2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web...

34
Biomedical Engineering at the University of Arizona 2013-2014 Undergraduate Student Handbook

Transcript of 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web...

Page 1: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

Biomedical Engineeringat the University of Arizona

2013-2014 Undergraduate Student

Handbook

Revised by Undergraduate Studies Committee: 9/13/2013

Approved by Faculty: 9/16/2013

Page 2: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

TABLE OF CONTENTS

1 GENERAL INFORMATION 3

1.1 THE DEPARTMENT 31.2 UNDERGRADUATE PROGRAM 31.3 APPLICABILITY 31.4 STUDENT RESPONSIBILITIES 4

1.41. General Responsibilities 41.42 University of Arizona E-mail Accounts 4

1.5 REGISTRATION PROCESS IN BME 41.6 DIFFERENTIAL TUITION 51.7 GRADUATION REQUIREMENTS 51.8 GRADE REPLACEMENT OPPORTUNITY (GRO) 51.9 PROBATION AND DISQUALIFICATION 61.10 PETITION PROCEDURE 61.11 UNDERGRADUATE STUDENT ADVISING INFORMATION 6

2 ACADEMIC PROGRAM 7

2.1 BIOMEDICAL ENGINEERING (2011-12) 72.2 REQUIRED BME COURSES 82.3 TECHNICAL ELECTIVES 8

Biomechanics 8Biomaterials 8Biosensors / Microtechnologies 8

2.4 SENIOR CAPSTONE DESIGN COURSE 9

3 SPECIAL REQUIREMENTS 9

3.1 ADVANCED STANDING REQUIREMENT 103.2 INDEPENDENT STUDY 103.3 ACCELERATED MASTER’S PROGRAM 10

4 STUDENT SERVICES 115 ACADEMIC MISCONDUCT 11

5.1 CODE OF CONDUCT 115.2 CODE OF ACADEMIC INGERITY 12

5.2.1 Plagiarism 125.2.2 Cheating 135.2.3 Fabrication and Deception 13

A APPENDIX 14

A.1 FACULTY AND STAFF OF THE DEPARTMENT 14A.2 FREQUENTLY ASKED QUESTIONS (FAQ’S) 15A.3 DESCRIPTION OF CLASSES 16

Page 3: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 3

1 General Information

1.1 The DepartmentThe Department of Biomedical Engineering at the University of Arizona provides an environment for research and undergraduate education. It draws upon University of Arizona areas of excellence in biosciences, engineering, optical sciences, and medicine to create vibrant research and educational programs.

Faculty in the Department of Biomedical Engineering have a wide variety of backgrounds and research expertise. Major emphasis in Biomedical Engineering is to apply scientific principles and engineering expertise to improve human health and to support advanced understanding of the human system. The Department of Biomedical Engineering has a strong emphasis on interdisciplinary research which is also facilitated by its close proximity to the University Medical Center.

The Department of Biomedical Engineering is lead by a Department Chair who oversees and participates in student education. The Department is an organizational unit of the College of Engineering. The College is lead by the Dean of the College of Engineering who reports to the provost. The Dean of the College of Engineering, the Department Chair, the faculty and staff of the Department are responsible for providing the most relevant aspects of the students’ education. The Undergraduate Studies Committee in Biomedical Engineering is comprised of faculty of the department and the academic advisor. Their responsibility is to maintain this handbook and to update the BME curriculum as well as to decide on student’s petitions. The Undergraduate Studies Committee reports regularly to the faculty during faculty meetings.

Through an Accelerated Masters Program qualifying students can obtain a combined Bachelor’s and Master’s Degree in 5 years. To further emphasize the commitment to interdisciplinary education, the graduate education in Biomedical Engineering is organized in an independent Graduate Inter-Disciplinary Program.

1.2 Undergraduate ProgramEstablished in 2010 by the Arizona Board of Regents, the Biomedical Engineering program reflects a University of Arizona 50-year tradition of interdisciplinary research at the intersection of medicine, science, and engineering.

Students in our program are trained in mathematics, engineering, life and physical sciences, and translational medical research. The program trains students for careers in engineering and health care industries as well as prepares students for graduate studies in medical and engineering disciplines. The BME undergraduate program strives to provide collaborative research opportunities involving engineers, physicians and other health care professionals. Additionally, after reaching advanced standing status, Faculty Advisors are available to assist students in technical elective selection and general career information. Throughout their senior year, students will be exposed to medical environments and interact with health care professionals.

An academic advising staff is available to assist students with academic policies and procedures, departmental requirements, course selection, transfer course evaluation, and general academic information.

1.3 ApplicabilityThe degree requirements listed in this document apply to all students beginning their freshman year in, or after, August 1, 2011.This handbook is subject to College of Engineering and University of Arizona Academic policies. Substantial information can be found in this handbook as well as the College of Engineering website: http://www.engr.arizona.edu.

1.4 Student Responsibilities1.41. General Responsibilities

To keep abreast of degree requirements, students should consult with the Academic Advisor at least once per semester.

Page 4: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 4

You are responsible for course selection and fulfilling all your degree requirements according to department, college and university rules. It is the student responsibility to review and know academic policies; you shouldn’t rely on information relayed to you by your fellow students. Academic Policies are listed in the current online academic catalog (http://catalog.arizona.edu/2013-14/). Note that there are differences between catalog years, college requirements, and transfer institutions that affect degree requirements. Be familiar with the online catalog. If you still have questions, ask your advisor!

Advisement Reports (accisible through UAccess Student, (http://www.uaccess.arizona.edu) do not replace advising. The purpose of Advisement Reports is to enhance advising by providing accurate and comprehensive information that you can use in consultation with your Academic Advisor. You are encouraged to contact your advisor for academic and career counseling. Many major and minor requirements call for you to select coursework in consultation with your Academic Advisor. Additionally, your Academic Advisor will be able to anticipate problems and make adjustments when necessary.

If you have concerns or questions about your degree requirements or your academic career, please seek the advice of your advisors. This is will ensure that you are on the right track toward completing your degree. You may view most current walk-in hours on the BME web-page at http://bme.engr.arizona.edu/. Also, there are many resources available to you: tutoring, counseling, academic skills workshops, internships, and career services. Take advantage of these resources.

1.42 University of Arizona E-mail Accounts

E-mail is the primary method of communication that the University, the department and your advisors use to get essential information out to you. It is required that all University of Arizona students have an arizona.edu e-mail account and you are responsible for checking your e-mail on a regular basis. University policies allow the BME undergraduate program to communicate official information only to your UA e-mail account. UA e-mail is used to provide information regarding registration, bursar’s account, available courses, filing degree checks, and deadlines. If you decide to use other e-mail providers as your primary mode of electronic communication, it is best to forward arizona.edu e-mail to those accounts. Lack of knowledge about important academic issues or deadlines will affect your academic success and can impact your ability to graduate on time. Please let your Academic Advisor know if you are not on the BME listserv.

1.5 Registration process in BMEDuring your designated registration time for your class rank (freshman, sophomore, etc.) you should meet with your BME Academic Advisor. Registration times in accordance with your class rank are announced via e-mail (your Advisement Report will tell your rank). You will register for classes through UAccess Student.

Always attend the first day of all classes you are registered for and make sure to sign class attendance forms; otherwise you may be dropped for non-attendance.

If a class you intend to take is full, you can contact the instructor or the department offering the class and inquire about a waiting list. If you are on a waiting list, attend the first day of class, otherwise you might be dropped from the waiting list.

Students are ultimately responsible for maintaining their own schedules. Whether you are added or dropped from a class by the University, Academic Advisors, the registrar, or UAccess, you are still responsible for verifying that the changes were made as requested and that your schedule in UAccess is correct.

1.6 Differential TuitionAll students will be required to pay differential tuition. The differential tuition is listed on the Bursar’s Office website and total tuition can be calculated with the online tuition and fees calculator at http://www.bursar.arizona.edu/students/fees.

Page 5: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 5

1.7 Graduation Requirements1. To complete all degree requirements for the Bachelor of Science degree in Biomedical Engineering in four years, each student

will need to take the required number of units per the curriculum guide in section 2 of this handbook. The average number of units per semester in this guide is 16. If you are planning to take more than 19 units you will need to get approval from the Academic Dean of the College of Engineering. UAccess is the authoritative source for classes completed and enrollment status.

2. Students are required to complete the Mid-Career Writing Requirement (MCWA, see Section 4.0). The requirement can be met by completion of English 102 or an equivalent course with a “B” or better. Students who have received a “C” in English102 are required to receive a “B” or better in BME 330 in order to fulfill the MCWA.

3. Prerequisites must be completed before taking further courses. Exceptions must be approved by the instructor.

4. Advanced Standing is required of all students prior to registration of 300/400 level coursework. Please see an Academic Advisor for the Advanced Standing form. Advanced Standing procedures and policies are set forth in Section 3.1 of this handbook and the College of Engineering website: http://engr.arizona.edu/current/index.php?ID=85

5. Graduation requirements are set forth in the Academic Policies of the University. Students applying for graduation must do so in accordance with all directives of the College of Engineering and the University. An application to graduate must be filed with the College of Engineering and approved by an Academic Advisor. All course work at the University must meet the cumulative grade point average of 2.000. Your major and minor GPA must be at least 2.0 as well.

6. Engineering coursework must be completed with a minimum grade of “C”. If a student is unable to do so, he or she may petition the BME Undergraduate Studies Committee for an exception.

7. Senior-level students wishing to enroll in ENGR 498A (capstone) must have completed all 300 level required courses. A student may not enroll in ENGR 498A if the student is on probation.

1.8 Grade Replacement Opportunity (GRO)GRO gives you the opportunity to replace grades up to 10 units during your undergraduate program.

A total of 3 courses, not to exceed a maximum of 10 semester hours, may be repeated under GRO. A GRO repeated course grade will replace only one previous grade. All undergraduates who have attempted fewer than 60 University Credits (i.e., units in residence at the UA) at the time of application for GRO are eligible. Students with 60 or more attempted University Credits may retake courses in accordance with the Course Repeat Policy but without use of the GRO. Effective with the Fall 2012 term, the Grade Replacement Opportunity (GRO) process is changing to an online format. Students will be able to submit GRO requests by accessing a WebAuth link that will take them to an online GRO form. The link will be accessed through the Registrar’s website: http://www.registrar.arizona.edu/regtrans/GRO The repeated attempt under GRO is the grade used in the calculation of the grade-point-average (GPA), even if lower than the first attempt. Both grades earned in the first and the GRO repeat attempts will remain on the academic record. If a student passes the first attempt, but fails the repeat attempt, the failing grade is calculated in the grade-point-average; however the units earned in the first attempt may be applied toward degree requirements.

1.9 Probation and DisqualificationYou will be put on probation if your cumulative or major GPA is below 2.0 at any time. Beginning with your first year at the University and the Department, your progress is reviewed at the conclusion of each semester. If you are put on probation you will be notified by e-mail sent to your UA e-mail account. You will be required to meet with an Academic Advisor twice a semester and sign the College of Engineering Academic Contract for Students on Academic Probation. Failure to meet with an advisor may result in a hold on your account or college disqualification.

Page 6: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 6

If you fail to meet the criteria for satisfactory progress for two consecutive semesters, you may be disqualified from the program or the University of Arizona. Disqualification from the University of Arizona will mean you are no longer a student at the UA. You can apply for re-admittance after completing 24 units at another college with a 3.0 GPA. Disqualification notification will be communicated to you by e-mail to your UA e-mail address on record and any current registration or pre-registrations will be cancelled.

1.10 Petition ProcedureIf you are disqualified, or want to request an exception to policy, you may file a written petition with your major Academic Advisor who will forward it to the BME Undergraduate Studies Committee. You must submit your disqualification petition within 15 days after the probation or disqualification e-mail is received (Note: not when you read the e-mail, but when the e-mail appears in your official University e-mail account). Your petition should state facts that justify reconsideration and include supporting documentation. Upon receipt, the BME Undergraduate Studies Committee will review your petition and return a decision within 15 working days to your last address on record. Committee decisions are final.

1.11 Undergraduate Student Advising InformationThe program provides general advising through the Acadmic Advisor. In addition, for students in advanced standing a Faculty Advisor is available for career advising and questions regarding technical electives.

Type of Advising AdvisorGeneral Advising: Freshman-Senior Academic Advisor: Diana Wilson,

621-5420 email: [email protected] Upper Division Advising:Technical Electives, Career Advising

Faculty Advisor,All BME faculty are eligible. Individual faculty are assigned to each student

Advising Action When to ScheduleCourse selection Prior to each succeeding semesterPre-Registration October for Spring courses

Early April for Fall coursesRegistration Prior to each succeeding semesterTechnical Elective Selection Second semester Junior year in consultation with a faculty advisorGraduation Application One year prior to expected graduationScholarships See your Academic AdvisorInternship/Co-ops Internships are encouraged for practical training in your major.

Visit the Career Services Office in the Student Union Memorial Center for information on when companies will be on campus for interviews for these internships and co-ops.Visit: career.arizona.eduInternational students can seek internships/co-ops with the assistance of the International Students Office. internationalstudents.arizona.edu

Page 7: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 7

2 Academic Program

2.1 Biomedical Engineering (2013-14)Below is the recommended sequencing of courses. Official degree requirements are found in the University General Catalog under Majors and Degrees (http://catalog.arizona.edu).

FRESHMAN YEAR SOPHOMORE YEAR

First SemesterCourse UnitsENGR 102 3MATH 125/124# 3/5CHEM 151 4ENGL 101 3Tier 1 INDV* 3

TOTAL 16/18

Second SemesterCourse UnitsMATH 129 3CHEM 152 4PHYS 141 4ENGL 102 3Tier 1 TRAD* 3

TOTAL 17

Third SemesterCourse UnitsABE 284 3BME 295C 1CE 214 3MATH 223 4MCB 181 R&L or 184 4

TOTAL 15

Fourth SemesterCourse UnitsABE 205 3MATH 254 3PHYS 241 4PSIO 201 4Tier 1 INDV 3

TOTAL 17

JUNIOR YEAR SENIOR YEARFifth Semester

Course UnitsECE 207 3PSIO 202 orECOL 182R/L 4CE 218or AME 331 3AME 301*** 3Tier I TRAD 3

TOTAL 16

Sixth SemesterCourse UnitsBME 330 4SIE 305 3ABE 423*** 3Tech Elec** 3Tech Elec** 3*

TOTAL 16

Seventh SemesterCourse UnitsENGR 498A 3BME 497G 1ABE 447 3Tech Elec** 3Tech Elec** 3Tech Elec** 3

TOTAL 16

Eigth SemesterCourse UnitsENGR 498B 3BME 480 3Tech Elec** 3Tech Elec** 3Tier 2 Arts orHumanities 3

TOTAL 15

TOTAL UNITS = 128

# MATH 124 is a 5 unit version of MATH 125. Students taking MATH 124 should consider delaying the Tier 1 INDV course to maintain a reasonable academic load.* INDV/TRAD/Art/Hum courses must meet University general education requirements. One course must be recognized by the University as focusing on non-western culture, race, gender or ethnicity. TRAD 101 satisfies this requirement.** Electives and technical electives depend upon area of emphasis and Academic Advisor's approval. The BME electives must include engineering design. Listings of acceptable technical electives are available from advisors.***AME 301 or ABE 423 is required. One semester will be filled with a Tier 2 INDV to fulfill the General Education requirement.

2.2 Required BME CoursesBME 295c Challenges in Biomedical Engineering (1 unit) This colloquium explores themes of biomedical engineering in the context of health-related challenges. Each week a new challenge will be presented, the biomedical engineering principles that can be used to address this challenge explained, and the state of the art in research and clinical practice described.

BME 330 Biomedical Instrumentation with Lab (4 units)

Page 8: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 8

This course is designed to provide students with theoretical knowledge and practical experience to design, conduct, and analyze measurements on living systems. Students will receive 3 hours of lecture and 3 hours of lab per week. Topics will include human biosignals, transducers, analog and digital signal processing, electrical safety, noise minimization, experimental design, and statistical analysis. Common types of measurements made clinically will be discussed, and several will be made and analyzed in lab. This course also has a technical writing component.

BME 497G Clinical Rotation (1 unit) Students will gain exposure to clinical practice through this 1 unit rotation course. Students will receive an introduction to the hospital environment and patient flow. They will tour portions of a hospital. Students will attend Grand Rounds lectures, patient case studies, and will spend a minimum of 3 hours viewing procedures.

BME 480 Translational Biomedical Engineering (3 units) The purpose of this course is to educate students on the benefits, methods, and difficulties of translating laboratory results into products that are successful in the clinic and in the marketplace. Topics include: laws and regulations for animal use, human subjects protection, good laboratory and good clinical practices, Food and Drug Administration (FDA) approval procedures for drugs and devices, ethics case studies, technology transfer, resources for small business start ups, and product life cycle.

2.3 Technical ElectivesBME students will complete 21 units of Technical Electives. Each student is required to choose one thrust area; Biomechanics, Biomaterials or Biosensors/Microtechnology and take a subset of required electives as listed below.

Biomechanics

Biomechanical Engineering AME/BME 466 (3 units) (M)Microbiomechanics AME 483 (3 units) (M)Numerical Methods AME 302 (4 units) (M)Mechanical Behavior of Engineering Materials AME 324a (3 units) (H)

Biomaterials

Biological Synthetic Materials MSE/BME 461(3 units) (M)Biomaterial Tissue Interaction ABE 486 (3 units) (M)Cell and Tissue Engineering ABE 481b (3 units) (H)Organic Chemistry CHEM 241a (3 units) (N)Organic Chemistry Lab CHEM 243a (1 unit) (N)

Biosensors / Microtechnologies

Fabrication Techniques for Micro/Nanodevices AME 489a (3 units) (H)Bio Micro/Nanotech Applications ABE 489b (3 units) (M)Micro/Nano Transducer Physics AME 488 (3 units) (H)Biomaterial Tissue Interaction ABE 486 (3 units) (H)

Technical Electives are elective classes that require advanced standing and support a student’s professional career as a biomedical engineer. Students must submit the BME Technical Electives Form to the program office before any Technical Electives are taken or by the start of spring semester in the junior year. The form requires a faculty advisor signature. Only letter graded classes can count towards a Technical Elective. In general Technical Electives are 400 or 500 level engineering, mathematics, business, life or physical sciences classes, however students can petition other classes to count as Technical Electives by providing justification on the BME Technical Electives Form. Technical Electives at the 300 level and classes not obviously supporting a student’s career in biomedical engineering require review by the Undergraduate Studies Committee.

Page 9: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 9

2.3.1 BME Design ElectivesBME Design Electives are Technical Electives with an engineering design component. In order to graduate, a BME student needs to complete 12 units of BME Design Electives as part of the total 21 units Technical Electives.

With exception of organic chemistry all Technical Electives required for the BME thrust areas are BME Design Electives. Students in the biomaterials thrust will need to take one more BME Design Elective to fulfill the BME Design Elective requirement.

BME defines an engineering design component as a process in which a choice between alternatives has to be made in order to design a system, component, process or an experiment. That choice will need to be supported by a quantitative or a semi quantitative analysis and take into account desired needs within realistic constraints.

2.3.2 Internships and Research Experience as a Technical Elective To fulfill the 21 units Technical Electives requirement, students can take a maximum number of 6 units of Internship or Research Experience. An Internship or Research Experience will need to include a graded report writing component in order to qualify as a Technical Elective. Such a report will need to be made available to the BME program office and should address the goals of the research experience as outlined in the faculty-student research agreement.

An assignment that is financially compensated does not qualify as a Technical Elective. There exists a conflict if an assignment for credit is conducted concurrently in the same laboratory or company where other work is conducted for financial compensation. Such a conflict will need to be presented to the UG Studies Committee so that an apparent conflict can be resolved.

2.4 Senior Capstone Design CourseStudents entering their senior year are required to register for the senior capstone course sequence, which culminates in a comprehensive design project. Working on these projects allows students to integrate their learning experiences within the major, including a mastery of technical communication and a comprehensive knowledge of the BME discipline. Eligible students must meet the following criteria:

1. Senior departmental standing

2. Completion of all required 300 level core courses and

3. Have a cumulative and major GPA of 2.0 or above.

The senior design project course is a significant two-course sequence taken over the two semesters of the senior year. ENGR 498A covers the problem statement, brainstorming and proposal writing phases of the project. The follow-on course, ENGR 498B is where the design is realized, and requires the completion of a formal technical report and final presentation. Another aspect of the 498A,B-sequence is that all students will be required to work in teams. Team projects are an integral part of academic and industry life, team members should make a concerted effort to be a productive, active member of the capstone team.

3 Special Requirements

3.1 Advanced Standing RequirementIn order to receive Advanced Standing and advance to the Junior (third) year in the BME program, students must meet the following requirements:

1. Successful completion with a “C” or better of all the required freshman and sophomore technical courses listed in the appropriate degree curriculum (excluding Traditions & Cultures, Individual & Societies, Humanities, and Social Science Courses) with a minimum grade point average (GPA) of 2.750. When

Page 10: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 10

necessary, the Grade Replacement Opportunity (GRO) may be used in technical classes to satisfy the GPA requirement.

2. Transfer students must also satisfy the requirement above; however, only UA courses will be used to satisfy the GPA requirement. Transfer students will be granted Advanced Standing when they have completed 12 or more units of technical courses (Mathematics, Physics, Engineering, Optical Science, Computer Science or any combination) listed in their curriculum with a minimum UA GPA of 2.750.

3. Transfer students with fewer than 12 units of freshman and sophomore courses remaining to be taken, must satisfy the GPA requirement with the remaining freshman and sophomore courses. Upper division technical courses may be added to complete the 12-unit provision to meet the 2.750 GPA requirement. Students who do not satisfy the GPA requirement at the time they first complete 12 or more units, will not be allowed to register for additional upper division BME courses.

Students who have completed all but two of the freshman and sophomore required courses with a 3.0 or better, or transfer students who have not completed the major specified required classes entirely at UofA but have earned a 2.75 or better on at least 12 required BME units, may be granted advanced standing.

3.2 Independent StudyStudents wishing to work with faculty on individual research projects may do so using independent study (BME 299 or BME 499) or the new Directed Research course (BME 492). Registration including the development of a research plan will be conducted through the Academic Advisor. With the approval of the BME faculty member overseeing the research activity, BME 492 may count as up to six technical elective credits. These courses will not replace the senior design course. Students must complete and submit an Independent Study Proposal Form found at http://registrar.arizona.edu/sites/default/files/IndepStudyFormPolicies.pdf.

The student must complete the form with the instructor and submit the form and optional additional documentation to the Academic Advisor. The department head will review for final approval. The department will add the course to the student’s schedule.

To receive credit for the independent study, the student will need to provide a report and present results in the supervisor’s research group meeting towards the end of the semester. The report and presentation should clearly describe the motivation for the project, explain the materials and methods used, summarize the results obtained and discuss the significance of the results. A general guideline for length is 3 pages per unit of credit, although the faculty supervisor may set a different requirement. The grading system and credit hour requirements for Independent Study and Directed Research courses follow University Policy in the Course Catalog http://catalog.arizona.edu/2013-14/policies/individual.htm.

3.3 Accelerated Master’s ProgramStudents interested in the Accelerated Master’s Program (AMP) in Biomedical Engineering will need to refer to the guidelines set forth by the BME Graduate Interdisciplinary Program (GIDP) at http://www.bme.arizona.edu. Admission and required coursework is determined by the BME GIDP and published at that website. After a competitive selection process, AMP students will follow an undergraduate course schedule that allows obtaining a Master’s degree in Biomedical Engineering with one additional year of coursework. Some of the BME graduate core courses may be convened with an Undegraduate class and AMP students will need to take them directly at the Master’s level to avoid duplication of effort. From the classes required to fulfill the Bachelor’s degree track requirements, the following will need to be taken directly at the graduate level:

a) Biomechanics Track; Biomechanical Engineering AME/BME 566 instead of AME/BME 466,

b) Biomaterials Track; Biological Synthetic Materials MSE/BME 561 instead of MSE/BME 461ORBiomaterial Tissue Interaction ABE 586 instead of ABE 486

Page 11: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 11

c) Biosensors/microtechnologies TrackBiomaterial Tissue Interaction ABE 581 instead of ABE 481

4 Student ServicesService Website

Honors Program www.honors.arizona.eduCareer Services www.career.arizona.eduDean of Students Office deanofstudents.arizona.eduDept of Multicultural Programs and Services dmps.arizona.edu/International Student Programs and Svs. internationalstudents.arizona.edu/The Disability Resource Center (DRC) ddrc.arizona.edu/University Learning Center (ULC) www.ulc.arizona.eduUndergraduate Biology ResearchCounseling and Psychological Services

ubrp.arizona.edu/ UBRP http://www.health.arizona.edu/caps.htm

Fiancial Aid & Scholarships Financialaid.arizona.edu

Registrar Registrar.arizona.edu

5 Academic MisconductAcademic misconduct and/or violation of professional ethics are unacceptable. As you prepare to be an engineer, you are subject to the University of Arizona “Code of Academic Integrity” rules regarding academic misconduct, as well as the “Code of Conduct.”

Student code of Conduct at http://deanofstudents.arizona.edu/policiesandcodes/studentcodeofconduct

Code of Academic Integrity at http://deanofstudents.arizona.edu/codeofacademicintegrity

The Department will prosecute allegations of misconduct according to the procedures outlined in these codes. If found guilty of academic integrity violations, you are subject to academic sanctions which may range from disciplinary warning to immediate disqualification from the program.

5.1 Code of ConductThe Student Code of Conduct sets forth the standards of conduct expected of students who choose to join the university community. Students and student organizations are subject to the following groups of rules:

1. Rules adopted by the university to govern the control of vehicles and other modes of transportation on university property2. Rules relating to student classroom conduct, academic dishonesty, AND academic eligibility, performance and evaluation3. Rules governing student housing4. Rules governing the maintenance of public order5. Rules governing the conduct of student athletes6. Rules governing the use of university communication and computing resources, and7. Other rules as may be adopted by ABOR or universities in furtherance of university and educational goals.

5.2 Code of Academic IngerityStudents enrolled in academic credit bearing courses are subject to the code of academic integrity which consists of all forms of academic dishonesty, including but not limitted to:

1. Cheating, fabrication, facilitating academic dishonesty, and plagiarism.

Page 12: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 12

2. Submitting an item of academic work that has previously been submitted or simultaneously submitted without fair citation of the original work or authorization by the faculty member supervising the work.

3. Violating required disciplinary and professional ethics rules contained or referenced in this student handbook.4. Violating discipline specific health, safety or ethical requirements to gain any unfair advantage in lab(s) or clinical assignments.5. Failing to observe rules of academic integrity established by a faculty member for a particular course.6. Attempting to commit an act prohibited by this Code. Any attempt to commit an act prohibited by these rules shall be subject to

sanctions to the same extent as completed acts.7. Assisting or attempting to assist another to violate this Code.

5.2.1 Plagiarism

Plagiarism is a form of academic dishonesty and is defined as taking the ideas, writings, or inventions of another and representing them as your own work. To avoid plagiarism you will need to give credit to the originator of the material you are including in your own work. Giving credit is accomplished by citing the source. The University also prohibits a student from submitting an item of academic work that has been previously or simultaneously submitted in an other class without proper authorization by the faculty members supervising the work. This process is also referred to as self plagiarism.

Examples of Plagiarism:

1. Turning in a paper from a previous or concurrent class as newly created work.2. Having another person write an assignment (for pay or for free) and putting your name on it.3. Modifying or paraphrasing someone else’s ideas or writings and submitting them as your own.4. Having someone rewrite substantial portions of your paper and submitting the final version as your own.5. Copying phrases, sentences, sections, paragraphs, or graphics from another, and not giving credit by citing the source.

Examples that are not plagiarism:

1. Asking someone to read your assignment and suggest possible improvements.2. Getting together with other students to discuss (not write) an assignment.3. Asking your instructor for help with an assignment. 4. Quoting extensively from someone else’s works but giving credit.5. Not citing sources for information that is considered common knowledge or that is readily available in dictionaries or your

course textbook. For example, you need not cite your textbook as the source of the equations that you use in an assignment (but you may need to do so in a formal project report).

5.2.2 Cheating

Another form of academic misconduct is cheating which is an attempt to give or receive assistance in a formal academic exercise without due acknowledgement.

Examples of cheating:

1. Allowing someone else to prepare an assignment for you or preparing an assignment for someone else.2. Having someone else take an examination for you or taking an examination for someone else.3. Obtaining unauthorized information about an examination.4. Altering an answer to an examination after it has been turned in, whether it has been graded or not.5. Copying from someone else’s paper during an examination or on an assignment where the work is to be done independently.6. Collaborating with someone else during an examination or on an assignment where the work is to be completed

independently.7. Bringing material or information into an examination that is not permitted by the instructor.

Page 13: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 13

Examples that are not cheating:

1. Organizing and participating in study groups.2. Studying additional materials relevant to a course that were not required by the instructor.3. Discussing topics of a course outside the regular class setting or with people not attending the class.

5.2.3 Fabrication and Deception

Fabrication includes the falsification of data, information or citations. Deception is purposely giving false information regarding an academic exercise.

Examples of Fabrication or Deception:

1. Claiming a result represents an average of multiple experiment while the experiment was conducted only once.2. Claiming data was measured while it merely is an extrapolation.3. Backing up arguments with invented quotations.4. Giving false excuse for missing a deadline.5. Giving false excuse for missing an examination.6. Falsely claiming to have submitted work.

5.2.4 Violations of Academic Integrity

Academic integrity violations are addressed by department indepent entities. The process is governed by rules established in the dean of students office. The dean of students office provides also consulation and advocacy services to the students accused of a violation. If a student is accused of an academic integrity violation, the student should read the step by step guid published on the dean of students website.

The policy of the associate dean in the college of engineering is that the credit associated with a violation is irrelevant. Multiple violations either in the same class or in different classes result in suspension or explusion from the college.

Page 14: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 14

A Appendix

A.1 Faculty and Staff of the Department

Staff

Kerrie Sonnenberg, Manager Finance and AdministrationDiana Wilson, Academic AdvisorMichelle Schnaible, Administrative AssistantDorothy Ashton, Accountant Associate

Student WorkersArianne Allred, Irene Corrales, Mariela Jaramillo, Serina Trevino

Faculty Student Advisors

UTZINGER, URS, Associate Professor & Interim Dept. HeadE-mail: [email protected]: 520-626-9281

BARTON, JENNIFER, ProfessorE-mail:[email protected]: 520-621-4116

BILGIN, ALI, Assistant ProfessorE-mail: [email protected]: 520-626-8943

EGGERS, ERIKA, Assistant ProfessorE-mail: [email protected]: 520-626-7136

ELLIS, WALTHER, Research ProfessorE-mail: [email protected]

FINK, WOLFGANG, Associate ProfessorE-mail: [email protected]: 520-621-8734

PAGEL, MARK, Associate ProfessorE-mail: [email protected]: (520) 626-0194

POWERS, LINDA, ProfessorE-mail: [email protected]: 520-621-7634

ROMANOWSKI, MAREK, Associate ProfessorE-mail: [email protected]: 520-626-1578

SNYDER, ROBERT, ProfessorE-mail: [email protected]: 520-321-3677

TROUARD, TED, Associate ProfessorE-mail: [email protected]: 520-626-2177

VANDE GEEST, JONATHAN, Associate ProfessorE-mail: [email protected]: 520-621-2514

BANERJEE, BHASKER, ProfessorE-mail: [email protected]: 520-626-6119

WITTE, RUSSELL, Assistant ProfessorE-mail:[email protected]: 520-626-0346

ZOHAR, YITSHAK, ProfessorE-mail:[email protected]: 520-626-8093

Research Advisors

Page 15: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 15

Marvin Slepian, Medicine, [email protected] Goldberg, System and Industrial Engineering, [email protected] Szivek, Orhtopedic Surgery, [email protected] Kuo, Medical Imaging, [email protected] Wu,AME, [email protected] Latt, Orthopedics, [email protected] Higgins; Neuroscience, [email protected] Wong, AME, BME, [email protected], Yoon, ABE, BME, [email protected] Gothard, PSIO, [email protected]

A.2 Frequently Asked Questions (FAQ’s)Where do I go for academic advising?The Department of Biomedical Engineering is located in the Engineering building (ENGR) room ENG 106 and the Academic Advisor is in room 105.. There is parking in the Park Avenue garage, just East of Park Avenue. Parking is also available in the 2nd Street garage.

Who is my Academic Advisor? The BME program endeavors to provide students with advising that affords the proper academic information and choices.

The BME department practices team advising with an Academic Advisor and a Faculty Advisor. This approach allows students to see an advisor who specializes in the academic requirements, as well as general knowledge of engineering. The Academic Advisor helps the student with general advising, pre-registration, registration, transfer credit, and course selection at the university. As progression occurs, the advisor assists with advanced standing, and other university requirements. It is the faculty advisor who knows the specialty within the major and ably assists the student in choosing technical elective classes.

The BME faculty advisor is selected for the student according to the technical emphasis within the major at the start of the junior year. A faculty member in the technical emphasis can answer questions regarding courses and general information prior to seeing the Academic Advisor.

Can my Academic Advisor get my grade changed? No, your Academic Advisor cannot change your grade. However, your Academic Advisor can give you the proper procedure to follow to request a change of grade.

Do I need to see an Academic Advisor every semester? If you are on academic probation, you must meet with your Academic Advisor at least twice a semester. First-semester students are also required to see their Academic Advisor before their registration time before the middle of their first

semester. If you are in good standing (2.000 Cumulative GPA or above) it is not necessary, but highly recommended in order to receive the most

accurate and up-to-date information. Continuing students will see the Academic Advisor during a pre-registration session to discuss upcoming classes, pre-requisites, and class registration.

For Upper Division BME courses at the 300 level, second semester Sophomores applying for Advanced Standing will coordinate their class selection with the Academic Advisor. Junior and Seniors selecting their 400 level technical electives should visit with their Faculty Advisor prior to meeting with the Academic Advisor.

How do I apply for Advanced Standing? Students who have completed the first two years of their coursework must apply for Advanced Standing prior to taking Junior level courses. Academic Advisors have advanced standing forms in their office. There are two requirements:

1) A minimum GPA of 2.750 is required for a select set of courses depending on your major, and2) Completion of the MCWA (Midcareer Writing Assessment).

How do I obtain my advisement report? You may obtain an On Course Advisement Report by requesting it directly from UAccess Student at the following URL: http://uaccess.arizona.edu/

1. Login with your Net ID and password.2. Select Academic Requirements from the drop down menu on your student center page and click go.3. Verify your current degree program which is displayed (NOTE: If the degree program information is not correct, please see your advisor.)4. Always bring your most recent Advisement Report with you whenever you consult with your Academic Advisor.

How do I read my advisement report? Please feel free to go through your Advisement Report with your major Academic Advisor. Your advisor will point out important areas and help you understand what it means.

Page 16: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 16

Can I take Graduate Level (500 level) courses as technical electives?You may take Graduate Level courses as technical electives if you meet these criteria:

1. Are within 15 semester hours of graduation, 2. Have a Major GPA of 3.000/4.000,3. Complete the form requesting to take a graduate level course, http://grad.arizona.edu/system/files/Undergrad_Enrollment.pdf,4. Have Faculty Advisor approval, 5. Have Instructor approval.

After fulfilling these criteria you must see your Acadmic Advisor.

How do I transfer classes into my degree program?There are two basic steps students must take to ensure their transfer credits are utilized in their degree program correctly.

1. Students are responsible for having transcripts sent to the Office of Admissions, Bear Down Gymnasium http://admissions.arizona.edu) (for newly admitted students) or the Office of the Registrar, Administration Bldg., Room 210 (registrar.arizona.edu) (for currently enrolled students).

2. Students must meet with a BME Academic Advisor to see how the units are used in their degree program. Please check BEFORE taking any classes at another educational institution. Retroactive approval is not guaranteed.

Students must check with both offices to insure proper transfer articulation. In-state courses at most Arizona institutions have already been evaluated by the University and can be checked easily in the Course Equivalency Guide (http://az.transfer.org/cgi-bin/WebObjects/Admin_CEG ) on line. Students may also view hard copies of the guide in the Advising Center.

Students must receive a “C” or better in the courses they wish to transfer in order to receive U of A credit. Grades from other institutions do not affect your GPA at the U of A. If the student has filed a Degree Check they should have their transcripts sent to Graduation Services officer for the College of Engineering, Marty Gawlik at [email protected].

A.3 Description of ClassesFor full 2012/2013 course catalog section browse:http://catalog.arizona.edu/2012-13

* required* TBMaterials required for track* TBMechanics required for track* TBSensor required for track

*1 Engl 101: First-Year Composition 3 unitsExposition, emphasis on essays.Requisites: English 100 placement

*1 ENGR 102: Introduction to Engineering 3 unitsEngineering design, effective team participation and career preparation. Students are expected to participate in hands-on design projects, develop education/career plans and initiate development of the personal and management skills necessary for life long learning.Requisites: Appropriate math placementBME transfer students not eligible for ENGR 102 can substitute with: TBD.

*2 Engl 102: First-Year Composition 3 unitsCritical papers on selected subjects.Requisites: Engl 101

MSE 110 Solid State Chemistry 4 unitsFundamental principles of the chemistry of condensed states of matter including metals, polymers, molecular solids and ceramics.Requisites: CHEM 103A (check with MSE UG office if changed to CHEM 151 or 152)

*1 Math 124/125: Calculus I 3 unitsAn accelerated version of MATH 124. Introduction to calculus with an emphasis on understanding and problem solving. Concepts are presented graphically and numerically as well as algebraically. Elementary functions, their properties and uses in modeling; the key concepts of derivative and definite integral; techniques of differentiation, using the derivative to understand the behavior of functions; applications to optimization problems in

Page 17: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 17

physics, biology and economics. A graphing calculator is required for this course. Registration in math courses numbered 125 or below, 160, and 263, requires all students, including transfer students with or without college level math credit, to take the UA Math Readiness Test. Credit will not be given for this course if the student has credit in a higher level math course; these students will be dropped from the course. Students with unusual circumstances can petition the Mathematics Department for exemption from this rule. This policy does not infringe on the student's rights granted by the university policy on repeating a course.Requisites: Appropriate Math placementEquivalent to MATH 113, 113-CC, 124, 125-CC

*2 Math 129: Calculus II 3 unitsContinuation of MATH 124 or MATH 125. Techniques of symbolic and numerical integration, applications of the definite integral to geometry, physics, economics, and probability; differential equations from a numerical, graphical, and algebraic point of view; modeling using differential equations, approximations by Taylor series. A graphing calculator is required for this course.Requisites: Math 124 or Math 125 with C or higherEquivalent to MATH 250A (Honors)

*2 Phys 141:Introductory Mechanics 4 unitsA first course in Newtonian mechanics; introduces freshman-level students to the statics and dynamics of point particles, rigid bodies, and fluids. Topics include vector algebra, projectile and circular motion, Newton's Laws, conservation of energy, collisions and conservation of momentum, rotational dynamics and conservation of angular momentum, statics, harmonic oscillators and pendulums, gravitation and Kepler's Laws, fluid statics and dynamics.Requisites: MATH 124 or 125 or concurrent registration with MATH 129

*1 Chem 151:General Chemistry I 4 unitsIntegrated lecture-lab course designed to develop a basic understanding of the central principles of chemistry that are useful to explain and predict the properties of chemical substances based on their atomic and molecular structure. Additionally, students will be introduced to modern laboratory techniques and participate in experimental activities that promote the development of basic and advanced science-process skills. The course is designed for students who require a strong foundation in general chemistry, such as science and engineering majors, pre-medical and pre-pharmacy students.Requisites: Appropriate math placement.Equivalent to CHEM 105A/106A (Honors)

*2 Chem 152: General Chemistry II 4 unitsContinuation of CHEM 151. Integrated lecture-lab course designed to develop a basic understanding of the central principles of chemistry that are useful to explain and predict the properties of chemical substances based on their atomic and molecular structure. Additionally, students will be introduced to modern laboratory techniques and participate in experimental activities that promote the development of basic and advanced science-process skills. The course is designed for students who require a strong foundation in general chemistry, such as science and engineering majors, pre-medical and pre-pharmacy students.Requisites: CHEM 103A, 104A or CHEM 151Equivalent to CHEM 105B/106B (Honors)

ECE 175: Computer Programming for Engineering Applications 3 unitsFundamentals of C, complexity and efficiency analysis, numerical precision and representations, intro to data structures, structured program design, application to solving engineering problems.Requisites: Concurrent registration with MATH 113 or MATH 124 or MATH 125. *3 MCB 181R & L: Introduction to Biology I & Lab 4 unitsIntroduction to the cell and its properties, basic genetics, the immune system, recombinant DNA technology with illustrations from bacteria, plants, animals and humans. Honors section available for 4 units.Laboratory exercises presenting techniques and fundamental principles of modern biology. Designed to complement the information concurrently presented in 181R.181R is equivalent to BIOC 181R, ECOL 181R, MCB 184, MCB 315, MIC 181R181R Requisites: Appropriate Math placement181L is equivalent to BIOC 181L, ECOL 181L, MIC 181L181L Requisites: Concurrent registration with MCB 181RBME students can substitute with MCB 184

*5 ECOL 182R/L: Introductory Biology II and Lab 4 unitsOrigin, diversity and evolution of life; physiology of plants, animals and organ systems; processes of micro and macroevolution; animal behavior and ecology of populations and communities emphasizing biotic interactions and biogeography. Designed for biology majors.Diversity and evolution of life; structure and function of plants, animals, and organ systems; processes of micro and macroevolution, strategies and selection of different species; phylogenetics and descent

Page 18: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 18

Requisites: Math placement

*3 MCB 184 Introduction to Biology I: The Secrets of Life 4 unitsIntegrated lecture and laboratory course. Introduction to the machinery and communication of cells. Genetic code, synthesis and function of proteins, basic genetics, gene regulation, intra-and-inter-cellular communication. Scientific method, experimental design and analysis. Honors section available for 5 units. Students may only receive credit for either MCB 184 or the combination of MCB 181R and 181L.Requisites: Appropriate Math placement

*4 PSIO 201: Human Anatomy and Physiology I 4 unitsStudy of structure and function of the human body. Topics include basic anatomical and directional terminology; fundamental concepts and principles of cell physiology; histology; the integumentary, skeletal, muscular and nervous systems; special senses. Primarily for majors in physiology, biology, and health professions.Laboratory and Lecture.Requisites: None

*5 PSIO 202:Human Anatomy and Physiology II 4 unitsStudy of structure and function of the human body. Topics include cardiovascular, lymphatic, respiratory, urinary, gastrointestinal, endocrine and reproductive systems. Primarily for majors in physiology, biology, and health professions.Requisites: PSIO 201

*4 ABE 205: Engineering Analytic Computer Skills 3 unitsIntroduction to Excel, Visual Basic in Excel, Access, and Matlab with an emphasis on flow charts, graphing, regression, if-then, do loops, statistics, functions and subroutines, and copying to and reporting results in Word; applications include biological energy, growth, and CO2 models.BME students can substitute with ECE 175 and recommended OPTI 280 (Spring).Requisites: None, CoE majors only

*5 ECE 207:Elements of Electrical Engineering 3 unitsCurrent and voltage dividers. Resistors, capacitors, inductors. Node voltage and mesh current analysis of circuits.Thevenin and Norton equivalents. AC circuits, phasors, impedance. Electromagnetic fields, electric power, transformers, magnetic materials, generators and motors. Operational amplifiers, Elements of digital circuits. Sensors and measurements of physical quantities.Requisites: PHYS 241, Concurrent MATH 254

*3 CE 214: Statics 3 unitsEquilibrium of a particle, equivalent and resultant force systems, equilibrium, geometric properties of areas and solids, trusses, frames and machines, shear force and bending moments, friction. Honors section is available.Requisites: PHYS 141, MATH 129

*5 CE 218:Mechanics of Fluids (or AME 331) 3 unitsHydrostatics, continuity, irrotational flow, pressure distributions, weirs and gates, momentum and energy, surface drag, pipe friction, form drag, pipe fitting losses.Requisites: CE 214

*3 Math 223: Vector Calculus 4 unitsVectors, differential and integral calculus of several variables.Requisites: MATH 129 or MATH 250A with C or higher

* TBMechanics AME 230 Thermodynamics 3 unitsBasic laws and examples of engineering applications of macroscopic thermodynamics; equations of state; reversible and irreversible processes.Requisites: MATH 223, PHYS 241BME students can substitute AME230 with ABE 284 for requisites in AME classes (10/13/2011)

*4 Phys 241: Introductory Electricity and Magnetism 4 unitsA first course in electromagnetic fields and their applications. Coulomb's and Gauss' Law, electric fields and potentials, electrical and magnetic properties of matter, Ampere's and Faraday's laws, elementary DC and AC circuits, Maxwell's equations.Requisites: Phys 141Recommended concurrent registration with Math 223

* TBMaterials CHEM241a Organic Chemistry (Tech Elective Biomaterials) 3 unitsGeneral principles of organic chemistryRequisites: Chem 152

* TBMaterials CHEM 243a Organic Chemistry Lab (Tech Elective Biomaterials) 1 unit

Page 19: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 19

An introduction to the organic chemistry laboratory with an emphasis on development of laboratory skills and techniques, observation of chemical phenomena, data collection, and the interpretation and reporting of results in formal laboratory reports. Heavy emphasis on microscale techniques, laboratory safety and waste disposal. The experiments are designed to complement the principles concurrently presented in the corresponding lecture class and require knowledge of the lecture material.Requisites: Chem 241A or Concurrent registration with Chem 241A

AME 250 Dynamics 3unitsDynamics of particels and rigid bodies as applied to mechanical systemsRequisites: CE 214, concurrent registration MATH 254BME students can substitute AME 250 with PHYS 141 for AME 250 requisite in AME classes (10/13/2011).

*4 Math 254: Introduction to Ordinary Differential Equations 3 unitsSolution methods for ordinary differential equations, qualitative techniques; includes matrix methods approach to systems of linear equations and series solutions.Requisites: MATH 129 with grade C or higherEquivalent to MATH 250B (honors)

OPTI 280: Computer Programming 1 UnitAn introduction to computer programming and the use of mathematics programs such as Matlab or Mathcad to perform scientific and engineering calculations.Requisites: None

*3 ABE 284: Biosystems Thermal Engineering 3 unitsThis course provides an integrated introduction to basic thermal engineering topics. A structured problem-solving approach emphasizes the interrelated roles of Thermodynamics, Fluid Mechanics, and Heat and Mass Transfer relevant to real-world engineering analyses.Requisites: MATH 129, PHYS 141BME students can substitute with AME 230BME Track Bio Mechanics need to tak AME 230

*3 BME 295C: Challenges in Biomedical Engineering 1 unitThis colloquium will explore themes of biomedical engineering in the context of health-related challenges. Each week a new challenge will be presented, the biomedical engineering principles that can be used to address this challenge explained, and the state of the art in research and clinical practice described. By the end of the colloquium, students should have an overall understanding of how the many facets of biomedical engineering research (biomaterials, imaging, biocomputing, and nanomedicine, among others) can be used to address critical problems in human health.Requisites: None

BME 299: Independent Study 1-6 unitsQualified students working on an individual basis with professors who have agreed to supervise such work.Requisits: Submission of BME independent study form S/P Grading

BME 299H: Independent Study 1-6 unitsQualified students working on an individual basis with professors who have agreed to supervise such work.Requisits: Submission of BME independent study form, Honors class

*5 AME 301: Engineering Analysis (or ABE 423) 3 unitsVector analysis, complex variables, Fourier series, matrices, boundary value problems and applications to current engineering problems. Requisites: AME 250, AME 331 or concurrent registration of AME 320 BME students can substitute this class with ABE 423.BME students can substitute PHYS 141 requisite for AME 250 requisite (10/13/2011)BME students can not substitute AME 331 requisite.

*TBMechanics AME 302 Numerical Methods (Tech Elective Biomechanics) 4 unitsIntroduction to linear algebra; solution of engineering problems based upon an integrated approach combining numerical analysis and the use of computers (includes 1 unit Matlab lab but in general is not a programming class).Requisites: None

*6 SIE 305: Introduction to Engineering Probability and Statistics 3 unitsAxioms of probability, discrete and continuous distributions, sampling distributions. Engineering applications of statistical estimation, hypothesis testing, confidence intervals.

Page 20: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 20

Requisites: MATH 129BME students with MATH major can substitute with combined MATH 362 and MATH 363.

* TBMechanics AME 324a Mechanical Behavior of Engineering Materials (Tech Elective Biomechanics) 3 unitsIntroduction to engineering solid materials; concepts of strain, stress, equilibrium; material/structural responses to applied loading/deflection; analysis of engineering components, e.g., beams, plates, thin-walled structures, axisymmetric elements; introduction to structural stability.Requisites: CE 214. ME majors or minors may substitute MSE 331R.

*6 BME 330: Biomedical Instrumentation 4 unitsThis course is designed to provide students with theoretical knowledge and practical experience to design, conduct, and analyze measurements on living systems. Students will receive 3 hours of lecture and 3 hours of lab per week. Topics will include human biosignals, transducers, analog and digital signal processing, electrical safety, noise minimization, experimental design, and statistical analysis. Common types of measurements made clinically will be discussed, and several will be made and analyzed in lab.Requisites: ECE 207, PSIO 201

*6 ECE 330: Computational Techniques 3 unitsRequisites: Need to clarify

*5 AME 331:Introduction to Fluid Mechanics (or CE 218) 3 unitsFundamentals of fluid mechanics covering properties of fluids, fluid statics, dynamics of incompressible viscous and inviscid flows, control volume formulations of continuity, momentum and energy equations, dimensional analysis, viscous pipe flow, boundary layers and drag. Requisites: AME,230, AME 250, Math 254BME students can susbsitute PHYS 141 for AME 250 requisite (10/13/2011)BME students can subsitute ABE 284 for AME 230 requisite (10/13/2011)BME students with AME major should not substitute and take AME equivalents.

*6 ABE 423: Biosystems Analysis and Design (or AME 301) 3 unitsApplication of systems analysis to biologically related problems; computer modeling and use of simulations, optimization methods, decision support systems. Convened with ABE 523.Requisites: familiarity with statistics.BME students are recommended to take SIE 305 concurrently.BME students can substitute with ECE 330.

*7 ABE 447: Sensors and Controls 3 unitsPrinciples of electric circuits. Selection, interfacing and calibration of digital and analog sensors to measure physical variables. Optical electrochemical and piezoelectric biosensors. Basic bioprocess control.Requisites: CHEM 151 and 152 or MSE 110

* TBMaterials MSE/BME 461 Biological Synthetic Materials (Tech Elective Biomaterials) 3 unitsDiscussion of structure and properties of biological materials and composites, such as bone, teeth and elastin. Synthetic materials as substitutes for biological materials, biocompatibility.Requisites: CHEM 151

* TBMechanics AME/BME 466 Biomechanical Engineering (Tech Elective Biomechanics) 3 unitsSubjects selected yearly from: biosolids, biofluids, biotransport; physiological systems; bioheat transfer.Requisites: None

*8 BME 480: Translational Biomedical Engineering 3 unitsThe purpose of this course is to educate students on the benefits, methods, and difficulties of translating laboratory results into products that are successful in the clinic and in the marketplace. Topics include: laws and regulations for animal use, human subjects protection, good laboratory and good clinical practices, Food and Drug Administration (FDA) approval procedures for drugs and devices, ethics case studies, technology transfer, resources for small business start ups, and product life cycle. Requisites: None

* TBMaterials ABE 481b Cell and Tissue Engineering (Tech Elective Biomaterials)Development of biological engineering methods including applied genetics, metabolic regulation, and bioreactors employed in industrial processes for manufacture of pharmaceuticals and in the design of tissue engineered devices to replace normal physiological function.Requisites: Math 254Class is held every other year alternating with ABE 486.

Page 21: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 21

* TBMechanics AME 483 Microbiomechanics (Tech Elective Biomechanics) 3 unitsThermodynamics, mechanics, and structures of biomolecules (e.g., proteins and DNA) and cells. Deformation mechanisms and theories for both flexible and semi-rigid chains, and the applications in biomolecules and cells. Experimental micro biomechanics techniques for both biomolecules and cells.Requisites: AME 230, MATH 223 or equivalent, AME 324ABME students can substitute ABE 284 for AME 230 requisite (10/13/2011)

* TBSensos/Materials ABE 486 Biomaterial Tissue Interaction (Tech Elective Biomaterials, Tech Elective Biosensors) 3 unitsBiomaterials and their applications; protein-surface and blood-biomaterial interactions, inflammation, wound healing, biocompatibility, implants, and tissue engineering.Requsits: CHEM 151 and 152Class is held every other year in Spring alternating with 481b. (Course substituted with PSIO 431 in 2013 only)

* TBSensors AME 488 Micro/Nano Tansducer Physics (Tech Elective Biosensors) 3 unitsPrinciples, design, and performance of micro and nano transducers. Designing MEMS to be produced with both foundry and nonfoundry processes. Applications of unique properties of micro and nano transducers for biological and engineering problems. Associated signal processing requirements for these applications.Requisites: ECE 207 or ABE 447, AME 250BME students can substitute PHYS 141 for AME 250 requisite (10/13/2011).Recommended for AME/ABE 489/589Convened with AME 588

* TBSensors AME/ABE 489a Fabrication Techniques for Micro/Nanodevices (Tech Elective Biosensor) 3 unitsThis course tackles the techniques for the design, fabrication, and testing of traditional microelectromechanical systems (MEMS) and nanodevices. Each student will be required to participate in weekly laboratory sessions, to keep a laboratory notebook, and to submit a project report (25% Honors final grade;15% Undergraduate final grade) focusing on the design, fabrication, and testing of a MEMS device. Honors students receive additional homework assignments typically involving derivation or proof of a theory presented in class. Additionally, Honors students are asked to complete an independent MEMS/NEMS design, while undergraduates can use an existing device design. Grading differences are reflected in the syllabus.Convened with ABE 589ARequisites: ECE 207 or ABE 447, Completion of Chemical Safety Course, CoE students only

* TBSensors ABE 489b Bio-Micro/Nanotech Applications (Tech Elective Biosensor) 3 unitsThis course tackles the applications of modern micro/nano devices or systems including lab-on-a-chip, DNA/protein array, drug carriers and other therapeutic systems, neuroscience applications, and food/agricultural systems. Toward this end, three different topics will be covered in this class: (1) brief overview on modern micro- and nanofabrication technologies, (2) biophysics principles for analytes and its recognition, and (3) various sensing modalities specific to these systems.Requisites: CHEM 151 and 152 or MSE 110, basic familiarity with cells, proteins and DNAs

*7 BME 497G Clinical Rotation` 1 unitStudents will gain exposure to clinical practice through this 1 unit rotation course. Students will receive an introduction to the hospital environment and patient flow. They will tour portions of a hospital. Students will attend Grand Rounds lectures, patient case studies, and will spend a minimum of 3 hours viewing procedures.Requisites: None.Homework will need to be conducted at preset times.

*7 Engr 498A Senior Design 3 unitsStudents will work in cross-disciplinary teams to solve industry-sponsored real-world design problems using the design process. Teaming, design process, design concept, design proposal.ENGR 498A and ENGR 498B must be taken in consecutive semesters. Usually offered in the Fall.Requisites: Sr. Status

*8 Engr 498B Senior Design 3 unitsStudents will work in cross-disciplinary teams to solve industry-sponsored real-world design problems using the design process. Construction, testing and evaluation of prototype design; design iteration to arrive at a final working system. Major design project.ENGR 498A and ENGR 498B must be taken in consecutive semesters. Usually offered in the Spring.Requisites: Engr 498A

BME 492: Directed Research (Tech elective) 1-6 unitsQualified students working on an individual basis with professors who have agreed to supervise such work.Requisites: Advanced Standing, submission of BME independent study formMay be repeated for max of 6 units.

Page 22: 2005 ECE Undergraduate Handbookbme.engr.arizona.edu/sites/default/files/BME Handbook …  · Web viewundergraduate course ... Basic laws and examples of ... An introduction to computer

2012-2013 BME Undergraduate Student Handbook 22

BME 499 and BME 499H: Independent Study 1-6 unitsQualified students working on an individual basis with professors who have agreed to supervise such work.Requisites: Advanced Standing, submission of BME independent study formS/P Grading