insulated tools

 – Class C fire extinguisher 

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 4/66

Personal Protective EquipmentPersonal Protective Equipment

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 5/66

 WARNING !!! WARNING !!!GAS PRODUCED BY THIS BATTERY CAN BE

EXPLOSIVE. PROTECT EYES WHEN AROUND

BATTERY. PROVIDE ADEQUATE VENTILATION

SO HYDROGEN GAS ACCUMULATION IN THE

BATTERY AREA DOES NOT EXCEED ONE

PERCENT BY VOLUME. DO NOT SMOKE, USEOPEN FLAME OR CREATE SPARKS NEAR THE

BATTERY.

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 6/66

 WARNING !!! WARNING !!!

THE BATTERY CONTAINS SULFURIC ACID

WHICH CAN CAUSE SEVERE BURNS. IN

CASE OF SKIN CONTACT WITH

ELECTROLYTE, REMOVE CONTAMINATEDCLOTHING AND FLUSH AFFECTED AREAS

THOROUGHLY WITH WATER. IF EYE

CONTACT HAS OCCURRED, FLUSH FOR A

MINIMUM OF 15 MINUTES WITH LARGEAMOUNTS OF RUNNING WATER AND SEEK

IMMEDIATE MEDICAL ATTENTION.

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 7/66

 WARNING !!! WARNING !!!

SHOCK HAZARD – DO NOT TOUCHUNINSULATED BATTERY

CONNECTORS OR TERMINALS. BE

SURE TO DISCHARGE STATIC

ELECTRICITY FROM TOOLS AND

TECHNICIAN BY TOUCHING A

GROUNDED SURFACE IN THE

VICINITY OF THE BATTERIES BUTAWAY FROM THE CELLS AND FLAME

ARRESTERS.

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 8/66

Lamps

Relays

Breaker 

Coils

Switchgear and Control DC systemSwitchgear and Control DC system

 AC→DC

24, 48,125 or

240 VDC

VAC

1Φ or 3Φ

Charger/Rectifier + -

Battery

Switchgear 

Controls

Motors

Pumps

Valves

DC Loads

“125VDC” Bus: 133.8 VDCTypical Float Voltage

Inverter 

DC→AC

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 9/66

Lamps

Relays

Breaker 

Coils

System One Line - AC Input LostSystem One Line - AC Input Lost

 AC→DC

24, 48,125 or

240 VDC

VAC

1Φ or 3Φ

Charger/Rectifier 

+ -

Battery

Switchgear 

Controls

Motors

Pumps

Valves

DC Loads

Inverter 

DC→AC

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 10/66

Utility

 AC

Input

Transfer Sw

Generator 

 AC→DC

Rect. #1

 AC→DC

Rect. #n

 AC→DC

Rect. #n+1

Battery

Bus Work

Power 

Board

Distribution

to Loads

 

+ -

 Telecom DC System“48 VDC” Bus: 54.2 VDC

Typical Float Voltage

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 11/66

Utility

 AC

Input

Transfer Sw

Generator 

 AC→DC

Rect. #1

 AC→DC

Rect. #n

 AC→DC

Rect. #n+1

Battery

Bus Work

Power 

Board

Distribution

to Loads

 

+ -

 Telecom DC System -AC Input Lost“48 VDC”: 54.2 VDC

Typical Float Voltage

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 12/66

Utility

 AC

Input

Transfer Sw

Generator 

 AC→DC

Rect. #1

 AC→DC

Rect. #n

 AC→DC

Rect. #n+1

Battery

Bus Work

Power 

Board

Distribution

to Loads

 

+ -

 Telecom DC System – AC Lost,

Generator On Line

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 13/66

Utility AC Input

Transfer Switch

Generator 

Rectifier 

 AC→DC

Inverter 

DC→AC

UPS

 

+ -

Battery

 Typical UPS System

Loads

“480 VDC Bus”: 540 VDC Float

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 14/66

Utility AC Input

Transfer Switch

Generator 

Rectifier 

 AC→DC

Inverter 

DC→AC

UPS

 

+ -

Battery

UPS System –Utility Lost

Before Generator

Loads

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 15/66

Utility AC

GeneratorUPS Battery480 Volt 240

cells

LOADS

UPS

Switchgear

Switchgear Battery

125 V/48 V

Engine

Starting Battery24 volt

Inverter Rectifier 

Telecom

Equip

48 VDC

Telecom Battery

48 V /24 cells

Batteries in Mission Critical Applications

Emergency

Lighting

Emergency

Lighting

Battery

TransferSwitch

Fire Pump Fire PumpBatteries

Substation Battery

125 volt

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 16/66

Definition of a CellDefinition of a Cell

Cell: A unit part consisting of twodissimilar electrodes immersed in an

electrolyte;

One lead acid cell is 2 volts nominal

One nickel cadmium cell is 1.2 volts

nominal

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 17/66

String: An energy storage system

consisting of two or more seriesconnected cells up to the required

system voltage

Definition of a String

Lead Acid

“125 Vdc” = 58-60 cells

Typical Float = 130-134Vdc

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 18/66

Nickel Cadmium

“125 Vdc” = 90-96 cells

Typical Float =130 -134 Vdc

Definition of a String

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 19/66

Battery BasicsBattery Basics

Separators

2 Volts

Positive

Plate

Negative

Plate

Within the cell the plates are connected in parallel.

If each positive plate is 100 Amp Hours in capacity, the cell is 300 Amp Hour .

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 20/66

Battery BasicsBattery Basics

Series connection of Cells

 – Start with Cell # 1 Positive,connecting from a negativeterminal on cell #1 to a positiveterminal on adjacent cell (typicalconnection within a battery

string) – Add up the cell voltage, but the

 Amp-hour stays the same

 – Example: Two 6V-25Ahr unitsconnected in series = 12 Volt,25 Amp-hour 

Cell #1………. Cell # n

+ - + - + - + -

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 21/66

Battery BasicsBattery Basics

Parallel connection

 – Connecting from a positiveterminal on one battery to apositive terminal on anotherbattery

 – Sum the Capacity of each string(Watts or Amp Hours); the voltageremains the same

 – Example: Two 6V-25 Amp hourunits connected in parallel =

System: 6 Volts, 50 Amp-hours

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 22/66

Lead Acid Battery Lead Acid Battery 

Lead dioxide Positive plate,PbO2

Metallic sponge lead Negative

plate, Pb Immersed into an electrolyte of

Water & Sulfuric Acid, H2SO4

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 23/66

 Types of Lead Acid Battery  Types of Lead Acid Battery 

Vented Lead Acid (“VLA”) – Also called Flooded or Wet

 – Lead-Calcium (most common), Lead- Antimony, Low Antimony (“lead selenium”and Pure Lead

Valve Regulated Lead Acid (“VRLA”) – Also called Sealed (not maintenance free)

 – Lead Calcium

 – Pure Lead – AGM design(Absorbed Glass Mat)

 – Gel design

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 24/66

Post

Strap

Plate

Vent

Cover 

Container 

Lead Acid Cell ComponentsLead Acid Cell Components

Separator 

2 Volt VRLAVLA (Flooded)

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 25/66

Lead Acid Grids and PlatesLead Acid Grids and Plates

 Negative PlateGrid

Positive

Plate

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 26/66

26

Separator: prevents electrical contact between the positive and

negative plates while maintaining sufficient electrolyte to sustain

capacity

Flooded: micro porous separator 

 – Grooved design to allow free

liquid and gas movement within cell

 – Provides prevention from shorts

 – Glass mat may be used

VRLA: “absorbent glass mat” wraps

positive and negative plates

 –  AGM

 – Gel

SEPARATORSSEPARATORS

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 27/66

Telecom Battery

Low Rate/LongDuration

UPS Battery

High Rate/ShortDuration

Switchgear Battery

General PurposeStep Loads

 Nominal 8 hr discharge

rate

 Nominal 15 min.

discharge rate

Combination of long &

short duration rates

Thicker pos plates Thinner pos plates Moderately thick plates

Plates farther apart Plates very close Moderate plate center  

High electrolyte to

 plate ratio

Low electrolyte to

 plate ratio

Moderate electrolyte to

 plate ratioMinimal cycling Improved cycling Moderate cycling

Poor high rates Very good high rates Reliable high rates

Good long rates Poor long rates Reliable long rates

Lead Acid Battery Design DifferencesLead Acid Battery Design Differences

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 28/66

Nickel Cadmium Battery Nickel Cadmium Battery 

Nickel positive plate

Cadmium negative plate

Immersed into an electrolyte of

Potassium Hydroxide (alkaline)

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 29/66

Nickel Cadmium Design DifferencesNickel Cadmium Design Differences

LLow rate ofdischarge

MMediumrate of

discharge

HHigh rate ofdischarge

Cell type   L M    H

Railway  X X X

Emergency lightning  X

Telecommunication  X X

Industrial  X X X

Photovoltaic  X

Diesel start  X

UPS  X X X

Utility Equipment  X X X

Emergency supply  X X X

 Alarm equipment  X

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 30/66

 Nickel Cadmium - Internal Construction Nickel Cadmium - Internal ConstructionL

Low Rate of

Discharge

MMedium Rate of

Discharge

H

High Rate of

Discharge

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 31/66

IEEE Standards, Guides, PracticesIEEE Standards, Guides, Practices IEEE Std 485 -2010: Sizing, Stationary Lead Acid

IEEE Std 1184-2006: Batteries for UPS Systems

IEEE Std 1189 -2007: Selection & Sizing VRLA

IEEE Std 1115-2014: Sizing Nickel Cadmium

 Additional System Considerations:1375 – Protection of Battery Systems

1578 – Spill Containment

1491 – Monitoring Systems

1635 – Guide to Ventilation design

1657 –Personnel Qualifications for Install & Maint

946 – Design of DC Auxiliary Power Systems for

Generating Stations (charger sizing)

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 32/66

General Sizing ConsiderationsGeneral Sizing Considerations

The battery must supply the DC power

when:

1. The load on the dc system exceeds themaximum output of the charger 

2. The output of the charger is interrupted

3. The AC power is lost (may result ingreater dc power demand than item 2.)

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 33/66

Define the System LoadsDefine the System Loads

Continuous – energized throughout the duty

cycle

Noncontinuous - energized only during a

portion of the duty cycle, defined durationMomentary - short duration loads not

exceeding 1 minute at any occurrence.

 – Lead Acid: considered a full minute,1 minute – Nickel Cadmium: for loads < 1 sec, consider

1 second

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 34/66

Define Load & ApplicationDefine Load & Application

Steady Loads – typically Telecom,

“long duration” 8 hour backups

KVA/KW Loads – typically UPS, “high

rate, short duration” 15 minutes,KVA/KW ratings

Step Loads –Switchgear & Control –

Utility Applications – “step loads” -combination of high rates and long

duration

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 35/66

Load ClassificationLoad ClassificationThe loads applied to the battery are

either: – Constant power (inverters, dc/dc power

supplies)

 – Constant resistance (dc motor starting,

relays, contactors, lights)

 – Constant current (running dc motors)

For Sizing purposes, loads are treated

as Constant Power or Constant Current

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 36/66

Selection Factors to be ConsideredSelection Factors to be ConsideredPhysical characteristics of the cells

Planned life of the installationFrequency and depth of discharge

Charging characteristics

Maintenance requirements

Cell orientation requirements

Ventilation requirementsSeismic characteristics

Spill management

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 37/66

Battery Size – Nominal Rating Battery Size – Nominal Rating 

 Ampere-hour : 8 hour capacity of a lead

acid storage battery (in the US) – The quantity of electricity that the battery

can deliver in amp-hours at the 8 hour rate.

 – Example: a “2000 Ampere Hour” batterywill provide 250 amps for 8 hours to 1.75volts per cell

(2000/8 = 250 amps continuously for 8hours)

Nickel Cadmium: 5 hour or 10 hour or 20hour rate

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 38/66

Battery Size – Constant PowerRating 

Battery Size – Constant PowerRating 

UPS batteries are rated in Watts or kW

 – kW/cell x number of cells = kWb

For a specified time period to a specified endvoltage, e.g.15 minutes to 1.67 volts per cell

Battery is typically sized for full load of theUPS system

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 39/66

Important Sizing ConsiderationsImportant Sizing Considerations

Operating Temperature

 – Affects the available capacity

 – Size for the lowest expected

temperature

 – At high temperatures use the ratedcapacity for 77° F

 – High temperature affects battery life

 – Cold temperature affects battery

capacity

 – For Nickel Cadmium- see manufacturer 

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 40/66

 Temperature Correction Factors Temperature Correction FactorsFrom IEEE Std 485-2010

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 41/66

Important Sizing ConsiderationsImportant Sizing Considerations

 Aging Margin – LEAD ACID: – Replacement criteria = 80% of rated

capacity.

 – Battery is defined at end of life at 80%capacity

 – The initial rated capacity of the

battery should be at least 125 percent(1.25 aging factor) of the loadexpected at the end of its service life.

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 42/66

Important Sizing ConsiderationsImportant Sizing Considerations Aging – NICKEL CADMIUM:

 – No defined end of life point

 – Capacity gradually decreases (linear)

 – 1.25 margin is typically used

 – Aging margins of 1.10 – 1.40 may apply

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 43/66

Important Sizing ConsiderationsImportant Sizing Considerations

Initial Capacity

 – Batteries may have less than rated

capacity when delivered. Unless 100 %

capacity upon delivery is specified, theinitial capacity can be as low as 90% of

rated capacity (per IEEE-485)

 – Typical UPS and Switchgear batteriesship at 100%; Telecom at 90%

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 44/66

Important Sizing ConsiderationsImportant Sizing Considerations

Nickel Cadmium

 – For the float application (telecom,

switchgear, UPS), make sure to usethe data based on Constant Potential

Float Charging.

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 45/66

Important Sizing ConsiderationsImportant Sizing Considerations

Design margin

 – It is prudent to provide a capacity

margin to the battery sizing for

unforeseen additions to the dc systemand less than optimum operating

conditions.

 – Typical design margins are 10-15%.

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 46/66

Battery SizeBattery Size Factors governing battery size:

 – Maximum system voltage – Minimum system voltage

 – Correction factors (e.g. aging, temperature)

 – Duty cycle

If cells of sufficiently large capacity are notavailable, then two or more strings may be

connected in parallel. The capacity of such abattery is the sum of the capacities of thestrings.

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 47/66

Number of CellsNumber of Cells

The maximum and minimum allowablesystem voltage (“voltage window”)determines the number of cells in thebattery.

When the battery voltage is not allowedto exceed a given maximum system

voltage the number of cells will belimited by the cell voltage required forsatisfactory charging.

M i V ltM i V lt

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 48/66

Maximum Voltage

48 Volt Telecom Example

Maximum Voltage

48 Volt Telecom ExampleNumber of cells =

Maximum system voltageMax cell voltage required for charging

Given: 2.33 volts per cell required for equalize chargingMaximum allowable system voltage = 56 V and 54 V

56 V = 24 cells

2.33 Vpc

54 V = 23 cells

2.33 Vpc

Minimum VoltageMinimum Voltage

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 49/66

Minimum Voltage

 Telecom Example

Minimum Voltage

 Telecom ExampleMinimum battery voltage equals the

minimum system voltage plus the cable

voltage dropMinimum system voltage at the equipment: 42 VDC

 Allowable voltage drop from battery to load: 2 VDC

Minimum battery voltage: (42 + 2) = 44 VDC

Minimum battery voltage = minimum cell voltage

Number of cells

Given: the minimum allowable battery voltage is 44 Volts

and the maximum number of cells is 24 or 23:44V = 1.83 volts per cell

24 cells

44V = 1.91 volts per cell

23 cells

Maximum VoltageMaximum Voltage

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 50/66

Maximum Voltage

Switchgear Example

Maximum Voltage

Switchgear ExampleNumber of cells =

Maximum system voltagecell voltage required for charging

Given: 2.33 volts per cell required for equalize chargingMaximum allowable system voltage either 140 V or 135 V

140 V = 60.08 cells: use 60 cells

2.33 Vpc

135V = 57.94 cells: use 58 cells

2.33 Vpc

Minimum VoltageMinimum Voltage

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 51/66

Minimum Voltage

Switchgear Example

Minimum Voltage

Switchgear ExampleMinimum battery voltage equals the

minimum system voltage plus the cable

voltage dropMinimum system voltage at the equipment: 103 VDC

 Allowable voltage drop from battery to load: 2 VDC

Minimum battery voltage: (103 + 2) = 105 VDC

Minimum battery voltage = minimum cell voltage

Number of cells

Given: the minimum allowable battery voltage is 105 Volts

and the maximum number of cells is 60 or 58:105V = 1.75 volts per cell

60 cells

105V = 1.81 volts per cell58 cells

Maximum VoltageMaximum Voltage

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 52/66

Maximum Voltage

UPS Example

Maximum Voltage

UPS ExampleNumber of cells =

Maximum system voltagecell voltage required for charging

Given: 2.38 volts per cell (1.250 sp. gr.) and 2.33 vpc (1.215sp.gr.) required for equalize charging

Maximum allowable system voltage: 576 VDC

576 V = 240 cells2.38 Vpc

576 V = 247 cells: (typical 240-244 cells)

2.33 Vpc

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 53/66

Minimum Voltage UPS ExampleMinimum Voltage UPS ExampleMinimum battery voltage equals the

minimum system voltage plus the cable

voltage dropMinimum system voltage at the UPS equipment: 396 VDC

 Allowable voltage drop from battery to UPS: 4 VDC

Minimum battery voltage: (396 + 4) = 400 VDC

Minimum battery voltage = minimum cell voltage

Number of cells

Given: the minimum allowable battery voltage is 400 Voltsand the maximum number of cells is 244

400V = 1.67 volts per cell

240 cells

400V = 1.64 volts per cell

244 cells

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 54/66

Sizing Example: TelecomSizing Example: Telecom

Constant Current loads

Sizing for:

 – Load = 400 Amps for 8 hours

 – 24 cells, battery end voltage 1.75 vpc

 – Aging margin: 1.25

 – Design margin: 1.10

 – Temperature factor at 77°F: 1.00

= 400 x 1.25 x 1.10 x 1.0 = 550 Amps continuously

for 8 hours to 1.75 vpc:

4,400 Ampere hour battery

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 55/66

Sizing Example: UPS Battery Sizing Example: UPS Battery UPS Specifications require a 300 kW Battery (kWb) for 15

minutes, 240 cells, 400 Vdc end voltage (1.67 vpc):

 – The lowest ambient temperature: 65°F

 – Battery must be sized for 300 kW at end of life

 – 300 kWb x 1.080 (temp correction) x 1.25 (aging

margin for 300 kW at end of life)

= 300 x 1.080 x 1.25 x = 405 kWb

 – Select a battery that will provide 405 kW

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 56/66

1.250 Specific Gravity 

Discharge Rates in kW per Cell to 1.67Vpc at 25°C (77°F)

1.250 Specific Gravity 

Discharge Rates in kW per Cell to 1.67Vpc at 25°C (77°F) Type TIME

5 10 11 12 13 14 15 16 17 18 19 20

DXC-5B 0.908 0.758 0.735 0.713 0.693 0.673 0.653 0.634 0.616 0.599 0.582 0.567

DXC-7B 1.350 1.124 1.091 1.059 1.029 1.000 0.971 0.943 0.917 0.891 0.866 0.843

DXC-9B 1.785 1.483 1.437 1.395 1.355 1.317 1.280 1.245 1.212 1.179 1.148 1.117

DXC-11B 2.154 1.891 1.832 1.774 1.718 1.663 1.610 1.560 1.512 1.467 1.425 1.385

DXC-13B 2.585 2.239 2.166 2.096 2.028 1.964 1.903 1.845 1.791 1.740 1.691 1.645

DXC-15B 3.016 2.580 2.493 2.410 2.331 2.256 2.185 2.120 2.057 1.999 1.944 1.893

DXC-17B 3.447 2.908 2.808 2.712 2.622 2.538 2.459 2.387 2.319 2.255 2.195 2.139 1.900 1.707

Example: UPS System requires a 405 kWb (300kWb EOL),240 cells for 15 minutes to 400 VDC (400/240cells = 1.67

volts per cell); 405/240 cells = 1.688 kW/cell

Select the DXC-13B at 1.903 kW/c x 240 cells = 456 kWb

When Battery kW (“kWb”) is UnknownWhen Battery kW (“kWb”) is Unknown

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 57/66

 When Battery kW ( kWb ) is Unknown

But UPS kVA is Known

 When Battery kW ( kWb ) is Unknown

But UPS kVA is Known

Battery kWb = kVA x p.f efficiency of inverter 

kVA = kVA is the Inverter output or load

p.f. = the power factor

Efficiency = the efficiency of the inverter 

Battery kW = kW/cell X 1.25 for EOL Sizing# of Cells

Sizing Example: Switchgear &Sizing Example: Switchgear &

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 58/66

Sizing Example: Switchgear &

Control / Utility 

Sizing Example: Switchgear &

Control / Utility 

Duty Cycle

 – Combination of continuous, noncontinuous

and momentary loads – All loads expressed in constant Current or

constant Power 

 – Time span of the duty cycle is determined bythe requirements/design

Sizing Example: Switchgear &Sizing Example: Switchgear &

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 59/66

g p w g

Control

g p w g

Control

Sizing Example: Switchgear &Sizing Example: Switchgear &

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 60/66

g p g

Control

g p g

Control

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 61/66

Example: Substation Battery DutyExample: Substation Battery Duty

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 62/66

p y y

Cycle

p y y

Cycle

100

 AMPS

45

2

min 1 239

Hours 1 2 3   4

Time

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 63/66

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 64/66

EnerSys Battery Sizing Program“BSP”EnerSys Battery Sizing Program“BSP”

Register on-line at:

http://www.enersysreservepower.com/

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 65/66

Engineer, Furnish and InstallEngineer, Furnish and Install

Standby Power Products for the Utility,

UPS and Telecom Applications  Application and System Design

 – Registered Electrical PE

 – Technicians with Electrical Contractor Licenses Installation Services

Start-up Service and Inspection

Battery Load Testing Maintenance Contracts

24 Hour Emergency Service

Battery Recycling/Disposal

7/23/2019 2015-04-20_EEE IAS Stationary Battery Sizing

http://slidepdf.com/reader/full/2015-04-20eee-ias-stationary-battery-sizing 66/66