20131007 Wind Power Fundamentals TSLEU

download 20131007 Wind Power Fundamentals TSLEU

of 26

Transcript of 20131007 Wind Power Fundamentals TSLEU

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    1/26

    2013/10/4

    1

    Wind, Wind Turbine Wind, Wind Turbine

    Prof. TProf. TS S LeuLeu (Jeremy)(Jeremy)Department of Aeronautics and Department of Aeronautics and

    AstronauticsAstronauticsNational Cheng Kung UniversityNational Cheng Kung University

    Tainan, TaiwanTainan, TaiwanEmail: [email protected]: [email protected]

    Overview

    Background Wind Physics Basics & Wind Energy Estimation Wind Turbine development History Wind Power Fundamentals International Standard for Wind Turbines

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    2/26

    2013/10/4

    2

    (Energy Source)(Installed

    capacity) (Net energy output)/

    (Capacity factor)(Nuclear) 5144.0 (12.4%) 5017.9 (16.7%) 97.5% (90.3%) *1

    Unit: MWEnergy Source in TaiwanEnergy Source in Taiwan

    (Coal) 11297 (27.5%) 10239 (30.1%) 90.6% (63.8%) *1

    (LNG) 15217 (37%) 9876 (33.9%) 64.8%

    (Oil) 3325 (8.1%) 411(1.4%) 12.4%(Hydro) 4683 (11.4%) 1727 (5.9%) 36.8% (39.8%) *1

    n

    . .

    .

    ~

    (Solar) 180 (0.4%) 5.1(0.0%) 2.8%

    *1 US Energy Information Administration (EIA), the typical capacity factors in 2009

    http://stpc00601.taipower.com.tw/loadGraph/loadGraph/genshx.html

    Data on 2013 10 02 from Taiwan Power Company

    Installed Capability of Electric Power Installed Capability of Electric Power Generators in TaiwanGenerators in Taiwan

    74.1% Combustion

    12.4% Nuclear

    11.4% Hydro 1.9% Renewable Energy

    including 1.5% Wind +0.4% Solar

    4

    (Coal+LNG+Oil+CoGen)

    http://stpc00601.taipower.com.tw/loadGraph/loadGraph/genshx.html

    Data on 2013 10 02 from Taiwan Power CompanyBackground

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    3/26

    2013/10/4

    3

    Taiwan Government PolicyTaiwan Government Policy Thousand Wind Turbines Promotion Project :

    450 on shore Wind Turbines until 2020o s ore n ur nes ur ng

    2010~2030 Planning:

    OnshoreMW

    Year

    off shore(MW)

    SUM

    4.51.4 10.42.2 7.4

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    4/26

    2013/10/4

    4

    Origin of WindWind Atmospheric air in motion

    Energy sourceSolar radiation differentially absorbed by earth surface converted through convective processes due to temperature differences air motion.

    Spatial Scales:

    Planetary scale : global circulation Synoptic scale : weather systems Meso scale : local topographic or thermally induced circulations Micro scale : urban topography

    http://www.youtube.com/watch?v=ujBi9Ba8hqs

    Wind Resource Availability and Variability

    The map shows the mean wind speed in ms 1 @ 10 m for the period 1976 95

    http://www.windatlas.dk/World/Index.htm

    http://www.nrel.gov/wind/international_wind_resources.html

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    5/26

    2013/10/4

    5

    Wind AtlasMaps of mean 80 m wind speeds for year 2000

    http://www.stanford.edu/group/efmh/winds/global_winds.html

    Europe Asia

    10 Year Global Wind Speed 10 Year Global Wind Speed RankingsRankings

    http://www.4coffshore.com/windfarms/windspeeds.aspx

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    6/26

    2013/10/4

    6

    WIND ENERGY ESTIMATION AT TAIWAN

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    7/26

    2013/10/4

    7

    MM5 Simulation (1996~2000 database)Wind power (100W/m 2) at 50mWind speed (m/s) at 50m

    http://www.atm.ncu.edu.tw/93/wind/

    http://wind.itri.org.tw/wind.html

    OffshoreOffshore WindfarmWindfarm PlansPlans

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    8/26

    2013/10/4

    8

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    9/26

    2013/10/4

    9

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    10/26

    2013/10/4

    10

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    11/26

    2013/10/4

    11

    ~59%

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    12/26

    2013/10/4

    12

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    13/26

    2013/10/4

    13

    Whats inside a wind turbine? http://www.youtube.com/watch?v=LNXTm7aHvWc

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    14/26

    2013/10/4

    14

    IEC 61400 International Standard for Wind IEC 61400 International Standard for Wind Turbines and PowerTurbines and Power

    IEC 61400 consists of the following parts under the general title Wind turbine generator systems:

    IEC 61400 International Standard for Wind IEC 61400 International Standard for Wind Turbines and PowerTurbines and Power

    Part 1: Design requirements for wind turbines Part 2: Design requirements for small wind turbinesPart 3: Design requirements for offshore wind turbinesPart 11: Acoustic noise measurement techniquesPart 12: Wind turbine power performance testingPart 13: Measurement of mechanical loadsPart 14: Declaration of apparent sound power level and tonality values

    wind turbinesPart 23: Fullscale structural testing of rotor bladesPart 24: Lightning protection

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    15/26

    2013/10/4

    15

    The following information, shall be displayed on themarked turbine nameplate: wind turbine manufacturer and country; model and serial number; production year; rated wind speed and power; reference wind speed, Vref; hub height operating wind speed range, Vin Vout;

    Wind turbine Wind turbine markingsmarkings

    Niederland ZEPHYROS Z72 model

    IEC wind turbine class (see Table 1); rated voltage at the wind turbine terminals; frequency at the wind turbine terminals or frequency range in the case that the nominalvariation is greater than 2 %.

    IEC 61400 1 5.5 Wind turbine markings.............................................................................20

    VestaVesta V80V802.0 MW Wind Turbine Specs2.0 MW Wind Turbine Specs

    30

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    16/26

    2013/10/4

    16

    Power curve V80Power curve V802.0 MW2.0 MW

    Wind turbine classesWind turbine classes

    IEC 61400 1 6.2 Wind turbine classes ...................................................................................21

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    17/26

    2013/10/4

    17

    Wind conditions for Wind Turbine DesignWind conditions for Wind Turbine Design6.3.1 Normal wind conditions

    6.3.1.1 Wind speed distribution

    6.3.1.2 The normal wind profile model (NWP)

    6.3.1.3 Normal turbulence model (NTM)

    6.3.2 Extreme wind conditions

    6.3.2.1 Extreme wind speed model (EWM)6.3.2.2 Extreme operating gust (EOG)6.3.2.3 Extreme turbulence model ETM

    IEC 61400 1 6.3 Wind conditions...................................................................................22

    6.3.2.4 Extreme direction change (EDC)6.3.2.5 Extreme coherent gust with direction change (ECD)6.3.2.6 Extreme wind shear (EWS)

    70m

    Chang-Kong Wind Mast

    50m

    34

    10m

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    18/26

    2013/10/4

    18

    Wind Monitor Wind Monitor

    Logger Manufacturer/Type CR1000

    Preprocessed data 1-minutes averagewind speed and wind

    direction

    1-minutes wind speedstandard deviation

    Observation period Jan 2011~May 2012

    Period 1 _2010/02~2011/01 (Annual mean Wind Speed= 8.46m/s)

    Period 2 _2011/02~2012/01 (Annual mean Wind Speed= 8.60m/s)

    Wind Direction Rose

    N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW

    9 54 44 43 3 44 3 55 1 48 1 90 3 06 5 32 6 78 3 96 3 46 2 22 1 68 1 44 1 94 5 79

    9 15 49 28 2 50 1 68 1 10 1 58 2 29 4 55 6 21 3 08 3 74 2 93 1 98 1 41 2 34 6 19

    Period 1 Period 2

    36

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    19/26

    2013/10/4

    19

    IEC 61400 International standard suggests using Weibull distribution for wind speed distribution.

    Wind Speed DistributionWind Speed Distribution

    Weibull distribution

    10-min averaged wind speed

    k

    avg k U U k

    avgavg

    ek U

    U k

    k U U

    PDF

    11111

    11

    U

    U avg Annual mean wind speedNon-dimensional probability density function (PDF)

    k Shape factor of Weibull distribution

    Gamma function

    k 1

    1

    avgU U PDF /

    Results and Discussionhttp://www.wind-power-program.com/wind_statistics.htmIEC 61400-1

    37

    0983.1

    )/(9874.0

    avgU k

    72.7% WTG operation time 74% WTG operation time

    Wind Speed Distribution

    k=1.466 k=1.511

    P D F

    P D F

    Vestas V80 2.0 MWCutin wind speed: 4m/sCutout wind speed: 25m/s

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    20/26

    2013/10/4

    20

    Double Peaked biWeibull Distribution

    0 . 1 2

    ])(exp[)1(])(exp[ 22

    2

    1

    1

    1

    22

    1

    2111

    1

    11k

    k

    k k

    k

    k

    cU

    c

    U k F

    cU

    c

    U k F U PDF

    0 . 0 4

    0 . 0 6

    0 . 0 8

    0 . 1

    P D F

    BiWeibull ParametersF1 0.8

    Shape factor1 k1 1.89Scale factor 1 c1 6.10

    Shape factor1 k2 6.22Scale factor 1 c2 17

    39

    0

    0 . 0 2

    0 5 1 0 1 5 2 0 2 5

    W in d S p e e d ( m / s )

    Wind speed distribution in Taiwan can be represented quite well by a double peaked biWeibull distribution, with different scale factors and shape factors in the two seasons.

    6.3.1 Normal wind conditions

    6.3.1.2 The normal wind profile model (NWP)

    6.3.1.3 Normal turbulence model (NTM)

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    21/26

    2013/10/4

    21

    logarithmic wind profile

    Power law wind profile

    Wind profiles using the 1min data points, 60 min averaged wind speed profile and curve fitted with normal wind profile

    where zhub =70m Vhub is wind speed at

    70m

    50m .

    30m

    10m

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    22/26

    2013/10/4

    22

    2010/08/01 (00:00~01:00)Wind Profile

    10m data30m data50m data70m data 2010/08/01 (00:00~01:00)

    Wind profiles

    40

    50

    60

    70

    80

    -m n n pee a a 1 hr Averaged Wind Profile

    H e

    i g h t ( m )

    The normal wind speed profile which is given by the power law

    (z) ( )

    =70( ) 0.2

    V = 4.21455( ) = 1 hour averaged V

    hubhub

    hub

    hub hub

    zV V

    z

    where z m

    m

    43

    0

    10

    20

    30

    0 1 2 3 4 5 6

    Wind speed (m/s)

    V(z) = Vhub*(z/70) Alpha

    Error Value0.0346924.2081Vhub

    0.00994520.25449 AlphaNA0.0039292ChisqNA0.99871R

    2011/3/21 00:00~01:002011/6/22 00:00~01:002011/9/23 00:00~01:00

    2011/12/22 00:00~01:00

    Mean hourly wind speed

    i

    Normal Wind Profile

    4 Typical Dates in 2011

    40

    50

    60

    70

    80- r verage n pee ro e i

    H e i g h

    t ( m )

    Alpha=0.28458

    Alpha=0.272

    Alpha=0.25845

    Alpha=0.26954

    44

    0

    10

    20

    30

    0 5 10 15 20

    Wind Speed (m/s)

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    23/26

    2013/10/4

    23

    IEC 61400-1 The onshore normal wind speed

    rofile is iven b the ower law:

    IEC 61400-3 The offshore normal wind speed

    rofile is iven b the ower law:

    Best fitted power law exponent

    V(z)=V ( )hubhub

    z z

    2011 3/21 6/22 9/23 12/22

    The power law exponent, , shall beassumed to be 0.2.

    where, for normal wind conditions,the power law exponent, , is 0.14.

    V(z)=V ( )hubhub

    z z

    45

    00~01 0.28458 0.272 0.25845 0.26954

    06~07 0.43872 0.572 0.23158 0.27488

    12~13 0.17315 0.1179 0.24866 0.2616

    18~19 0.29314 0.15565 0.24271 0.27482

    0.5

    0.6Alpha-Wind Speed

    Vhub

    < 10 m/s

    Vhub

    > 10 m/s

    0.2

    0.3

    0.4

    A l p h a

    0.27

    0

    0.1

    0 5 10 15 20 25

    Wind Speed (m/s)

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    24/26

    2013/10/4

    24

    6.3.1 Normal wind conditions

    6.3.1.2 The normal wind profile model (NWP)

    6.3.1.3 Normal turbulence model (NTM)

    Normal Turbulence Model in IEC 61400Normal Turbulence Model in IEC 61400 11In the international standard, IEC 61400 1, the 10min standard deviation of wind speed fluctuation and standard deviation of for wind turbine design is suggested by the following expression:

    bU a I I a b

    )( )(

    re

    )( U I ref

    IEC Class A 0.16

    0.75 3.8 0 1.4IEC Class B 0.14

    IEC Class C 0.12)(U b

    a I U

    I ref IEC

    k N 1

    4848

    k k N 1

    k N

    sk k ssk

    N U U N N N 1

    22 ))1()((1

    1

    U I EXP /

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    25/26

    2013/10/4

    25

    90th Percentile of the Turbulence Intensity (I 90 )

    0.6

    I of Period 1 observation data0.6

    0.1

    0.2

    0.3

    0.4

    0.5

    I90th percentile of Period 1I

    90 of IEC 61400-1 Category A

    I90

    of IEC 61400-1 Category B

    I90

    of IEC 61400-1 Category C

    0.2

    0.3

    0.4

    0.5

    t p ercent e o e ro 1 o s erva t o n a t a

    90th percentile of Period 2 observation data

    I90

    of IEC61400-1 Category A

    I90

    of IEC61400-1 Category B

    I90

    of IEC61400-1 Category C

    49

    00 5 10 15 20 25 30

    U (m/s)

    0.10 5 10 15 20 25 30

    U (m/sec)

    28.190

    U b

    a I U

    I ref )28.1(

    28.19090

    IEC Class B Wind Turbine IEC Class B Wind Turbine

    I 90, C < I 90, exp < I 90, B time is about 23% of whole year

    4.5 10.5 19.5 25

    0 . 0 4

    0 . 0 6

    0 . 0 8

    0 . 1

    .

    P D F

    20% 3%

    50

    0

    0 . 0 2

    0 5 1 0 1 5 2 0 2 5

    W i n d S p e e d ( m / s )

  • 8/12/2019 20131007 Wind Power Fundamentals TSLEU

    26/26

    2013/10/4

    Parameters of IEC 61400Parameters of IEC 61400- -1 Normal Turbulence Model1 Normal Turbulence Model

    / s )30

    Period 1Period 2

    6

    Period 1

    bU a I ref / U I ref /

    (

    0

    5

    10

    15

    20

    0 5 10 15 20 25 30

    IEC

    y1 = 2.4226 + 0.91185x R= 0.99277

    y2 = 2.4459 + 0.91305x R= 0.99357

    U (m/s)

    0

    1

    2

    3

    4

    5

    0 5 10 15 20 25 30

    Period 2

    IEC

    y = 2.3156 + 0.10007x R= 0.86402

    y = 2.0587 + 0.093674x R= 0.85046

    U m/s

    51

    I ref a b IEC Class A 0.16

    0.75 3.8 0 1.4IEC Class B 0.14IEC Class C 0.12

    Period 1 0.098 0.912 2.423 0.100 2.316Period 2 0.099 0.913 2.446 0.094 2.059

    (Period 1+Period 2)/2 0.0985 0.9125 2.4345 0.097 2.1875

    Questions:

    w w c affect a wind turbine?Wind speed distribution effects?Wind Profile effects?Wind Turbulence effects?Extreme wind conditions?