2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx...

36
G ROUP (A)- HOME WORK PROBLEMS 1) 1 2 –1 (x + 1) (2x + 3) dx Ans. = 1 2 –1 (x +1) 1(2x + 3) dx + = 1 3 2 –1 (2x + 3x + 2x + 3) dx =2 1 3 –1 x dx + 3 1 2 –1 x dx + 2 1 –1 x dx + 3 1 –1 1 dx = 1 4 –1 4 x 2 + 1 3 –1 3 x 3 + 1 2 –1 2 x 2 + [ ] 1 –1 3x dx = 1 2 (1 – 1) + 1(1 + 1)+ [1– 1]+ 3 [ 1 + 1] = 2 + 3(2) = 2 + 6 = 8 2) 2 2 2 0 x – 4 x + 4 dx = ( ) 2 2 2 0 x + 4 8 dx x + 4 - Ans. = 2 2 2 0 x + 4 dx x + 4 – 8 2 2 2 0 1 x + 2 dx = 2 2 2 2 0 0 1 dx 8 dx x 2 - + = [ ] 2 0 x 2 –1 0 8 x tan 2 2 = (2 – 0) – 4 –1 2 tan 0 2 - = 2 – 4 – 0 4 π = 2 – π 3) 1 4 1/2 2 –3/2 1 13 x + 3x + 4 dx Ans. 1/2 2 –3/2 1 dx 3 9 13 9 4 x + 2x . 2 4 4 4 = + + - 1/2 2 2 –3/2 1 1 dx 4 3 x + + 1 2 = = 1 4 1/2 –1 –3/2 3 tan x + 2 = 1 4 [tan –1 (2) – 0] = 1 4 tan –1 (2) 4) ( )( ) 2 1 dx x 1 x 2 + + Ans. Let, I = ( )( ) 2 1 dx x 1 x 2 + + 2 1 1 1 x 1 x 2 = - + + dx ( ) 2 1 log x 1 log x 2 = + - + 2 1 x 1 log x 2 + = + 3 2 log log 4 3 = - 3 2 log 4 3 = ÷ 9 log 8 = Definite Integration

Transcript of 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx...

Page 1: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

GROUP (A)-HOME WORK PROBLEMS

1)

12

–1

(x + 1) (2x + 3) dx∫

Ans. =

12

–1

(x +1) 1(2x + 3) dx + ∫

=

13 2

–1

(2x + 3x + 2x + 3) dx∫

=2

13

–1

x dx + 3∫1

2

–1

x dx + 2∫1

–1

x dx + 3∫1

–1

1 dx∫

=1

4

–1

4x

2 +

13

–1

3x

3 +

12

–1

2x

2 + [ ]

1–1

3 x dx

= 1

2(1 – 1) + 1(1 + 1)+ [1– 1]+ 3 [ 1 + 1]

= 2 + 3(2) = 2 + 6 = 8

2)

2 2

20

x – 4

x + 4∫ dx =

( )22

20

x + 4 8dx

x + 4

Ans. =

2 2

20

x + 4dx

x + 4∫ – 8

2

2 20

1

x + 2∫ dx

=

2 2

2 20 0

1dx 8 dx

x 2−

+∫ ∫

= [ ]20

x –

2–1

0

8 xtan

2 2

= (2 – 0) – 4–1 2

tan 02

= 2 – 4 – 04

π

= 2 – π

3)1

4

1/2

2–3/2

1

13x + 3x +

4

∫ dx

Ans.

1/2

2–3/2

1 dx

3 9 13 94x + 2x .

2 4 4 4

=

+ + −

1/2

22–3/2

1 1 dx

4 3x + + 1

2

=

= 1

4

1/2–1

–3/2

3tan x +

2

= 1

4 [tan–1 (2) – 0]

= 1

4 tan–1 (2)

4) ( ) ( )

2

1

dx

x 1 x 2+ +∫

Ans. Let, I = ( ) ( )

2

1

dx

x 1 x 2+ +∫

2

1

1 1

x 1 x 2

= − + + ∫ dx

( )2

1log x 1 log x 2= + − +

2

1

x 1log

x 2

+=

+

3 2

log log4 3

= −

3 2

log4 3

= ÷

9

log8

=

Definite Integration

Page 2: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

2 Mahesh Tutorials Science

5)

2

20

5x + 1

x + 4∫ dx

Ans. = 5

2

20

x

x + 4∫ dx +

2

20

1

x + 4∫ dx

2 2

2 20 0

5 2x 1dx dx

2 x + 4 x + 4= +∫ ∫

= 5

2

22

0log |x + 4| +

1

2

2–1

0

xtan

2

=5

2[log(22 + 4)– log4]+

1

2

–1 2tan 0

2

= 5

2

8log

4

+ 1

2 – 04

π

= 8

π +

5

2 log 2

6)

1

20

1

– (x – 2x – 3)∫ dx

Ans. =

1

20

dx

– (x – 2x +1– 4)∫

=

1

2 20

1

2 – (x – 1)∫ dx

11

0

x 1sin

2

− − =

= 0 6

π +

= 6

π+

7)

5

3

1

x + 4 + x – 2∫ dx

Ans. = ( ) ( )

5

3

x 4 x 2dx

x 4 x 2 x 4 x 2

+ − −

+ + − + − −∫

= 1

6

5 5

3 3

x + 4 – x – 2 dx ∫ ∫

= 2

18

5 53/2 3/2

3 3(x + 4) – (x – 2)

= 1

9 { }27 – 7 7 – 3 3 – 1

= 1

9 27 – 7 7 – 3 3 + 1

=1

928 – 7 7 – 3 3

8)

/2

0

dx

1 + cos x

π

Ans. = 1

2

/22

0

xsec

2

π

= 1

2

/2

0

xtan

21

2

π

1

2 tan 02 4

π = × −

= 1

9)

/4

/4

dx

1 – sin x

π

−π

Ans. =

/4

2– /4

1 + sin x

cos x

π

π

( )/4

2

/4

sec x sec x tan x dx

π

π−

= +∫

= [ ]/4– /4

tan x + sec xπ

π

= tan sec tan sec4 4 4 4

π π π π + − − +

= ( )1 2 1 2+ − − +

=1 2 1 2+ + −

= 2

10)

/2 2

2/3

sin x

(1 – cos x)

π

π

∫ dx

Ans. =

2/2

2/3

x x2 sin cos 2 2

x2 sin 2

π

π

∫ dx

=

/22

/3

xcot

2

π

π

∫ dx

Page 3: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 3

=

/22

/3

xcosec – 1

2

π

π

∫ dx

[ ]/2

/3

/3

/2x

cot2 x x

12

π

π

π

π

= − −

= – 2 1 – 3 –

– 2 3

π π

= –2 (1 – 3) – 6

π

= –2 + 2 3 – 6

π

BOARD PROBLEMS

1) ( )2

2

0

3x 2x 1 dx+ −∫

Ans. I = ( )2

2

0

3x 2x 1 dx+ −∫

=

2 2 22

0 0 0

3 x dx 2 x dx dx+ −∫ ∫ ∫

= ( ) ( ) ( )2

0

2 23 2

0 0

23 x x x

2+ −

= 8 + 4 – 2 = 10

2)

1 2

0

x 3x 2dx

x

+ +∫

Ans. I =

1 2

0

x 3x 2dx

x

+ +∫

=

1 1 12

0 0 0

x x dxdx 3 dx 2

x x x+ +∫ ∫ ∫

=

1 1 13 12 2

0 0 0

dxx dx 3 x dx 2

x+ +∫ ∫ ∫

= ( )1 1

5 3 12 2

00 0

2 2x 3 x 2.2 x

5 3

+ × +

= ( ) ( )21 2 1 4

5+ +

=2

65

+

=32

5

3)

1

0

xdx

x 1+∫

Ans. I =

1

0

xdx

x 1+∫

=( )1

0

x 1 1dx

x 1

+ −

+∫

=

1

0

11 dx

x 1

+ ∫

=

1 1

0 0

dxdx

x 1−

+∫ ∫

= ( )11

0 0x log x 1− +

= 1 – log 2

4)

1x

0

2 dx∫

Ans. I =

1x

0

2 dx∫

=

1x

0

2

log 2

= ( )1 012 2

log 2−

= ( )1

2 1log 2

=1

log 2

Page 4: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

4 Mahesh Tutorials Science

5)

1

20

dx

1 x+∫

Ans. I =

1

20

dx

1 x+∫

= ( )1

1

0tan x−

= tan–1 (1) – 0

=4

π

6)

1 2

20

xdx

1 x+∫

Ans. I =

1 2

20

xdx

1 x+∫

=( )21

20

x 1 1dx

1 x

+ −

+∫

=

1 1

20 0

dxdx

1 x−

+∫ ∫

= ( ) ( )11

0 0

1x tan x−−

= ( ){ }11 tan 1−−

=14

π−

7)

1 2

20

x 1dx

x 1

+∫

Ans. I =

1 2

20

x 1dx

x 1

+∫

=( )21

20

x 1 2dx

x 1

+ −

+∫

=

1 1

20 0

dxdx 2

x 1−

+∫ ∫

= ( ) ( )1

0

11

0x 2 tan x−

= ( ){ }11 2 tan 1−−

= 1 2.4

π−

=12

π−

8)

1 2

20

1 xdx

1 x

+∫

Ans. I =

1 2

20

1 xdx

1 x

+∫

= ( )21

20

2 x 1dx

1 x

− +

+∫

=

1 1

20 0

dx2 dx

1 x−

+∫ ∫

= ( ) ( )1

0

11

02 tan x x−

=1 2.4

π−

= 12

π−

9)

1

0

dx

x 3 x 1+ − +∫

Ans. I=

1

0

dx

x 3 x 1+ − +∫

=

( )

( ) ( )

1

0

x 3 x 1dx

x 3 x 1 x 3 x 1

+ + +

+ − + + + +∫

= ( ) ( )

1

0

x 3 x 1dx

x 3 x 1

+ + +

+ − +∫

=

1 1

0 0

1x 3 dx x 1dx

2

+ + + ∫ ∫

= ( ) ( )1 1

3 32 2

0 0

1 2 1 2x 3 x 1

2 3 2 3

× + + × +

=

3 3 3 32 2 2 21

4 3 2 13

− + −

=1

8 3 3 2 2 13 − + −

Page 5: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 5

=17 3 3 2 2

3 − +

10)

1 2

20

2 xdx

1 x

+∫

Ans. I =

1 2

20

2 xdx

1 x

+∫

∴∴∴∴ I =

( )( )

21

20

3 x 1dx

1 x

− +

+∫

∴∴∴∴ I =

1

20

31 dx

1 x

+ ∫

∴∴∴∴ I =

1 1

20 0

13 dx dx1 x

−+

∫ ∫

∴∴∴∴ I = ( ) ( )1

0

11

03 tan x x−

∴∴∴∴ I = 3. 14

π−

∴∴∴∴ I = 3

14

π−

11)

1

20

x 4dx

x 5

+

+∫

Ans. I =

1

20

x 4dx

x 5

+

+∫

∴∴∴∴ I =

1 1

2 20 0

x dxdx 4

x 5 x 5+

+ +∫ ∫

∴∴∴∴ I = ( ) ( )

1 1

2 220 0

1 2x dxdx 4

2 x 5 x 5

++ +

∫ ∫

∴∴∴∴ I =

112 1

0 0

1 1 xlog x 5 4. tan

2 5 5

− + +

∴∴∴∴ I = [ ]1

1

0

1 1 xlog 6 log 5 4. tan

2 5 5

− − +

∴∴∴∴ I = [ ] 11 4 1log 6 log 5 tan

2 5 5

− − +

∴∴∴∴ I = 11 6 4 1

log tan2 5 5 5

− +

12)

5

22

dx

5 4x x+ −∫

Ans. I =

5

22

dx

5 4x x+ −∫

∴∴∴∴ I =

5

22

dx

9 4 4x x− + −∫

∴∴∴∴ I = ( )

5

22

dx

9 x 4x 4− − +∫

∴∴∴∴ I =

51

2

x 2sin

3

− −

∴∴∴∴ I = ( )1 15 2sin sin 0

3

− −− −

∴∴∴∴ I = 2

π

13) ( ) ( )

3

2

x dx

x 3 x 2+ +∫

Ans. Let ( ) ( ) ( ) ( )

x A B

x 3 x 2 x 3 x 2= +

+ + + +

∴∴∴∴ x = A(x + 2) + B(x + 3)

∴∴∴∴ x = (A + B) x + (2A + 3B)

Compairing co-efficients of x and constants

from both sides, we have

A + B = 1 } × 22A + 3B = 0

2A 2B 2

2A 3B 0

B 2

− −−

+ =

+ =

− =

∴∴∴∴ B = –2

∴∴∴∴ A = 1 – B

∴∴∴∴ A = 1 –(–2)

∴∴∴∴ A = 3

∴∴∴∴ I =

3

2

3 2dx

x 3 x 2

+ + ∫

Page 6: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

6 Mahesh Tutorials Science

∴∴∴∴ I = 3 3

2 23 log x 3 2 log x 2 + − +

∴∴∴∴ I = [ ] [ ]3 log 6 log5 2 log5 log 4− − −

∴∴∴∴ I = 6 5

3 log 2log5 4

∴∴∴∴ I =

3 26 5

log log5 4

∴∴∴∴ I =

3 2

3 2

6 4log

5 5

×

=3456

log3125

14)

2

21

dx

x 2x 2− +∫

Ans. I =

2

21

dx

x 2x 2− +∫

∴∴∴∴ I = ( )

2

2 21

dx

x 1 1− +∫

∴∴∴∴ I =

211 x 1

tan1 1

− −

∴∴∴∴ I = tan–1 2 – tan–1 0

∴∴∴∴ I = tan–1 2

15)

3

22

dx

x 5x 6+ +∫

∴∴∴∴ I =

3

22

dx

x 5x 6+ +∫

∴∴∴∴ I = ( ) ( )

3

2

dx

x 2 x 3+ +∫

∴∴∴∴ I =

3

2

1 1dx

x 2 x 3

+ + ∫

∴∴∴∴ I =

3 3

2 2

1 dxdx

x 2 x 3−

+ +∫ ∫

∴∴∴∴ I = 3 3

2 2log x 2 log x 3 + − +

∴∴∴∴ I = [ ] ( )log5 log 4 log 6 log5− − −

∴∴∴∴ I = 2 log 5 – (log 4 + log 6)

∴∴∴∴ I = log 52 – log 24

∴∴∴∴ I = log25

24

16)

22

0

sin x dx

π

Ans. I =

22

0

sin x dx

π

∴∴∴∴ I = ( )2

0

11 cos2x dx

2

π

−∫

∴∴∴∴ I =

2 2

0 0

1dx cos 2x dx

2

π π

∫ ∫

∴∴∴∴ I = ( )2

0

2

0

1 sin2xx

2 2

π π −

∴∴∴∴ I = ( )1 1

sin sin02 2 2

π − π −

∴∴∴∴ I = 4

π

17)

32

6

sin x dx

π

π∫

Ans. I =

32

6

sin x dx3 6

π

π

π π + −

∫ ....(i)

I =

32

6

sin x dx2

π

π

π −

∴∴∴∴ I =

32

6

cos xdx

π

π∫ . ...(ii)

Adding (i) and (ii) we have

∴∴∴∴ 2I = ( )3

2 2

6

sin x cos x dx

π

π∫

∴∴∴∴ 2I =

3

6

dx

π

π∫

Page 7: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 7

∴∴∴∴ 2I = ( )3

6

x

π

π

∴∴∴∴ 2I = 3 6

π π−

∴∴∴∴ I = 12

π

18)

22

4

cot dx

π

π∫

∴∴∴∴ I = ( )2

2

4

cos ec x 1 dx

π

π

−∫

∴∴∴∴ I =

2 22

4 4

cos ec x dx dx

π π

π π

−∫ ∫

∴∴∴∴ I = ( ) ( )2 2

4 4

cot x x

π π

π π− −

∴∴∴∴ I = cot cot2 4 2 4

π π π π − − − −

∴∴∴∴ I = ( )2

0 14

π − π − − −

I = 14

π−

19)( )

2 2

20

sin xdx

1 cos x

π

+∫

Ans. I = ( )

2 2

20

sin xdx

1 cos x

π

+∫

∴∴∴∴ I =

2

2

220

x x2sin cos

2 2dx

x2cos

2

π

∴∴∴∴ I =

2 22

2 20

x x4sin cos

2 2 dxx x

4cos .cos2 2

π

∴∴∴∴ I =

22

0

xtan dx

2

π

∴∴∴∴ I =

22

0

xsec 1 dx

2

π

∴∴∴∴ I =

2 22

0 0

xsec dx dx

2

π π

−∫ ∫

∴∴∴∴ I = ( )2

0

2

0

xtan

2 x1

2

π

π

∴∴∴∴ I = tan4 2

π π −

∴∴∴∴ I = 2 – 2

π

GROUP (B)-HOME WORK PROBLEMS

1)

12

0

x 1 + x∫ dx.

Ans. 1 + x2 = t x = 0, t = 1

2x dx = dt x = 1, t = 2

∴∴∴∴ x dx =dt

2

= 1

2

2

1

t dt∫

= 1

2

23/2

1

t

32

= 1

3

23/2

1t

= 1

32 2 1 −

2)

12 5/2

0

x (1 – x )∫ dx

Ans. (1 – x2) = t x = 0, t = 1

x = 1 – t x = 1, t = 0

–2xdx = dt

Page 8: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

8 Mahesh Tutorials Science

∴ I = –1

2

05/2

1

t dt∫

=–1

2

07/2

1

t

72

= –1

7 (0 – 1) =

1

7

3)1

0

1 – x

1 + x∫ dx

Ans. x = cos θ, x = 0, θ = π/2

dx = – sin θ dθ x = 1, θ = 0

= 0

/2

1 – cos

1 + cos π

θ

θ∫ x (– sinθ) dθ

=

0 2

2/2

2sin /2sin

2cos /2d

π

θθ θ

θ× −∫

0

/2

sin /22sin /2 cos /2

cos /2d

π

θθ θ θ

θ= − ×∫

= –2

0

/2

1 – cos d

θθ∫

= ( )0

/2

cos – 1 d

π

θ θ∫

= 0/2

[sin – ]π

θ θ

= – 1 12 2

π π − = −

=2

2

π −

4)

1

2 20

1

(1 + x )∫ dx

Ans. x = tan θ ∴ dx = sec2 θ d θ

∴ When x = 0, θ = 0

x = 1, θ = 4

π

∴∴∴∴ I =

/42

40

1sec d

sec

π

× θ θθ

=

4

20

1

secd

π

θθ

/42

0

cos d

π

θ θ= ∫

=1

2

/4

0

(1 + cos 2 ) d

π

θ θ∫

=4

0

1 sin2

2 2

πθ

θ

+

( )/4

0

12 sin2

4

πθ θ= +

11 0

4 2

π = + −

1

8 4

π= +

1

14 2

π = +

5)

a 2 2

2a/2

a – xdx

x∫

Ans. x = a sin θ, x = a, θ = π/2

dx = a cos θ dθa

2x = , θ = 6

π

∴ I =

/2 2 2 2

2 2/6

a – a sin

a sin

π

π

θ

θ∫ · a cos θ dθ

=

/2

2/6

a cos θ

a sin θ

π

π

∫ cos θ dθ

=

/22

/6

cot d

π

π

θ θ∫

=

/22

/6

(cosec – 1) d

π

π

θ θ∫ .

= /2/6

[–cot ]ππ

θ – /2/6

[ ]ππ

θ

= (0 + 3 ) – – 2 6

π π

= 0 + 3 – 2

= 3 – 3

π

6)

3

20

5x

x + 4∫ dx

Ans. x2 + 4 = t x = 0, t = 4

2xdx = dt x = 3, t = 13

∴∴∴∴ I = 5

2

13

4

1

t∫ dt

= 5

2

13 –12

4

t∫ dt

Page 9: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 9

= 5

2

131/2

4

t

12

= 5 [ 13 – 2]

7)

1

2 20

dx

(2 – x ) 4 – x∫

Ans. Let, I =

1

2 20

dx

(2 – x ) 4 – x∫

put x = 2 sin θ, dx =2 cos θ dθ,

When x = 0 ∴ θ = 0

when x = 1 ∴ θ =6

π

So,

I = ( )

/6

2 20

2cos

2 4sin 4 4sin

θ θ

θ θ

− −

( )

/6

2 20

2cos

2 1 2sin 2 1 sin

θ θ

θ θ

=

− × −∫

( )

/6

0

2cos

2 cos2 2cos

θ θ

θ θ=

×∫

/6

0

1sec2

2d

π

θ θ= ∫

/6

0

log sec2 tan21

2 2

πθ θ +

=

/6

0

1log sec2 tan2

4

π

θ θ= +

1log 2 3

4= +

8)

ππππ4

2 20

dx

4sin x 5cos x+∫

Ans. Let I =

ππππ4

2 20

dx

4sin x 5cos x+∫

Dividing Nr and Dr by cos2x,

∴ I =

2/4

20

sec x dx

4tan x 5

π

+∫

put tan x = t ∴ sec2 x dx = dt

when x = 0 then t = 0

when x = 4

π then t = 1

So,

I =

1

20

dt

4 5t +∫

( ) ( )

1

220

dt

2 5t

=

+∫

11

0

1 2 1tan

25 5

t− = ×

( )1 11 2tan tan 0

2 5 5

− − = −

11 2

tan2 5 5

− =

9)

/22 2

0

sin cos · cos d

π

θ θ θ θ∫

Ans.

/22 2

0

sin (1 – sin ) · cos d

π

θ θ θ θ∫

put sinθ = t, θ = 0, t = 0

cosθ dθ = dt, θ = 2

π, t = 1

∴∴∴∴ I =

12 2

0

t (1 – t ) dt∫

=

13 5

0

t t –

3 5

= 1

3 –

1

5 =

2

15

BOARD PROBLEMS

1)

22

0

sin x cos x dx

π

Ans. Let sinx = z

cos x dx = dz

When x = 2

π, z = 1

x = 0 , z = 0

Page 10: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

10 Mahesh Tutorials Science

∴∴∴∴ I =

12

0

z dz∫

∴∴∴∴ I =

13

0

z

3

=1

3

2)

24 3

0

sin x cos x dx

π

Ans. I =

24 3

0

sin x cos x dx

π

= ( )2

4 2

0

sin x 1 sin x .cos x dx

π

−∫

Let sinx = z

cos x dx = dz

When x = 2

π, z = 1

x = 0 , z = 0

∴∴∴∴ I = ( )1

4 2

0

z 1 z dz−∫

∴∴∴∴ I = ( )1

4 6

0

z z dz−∫

∴∴∴∴ I =

1 14 6

0 0

z dz z dz−∫ ∫

∴∴∴∴ I =

1 15 7

0 0

z z

5 7

∴∴∴∴ I = 1 1

5 7−

∴∴∴∴ I = 2

35

3)

23

0

cos x dx

π

Ans. I =

23

0

cos x dx

π

∴∴∴∴ I = ( )2

0

13cos x cos3x dx

4

π

+∫

∴∴∴∴ I =

2 2

0 0

13 cos x dx cos3xdx

4

π π

+

∫ ∫

∴∴∴∴ I = ( )0

22

0

1 sin3x3 sin x

4 3

ππ

+

∴∴∴∴ I = ( ) ( )1 1

3 1 0 14 3

− + −

∴∴∴∴ I = 1 1

34 3

∴∴∴∴ I = 1 8

4 3

=2

3

4)

2

0

cosxdx

1 sinx

π

+∫

Ans. I =

2

0

cosxdx

1 sinx

π

+∫

let 1 + sinx = z

cos x dx = dz

When x = 2

π, z = 2

x = 0 , z = 1

∴∴∴∴ I =

2

1

dz

z∫

∴∴∴∴ I = 2

log z

∴∴∴∴ I = log 2

Page 11: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 11

5)

2

0

sinxdx

1 cosx

π

+∫

Ans. Let 1 + cos x = z

– sin x dx = dz

∴∴∴∴ sin x dx = – dz

When x = 2

π, z = 1

x = 0 , z = 2

∴∴∴∴ I =

1

2

dz

z−∫

∴∴∴∴ I = 1

2log z−

∴∴∴∴ I = [ ]log1 log 2− −

∴∴∴∴ I = log 2

6)( )

2

30

cos x dx

1 sin x

π

+∫

Ans. Let 1 + sin x = z

cos x dx = dz

When x = 2

π, z = 2

x = 0 , z = 1

∴∴∴∴ I =

2

31

dz

z∫

∴∴∴∴ I =

22

1

z

2

− −

∴∴∴∴ I =

2

21

1 1

2 z

∴∴∴∴ I = 1 1

12 4

− −

∴∴∴∴ I = 1 3

2 4

− −

∴∴∴∴ I = 3

7)( )

2

30

sinxdx

1 cosx

π

+∫

Ans.

Let 1 + cos x = z

sin x dx = dz

When x = 2

π, z = 1

x = 0 , z = 2

∴∴∴∴ I =

1

32

dz

z

−∫

∴∴∴∴ I =

1-3

2

z dz−∫

∴∴∴∴ I =

1

22

1

2z

∴∴∴∴ I = 1 1

12 4

∴∴∴∴ I = 1 3

2 4

=3

8

8)( ) ( )

2

0

cos x dx

1 sin x 2 sin x

π

+ +∫

Ans. I = ( ) ( )

2

0

cos x dx

1 sin x 2 sin x

π

+ +∫

∴∴∴∴ I = ( ) ( )

2

0

cos x dx

1 sin x 1 sin x 1

π

+ + + +∫

Let 1 + sin x = z

cos x dx = dz

When x = 2

π, z = 2

x = 0 , z = 1

∴∴∴∴ I = ( )

2

1

dz

z z 1+∫

=

2

1

1 1dz

z z 1

+ ∫

=

2 2

1 1

1 dzdz

z z 1−

+∫ ∫

=2 2

1 1log z log z 1 − + s

= log 2 – (log 3 – log 2)

= 2 log 2 – log 3

= log 4

3

Page 12: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

12 Mahesh Tutorials Science

9) 20

sin x dx

1 cos x

π

+∫

Ans. Let cos x = z

sin x dx = dz

When x = 2

π, z = 0

x = 0 , z = 1

∴∴∴∴ I =

0

21

dz

1 z

+∫

∴∴∴∴ I = ( )0

1

1tan z− −

∴∴∴∴ I = 04

π − −

∴∴∴∴ I = 4

π

10)

2

20

dx

x2cos

2

π

Ans. I =

2

20

dx

x2cos

2

π

∴∴∴∴ I =

22

0

1 xsec dx

2 2

π

∴∴∴∴ I =

2

0

xtan

1 2.12

2

π

∴∴∴∴ I = 2

0

1 x2. . tan2 2

π

∴∴∴∴ I = tan tan04

π−

∴∴∴∴ I = 1

11)

2

0

dx

5 4cos x

π

+∫

Ans. I =

2

0

dx

5 4cos x

π

+∫

∴∴∴∴

2

20

2

dxI

x1 tan

25 4x

1 tan2

π

=

− +

+

∴∴∴∴

22

2 20

x1 tan dx

2I

x x5 1 tan 4 1 tan

2 2

π +

=

+ + −

∴∴∴∴

22

20

xsec dx

2Ix

tan 92

π

=

+∫

Let tanx

2 = z

sec2x

2 dx = 2 dz

When x = 2

π, z = 1

x = 0 , z = 0

∴∴∴∴ I = ( )

1

220

2dz

z 3+∫

∴∴∴∴ I =

1

2 20

dz2

z 3+∫

∴∴∴∴ I =

11

0

1 z2. tan3 3

∴∴∴∴ I = 12 1

tan3 3

12)

1 -1

20

tan xdx

1 x+∫

Ans. Let tan–1 x = z

2

1dx dz

1 x=

+

When x =1 , z = 2

π

x = 0 , z = 0

∴∴∴∴ I =

2

0

z dz

π

Page 13: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 13

∴∴∴∴ I = ( )2 4

0

1z

2

π

I = 2

32

π

13)

12 x

20

edx

x∫

Ans. I =

12 x

20

edx

x∫

Let 1

zx

=

∴∴∴∴ 2

1dx dz

x= −

When x = 2 , z = 1

2

x = 0 , z = ∞

∴∴∴∴ I =

12

ze dz

∴∴∴∴ I = ( )1

z 2e∞

∴∴∴∴ I = ( )e 0−

∴∴∴∴ I = e−

14)

12

0

1 x dx−∫

Ans. Let x = sin θ

∴∴∴∴ dx = cos θ dθ

x = 1 , θ = 2

π

x = 0 , θ = 0

∴∴∴∴ I =

2

0

cos .cos d

π

θ θ θ∫

I =

2

0

cos .cos d

π

θ θ θ∫

∴∴∴∴ I =

22

0

cos d

π

θ θ∫

∴∴∴∴ I = ( )2

0

1 cos2 d

π

+ θ θ∫

∴∴∴∴ I =

2 2

0 0

1d cos2 d

2

π π

θ + θ θ

∫ ∫

∴∴∴∴ I = ( )2

0

2

0

1 sin2

2 2

π π θ θ +

∴∴∴∴ I =

2

0

1 1 sin2

2 2 2 2

π π θ +

∴∴∴∴ I = ( )1 1

sin 02 2 2

π + π −

∴∴∴∴ I = 1

2 2

π

∴∴∴∴ I = 2

4

π

15) ( )

3

32

dx

x x 1−∫

Ans. I = ( )

3

32

dx

x x 1−∫

∴∴∴∴ I =

( )( )

3 33

32

x x 1dx

x x 1

− −

−∫

∴∴∴∴ I =

3 32

32 2

x 1dx dx

xx 1−

−∫ ∫

I = I1 – I

2

I1 =

3 2

32

xdx

x 1−∫

Let x3 – 1 = z,

3x2 dx = dz

x2 dx = dz

3,

where x = 3, z = 26

x = 2 z = 7

∴∴∴∴ I1 =

26

7

1 dz

3 z∫

Page 14: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

14 Mahesh Tutorials Science

∴∴∴∴ I1 =

26

7

1log z

3

∴∴∴∴ I1 = [ ]1log 26 log 7

3−

=1 26log

3 7

∴∴∴∴ I2 =

3

2

1dx

x∫

∴∴∴∴ I2 =

3

2log x

∴∴∴∴ I2 = log 3 – log 2

∴∴∴∴ I2 =log

3

2

∴∴∴∴ I2 = I

1 – I

2

I = 1 26 3log log

3 7 2−

I =1 26 1 3log .3 log

3 7 3 2−

I =

31 26 3

log log3 7 2

I = 1 26 27

log log3 7 8

I = 1 26 8log

3 7 27

×

I = 1 208log

3 189

GROUP (C)-HOME WORK PROBLEMS

1)x

0

sin 2x e dx

π

Ans. Let I = x

0

sin 2x e dx

π

/2

x

0I sin2x e dx

π = ∫

( )x

0

de dx sin2x dx

dx

π

− × ∫ ∫

x x

0 0I sin2x.e e cos2x 2 dx

ππ = − × ∫

0 x

0I sin2 .e sin0. 2 cos2x. e dxe

πππ = − −

x

0

I 0 2 cos2x.e dx

π

= − ∫

( )x x

0

I 2 cos2x .e 2sin2x .e dx

ππ

= − − −

0 x

0

I 2 cos2 .e cos0.e 4 sin2x e dx

π

ππ = − − − ∫

I + 4I = – 2 [eπ – 1]

5I = 2(1 – eπ)

∴∴∴∴ I =2

5 (1 – eπ)

2)

/22x

0

e cos x dx

π

Ans. Let, I =

/22x

0

e cos x dx

π

/2

2x

0cos x. dxe

π= ∫

/2

2x

0cos x e dx

π = ∫

( )/2

2x

0

ddx cos x

dxe

π − ∫ ∫ dx

2x/2/22x

0 0

1cos x. sin x

2 2

ee

ππ = − × −

∫ ∫ dx

/2/2

2x 2x

0 0

1 1cos x. sin x.e dx

2 2e

ππ = + ∫

0

2x/2 /22x

0 0

1cos cos0.

2 2

1sin dx cos x dx

2 2

e e

ex e

π

π π

π = − +

∫ ∫

∴∴∴∴ I = 1

2[0 – 1] +

/22x

/22x0

0

sin x.1 1

cos xdx2 2 4

e

e

π

π

− ∫

Page 15: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 15

∴∴∴∴ I + 1

4 I =

01 1sin sin0.

2 4 2e eππ−

+ −

∴∴∴∴5I

4 =

1

2

−+1

4eπ

∴∴∴∴5I 2

4 4

eπ− +

=

∴∴∴∴ I = ( )1

25eπ

3) I =log x

42

1

x∫ dx –

4 2

1

x

x∫ dx

Ans. I =

42

1

x∫ log x dx

442 2

11

1log x x dx . x dx dx

x

= − ∫ ∫ ∫

4 43 3

1 1

x 1 x= logx . . dx

3 x 3

=

42

1

64 1 1log 4 .0 x dx

3 3 3

− −

43

1

64 1 xlog 4

3 3 3

= −

( )64 1

log 4 64 13 9

= − −

64log 4 7

3= −

4)

43

0

sec x dx∫ππππ

Ans. Let, I =

43

0

sec x dx∫ππππ

/4 2

0sec x sec x dx

π= ∫

/4 2 2

01 tan x sec x dx

π= +∫

put tan x = t, ∴∴∴∴ sec2 x dx = dt

when x = 0 then t = 0

when x = 4

π then t = 1

So,

I = 1 2

01 t+∫ dt

12 2

0

11 log t 1 t

2 2

tt

= × + + + +

[ ]1 1

2 log 1 2 02 2

= + + −

( )1 1

log 1 222

= + +

5)

e2

1

(log x) 1dx∫

Ans. = (logx)2

e

1

1dx∫ –

e

1

12 log x .x dx

x∫

= ( )ee

2

1 1

1x log x 2 log x .x .x dx

x

− − ∫

= e

2

1x (log x)

– 2 ( ) [ ]ee

1 1x log x – x

= e – 2e + 2e –2

= e – 2

6)

13 –1

0

x tan x dx∫

Ans.

1–1 3

0

I = tan x x dx −∫

1–1 3

0

d (tan x) x dx dx

dx

∫ ∫

=

1

0

4 –1[x tan x]

4 –

1

4

1 4

20

x

1 + x∫

1 4

20

1 1 x 1 1dx

4 4 4 1 x

π − += × −

+∫

12

20

1 1I x – 1 +

16 4 x + 1

π= −

∫ dx

[ ]

13

11 100 0

x1

x tan x16 4 3

π = − − +

= 16

π –

1

4 1 – 1 +

3 4

π

Page 16: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

16 Mahesh Tutorials Science

= 16

π –

1

12 +

1

4 16

π−

= 1

6

7)

1 –1

2 20

tan xx dx

(1 + x ) 1 + x∫

Ans. put tan–1x = t

2

1

1 + x dx = dt

∴∴∴∴ x = tan t

when x = 0, t = 0

x = 1, t = 4

π

=

/4

20

t tan t dt

1 + tan t

π

=

/4

0

t sin t

cos t1

cos t

π

∫ dt

=

/4

0

tsin t dt

π

= /4

0t sin t

π ∫ –

/4

0

sint dt dt

π

∫ ∫

= [ ]/4

0– t cos t

πs +

/4

0

cos t dt

π

= [ ]/4

0– t cos t

π + [ ]

/40

sin tπ

= –

4 2

π +

1

2

= 1

2 1 –

4

π

8)

12 1

20

xsin xdx

1 x

−∫

Ans. Let, sin–1x = π, when x =1

2,

4

ππ =

∴∴∴∴ sin π = x x = 0, π = 0

∴∴∴∴ 2

1dx d

1 x

= π

∴∴∴∴ I =

/4

0

sin .d

π

π π π∫

( )/4/4

0 0sin .d 1. sin d d

ππ = π π π − π π π ∫ ∫ ∫

( )/4

0

/4

0cos cos d

π π = − π π − − π π ∫

( )/4

0

1. sin

4 2

π π= − + π

1

4 2 2

π= − +

11

42

π = −

9)

1/ 2 2 –1

20

x sin x dx

1 – x∫

Ans. Let t = sin–1x, x = sint

dt = 2

1 dx

1 – x

when x = 0, t = 0

x = 1

2, 4

π = t

So,

I =

/42

0

sin t · t · dt

π

I = ( )/4

2

0

t sin t dt

π

( )

/4

0

t 1 cos2tdt

2

π−

= ∫

/4 /4

0 0

1t t cos2t dt

2

π π = − ∫ ∫

/4 /42

00

1 t sin2t sin2tt 1. dt

2 2 2 2

π π = − − ∫

/42

0

1 1 cos2tt sin2t

2 32 2 2

π π = − +

/42

0

1 cos2tt sin2t

4 16 2

π π = − +

Page 17: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 17

21 1 1.1 .0 0

4 16 4 2 2

π π = − + − −

21 1

4 16 4 2

π π= − +

=2 1

64 16 8

π π− +

10)

11

20

xtan dx

1 x

− ∫

Ans. Let, I =

11

20

xtan dx

1 x

− ∫

put x = sinθ

∴∴∴∴ dx = cosθ dθ

when x = 0 then θ = 0

when x = 1 then θ = π/2

So,

I = /2 -1

0

sinθtan cosθ dθ

cosθ

π

( )/2 1

0tan tanθ cosθ dθ

π −= ∫

/2

0θcosθ dθ

π= ∫

( )/2/2

0 0θ cos θdθ 1. cos θdθ dθ

ππ = − ∫ ∫ ∫

( )/2

0

/2

0θ.sinθ sinθdθ

π π = − ∫

( )/2

0.1 0 cosθ

2

ππ = − − −

( )/2

0cosθ

2

ππ= +

( )0 12

π= + −

12

π= −

BOARD PROBLEMS

1)

1x

0

x e dx∫

Ans. I =

1x

0

x e dx∫

= { }11

x x

0 0x e dx 1. e dx dx

∫ ∫

= ( )1 1

x x

0 0xe e dx −

= ( ) ( )1 1

x x

0 0xe e−

= e – (e – e0)

= e – e + 1

= 1

2)

2x

0

x e dx∫

Ans. I =

2x

0

x e dx∫

= { }22 xx

0 0

x e dx 1. e dx dx −

∫ ∫

=

22 xx

0 0

x e e dx − ∫

= ( ) ( )2 2

x x

0 0x e e−

= 2e2 – (e2 – e0)

= 2e2 – e2 + 1

= e2 + 1

3)

2

0

x sin x dx

π

Ans. I =

2

0

x sin x dx

π

∴∴∴∴ I = ( ) 22

0 0x sinx dx 1 sin x dx dx

ππ − ∫ ∫ ∫

∴∴∴∴ I = ( )2

20

0

x cos x cos x dx

ππ

− − − ∫

∴∴∴∴ I = ( )2

0

2

0

x cos x cos x dx

ππ

− − −∫

∴∴∴∴ I = ( )2

0

2

0

x cos x cos x dx

ππ

− + ∫

Page 18: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

18 Mahesh Tutorials Science

∴∴∴∴ I = ( )2

0.0 0.1 sin x

2

ππ

− − +

∴∴∴∴ I = 0 + (1 – 0)

∴∴∴∴ I = 1

4)

2

0

x dx

1 cos x

π

+∫

Ans. I =

2

0

x dx

1 cos x

π

+∫ =

2

20

xdx

x2cos

2

π

=

22

0

1 xx sec dx

2 2

π

=

222 2

0 0

1 x xx sec dx 1 sec dx dx

2 2 2

ππ −

∫ ∫

=

2 2

0 0

x xtan tan

1 2 2x dx1 12

2 2

π π

=

2 2

0 0

1 x x2 x tan 2 tan dx

2 2 2

π π −

∴∴∴∴ I =

2

2

0

0

xlog sec

1 x 22 x tan 2

12 2

2

π

π

= 1 0 2 log sec log sec02 4

π π − − − −

= 2.log 22

π−

=1

2. log 22 2

π−

= log 22

π− .

5)

2

0

x log x dx∫

Ans. I =

2

0

x log x dx∫

∴∴∴∴ I =

21

00

1log x. x dx . x dx dx

x

− ∫ ∫ ∫

∴∴∴∴ I =

222 2

0 0

x 1 xlog x. . dx

2 x 2

− ∫

∴∴∴∴ I =

2 22

00

x 1log x xdx

2 2

∴∴∴∴ I =

22

0

1 x2log 2 .

2 2

∴∴∴∴ I = ( )1

2log 2 44

∴∴∴∴ I = 2 log 2 – 1

6)

2

1

log x dx∫

Ans. I =

2

1

log x dx∫

=

22

11

1log x dx . dx dx

x

− ∫ ∫ ∫

= ( )2

1

2

1

1x log x .x dx

x

− ∫

= ( ) ( )2

12log 2 1log1 dx− − ∫

=2 log 2 – (x)2

=2 log 2 – (2–1)

=2 log 2 – 1

7)

e

1

log x dx∫

Ans. =

e

1

log x .1dx∫

=

ee

11

1log x dx . dx dx

x

− ∫ ∫ ∫

Page 19: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 19

= ( )e

e1

1

1x log x .x dx

x

= ( )e

1e log e dx− ∫

= ( )e1

e x−

= e – (e – 1)

= e – e + 1 = 1

8)

11

0

x tan x dx−∫

Ans. =

11

120

0

1tan x x dx . x dx dx

1 x

− − + ∫ ∫ ∫

= ( )

11

2 21

20

0

x xtan x.

2 2 1 x

− +

= ( )1

212 1

200

1 1 x 1 1x tan x dx

2 2 1 x

− + −

− +

=

1

20

1 1 dx1. dx

2 4 2 1 x

π − −

+ ∫ ∫

=1

1

0

1x tan x

8 2

−π − −

=11

8 2 4

π π − −

=1

8 2 8

π π− +

=1

4 2

π−

GROUP (D)-HOME WORK PROBLEMS

1)

22

0

x 2 x dx−∫

Ans. Replace x by 2 – x

∴∴∴∴ I = ( ) ( )2

2

0

2 x 2 2 x dx− − −∫

= ( )2 1

2 2

0

4 4x x x dx− +∫

=

2 3 512 2 2

0

4x 4 x dx

− + ∫

=

23 52 2

0

7x4x 4x 23 5 7

2 2 2

− +

3 5 72 2 28 8 2

2 2 22 5 7

− +

=8 8 2

2 2 4 2 8 22 5 7 − +

=16 2 32 2 16 2

3 5 7− +

=560 2 672 2 240 2

105

− +

=128 2

105

2) ( )3a 2 2

0x a x dx−∫

Ans. Replace x by a – x

I = ( ) ( )3a 2 2

0a x a a x dx− − − ∫

= ( )3

a 22

0a x x dx−∫

= ( )3a 2 2 2

0a 2ax x x dx− +∫

=

3 5 7a 2 2 2 20

a x 2ax x dx

− +

=

a5 972 2 2

2

0

x 2ax xa

5 7 9

2 2 2

− +

=5 97

2 2 2 22 4 2a a a a a

5 7 9− +

=92 2 4 2

a5 7 9

− +

=92 14 20 2

a35 9

− +

=92 2 6

a9 35

Page 20: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

20 Mahesh Tutorials Science

=92 70 54

a315

9216a

315=

3) 20

dx

1 cot x

π

+∫

Ans. I = 20

dx

1 cot x

π

+∫

20

dxI

cot x1

sin x

π

=

+

20

sin xI

sin x cos x

π

=+

∫ dx .... (i)

Replace x by x2

π−

20

sin x2

I dx

sin x cos x2 2

π

π −

=

π π − + −

20

cos xI

cos x sin x

π=

+∫ dx ....(ii)

Adding (i) and (ii)

∴∴∴∴2

0

sin x cos x2I dx

sin x cos x

π += + ∫

∴∴∴∴ 20

2I dxπ

= ∫

∴∴∴∴ [ ]2

02I x

π

=

∴∴∴∴ 2I = 2

π

∴∴∴∴ I = 4

π

4)( )

2

20

sin d

sin cos

π

θ θ

θ + θ∫

Ans. I = ( )

2

20

sin d

sin cos

π

θ θ

θ + θ∫ ....(i)

2

20

sin d2

I

sin cos2 2

π π − θ θ

=

π π − θ + − θ

( )

2

20

cos dI

cos sin

π

θ θ=

θ + θ∫ ...(ii)

Adding (i) and (ii)

∴∴∴∴( )

( )

2

20

sin cos d2I

sin cos

π

θ + θ θ=

θ + θ∫

∴∴∴∴

2

0

1d2I

sin cos

π

θ=

θ + θ∫

∴∴∴∴

2

0

1d2I

1sin 1cos

π

θ=

θ + θ∫

1 = r cos α ; 1 = r sin α

2 2r a b= +

2 2r 1 1= +

r 2=

tan α = 1

α =4

π

20

d2I

r cos sin r sin cos

π θ=

α θ + α θ∫

[ ]2

0

d2I

r sin cos cos sin

π θ=

α θ + α θ∫

[ ]2

0

1 d2I

rsin

π θ=

α + θ∫ ( )/2

0

1cos dec

r

πα θ θ= +∫

( ) ( )2

0

12I log cosec cot

r

π

= α + θ − α + θ

( ) ( )

12I log cosec cot

2 22

log cosec 0 cot 0

π π = α + − + α −

+ α − + α

1

2I log sec tan log cosec cot2

= α + α − α − α

1

2I log sec tan log cos ec cot4 4 4 42

π π π π = + − −

Page 21: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 21

1

2I log 2 1 log 2 12 = + − +

1 2 1

2I log2 2 1

+=

( ) ( )

( ) ( )

2 1 2 112I log

2 2 1 2 1

+ +=

− +

( )2

2 112I log

12

+=

12I 2log 2 1

2= +

∴∴∴∴ I = 1log 2 1

2+

5)

3

0 2

dx

x 9 x+ −∫

Ans. I=

3

0 2

dx

x 9 x+ −∫

x = 3 sin θ

dx = 3 cosθ dθ

x = 3 sinθ

When x = 3; x = 0

3 = 3 sinθ ; 0 = 3sinθ

1 = sinθ ; 0 = sinθ

2

πθ = ∴∴∴∴ θ = 0

/2

0 2

3cos dI

3sin 9 9sin

π θ θ=

θ + − θ∫

/2

0

3cos dI

3sin 3cos

π θ θ=

θ + θ∫

( )

/2

0

3cos dI

3 sin cos

π θ θ=

θ + θ∫

/2

0

cos dI

sin cos

π θ θ=

θ + θ∫ ....(i)

Replace θ by 2

π− θ

/2

0

cos d2

I

sin cos2 2

π

π − θ θ

=

π π − θ + − θ

/2

0

sin dI

cos sin

π θ θ=

θ + θ∫ ....(ii)

Adding (i) and (ii)

∴∴∴∴ ( )

( )

/2

0

cos sin d2I

cos sin

π θ + θ θ=

θ + θ∫

[ ] 20

2Iπ

= θ

2I = 02

π−

2I = 2

π

∴∴∴∴ I = 4

π

6) ( )20

sin2x log tan x dxπ

Ans. I = ( )20

sin2x log tan x dxπ

∫ ....(i)

Replace x by x2

π−

20

I sin2 x log tan x dx2 2

π π π = − −

( ) ( )20

I sin 2x log cot x dxπ

= π −∫

( )20

I sin2x log cot x dxπ

= ∫ ....(ii)

Adding (i) and (ii)

∴∴∴∴ ( ) ( )20

2I sin2x log tan x log cot x dxπ

= + ∫

∴∴∴∴ ( )20

2I sin2x log tan x cot x dxπ

= ∫

∴∴∴∴ ( )20

2I sin2x log 1 dxπ

= ∫

∴∴∴∴ 2I = 0 [ ]log1 0=∵

∴∴∴∴ I = 0

BOARD PROBLEMS

1)

a

0

xdx

x a x+ −∫

Ans. I =

a

0

xdx

x a x+ −∫ .....(i)

Page 22: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

22 Mahesh Tutorials Science

I = ( )

a

0

a xdx

a x a a x

− + − −∫

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

a

0

a xdx

a x a a x

− + − +∫

I =

a

0

a xdx

a x x

− +∫

I =

a

0

a x

x a x

+ −∫ .....(ii)

Adding (i) and (ii), we have

2I =

a

0

x a xdx

x a x x a x

−+ + − + −

∴∴∴∴ 2I =

a

0

dx∫

∴∴∴∴ I = ( )a0

x

∴∴∴∴ I = ( )1

a2

∴∴∴∴ I = a

2

2) ( )1

32 2

0

x 1 x dx−∫

Ans. I = ( )1

32 2

0

x 1 x dx−∫

I = ( ) ( )1 32 2

0

1 x 1 1 x dx− − − ∫

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I = ( ) ( )1

32 2

0

1 2x x 1 1 x dx− + − +∫

I = ( )1 3

2 2

0

1 2x x x dx− +∫

I =

1 3 5 72 2 2

0

x 2x x dx

− + ∫

I =

1 1 13 5 72 2 2

0 0 0

x dx 2 x dx x dx− +∫ ∫ ∫

I =

1 115 972 2 2

00 0

2 2 2x 2 x x

5 7 9

− × +

I = 2 4 2

5 7 9− +

I =126 180 70

315

− +

I = 196 180

315

I = 16

315

3)

1

20

dx

x 1 x+ −∫

Let x = sinθ

∴∴∴∴ dx = cosθ dθ

When x = 1 θ =2

π

x = 0 θ = 0

I =

2

0

cos d

sin cos

π

θ θ

θ + θ∫ ....(i)

I =

2

0

cos d2

sin cos2 2

π π − θ θ

π π

− θ + − θ

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫

I =

2

0

sin d

cos sin

π

θ θ

θ + θ∫ ....(ii)

Adding (i) and (ii)

2I =

2

0

cos sind

sin cos cos sin

π

θ θ + θ

θ + θ θ + θ ∫

∴∴∴∴ 2I =

2

0

sin cosd

sin cos

π

θ + θ θ

θ + θ ∫

Page 23: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 23

∴∴∴∴ 2I =

2

0

d

π

θ∫

∴∴∴∴ 2I = ( )2

0

π

θ

∴∴∴∴ 2I = 2

π

∴∴∴∴ I = 4

π

4)

22

0

cos x dx

π

Ans. I =

22

0

cos x dx

π

∫ ....(i)

I =

22

0

cos x dx2

π

π −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

22

0

sin x dx

π

∫ ....(ii)

Adding (i) and (ii), we have

2I = ( )2

2 2

0

sin x cos x dx

π

+∫

∴∴∴∴ 2I =

2

0

dx

π

∴∴∴∴ 2I = ( )2

0x

π

∴∴∴∴ 2I = 2

π

∴∴∴∴ I = 4

π

5)

22

0

sin x dx

π

Ans. I =

22

0

sin x dx

π

∫ ....(i)

I =

22

0

sin x dx2

π

π −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

22

0

cos x dx

π

∫ ...(ii)

Adding (i) and (ii) we have

2I= ( )2

2 2

0

sin x cos x dx

π

+∫

2I =

2

0

dx

π

2I = ( )2

0x

π

2I = 2

π

I = 4

π

6)

2

0

cos x dx

sin x cos x

π

+∫ ...(i)

Ans. I =

2

0

cos x2

dx

sin x cos x2 2

π π −

π π

− + −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

2

0

sin x dx

cos x sin x

π

+∫ ...(ii)

Page 24: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

24 Mahesh Tutorials Science

Adding (i) and (ii), we have

2I =

2

0

sin x cos xdx

cos x sin x sin x cos x

π

+

+ + ∫

2I =

2

0

dx

π

2I = ( )2

0x

π

2I = 2

π

I = 4

π

7)

2

0

dx

1 tan x

π

+∫

Ans. I =

2

0

dx

1 tan x

π

+∫

I =

2

0

dx

sin x1

cos x

π

+∫

I=

2

0

cos xdx

cos x sinx

π

+∫ ....(i)

I =

2

0

cos x2

dx

cos x sin x2 2

π π −

π π

− + −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

2

0

sin xdx

sin x cos x

π

+∫

Adding (i) and (ii), we have

2I =

2

0

sin x cos xdx

cos x sin x sin x cos x

π

+

+ + ∫

2I =

2

0

dx

π

2I = ( )2

0x

π

2I = 2

π

I = 4

π

8)

2

0

dx

1 cot x

π

+∫

Ans. I =

2

0

dx

1 cot x

π

+∫

I =

2

0

dx

cos x1

sin x

π

+∫

I=

2

0

sin xdx

sin x cos x

π

+∫ ...(i)

I =

2

0

sin x2

dx

sin x cos x2 2

π π −

π π

− + −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

2

0

cos x dx

cos x sin x

π

+∫ ...(ii)

Adding (i) and (ii), we have

2I =

2

0

sin x cos xdx

cos x sin x sin x cos x

π

+

+ + ∫

2I =

2

0

dx

π

2I = ( )2

0x

π

2I = 2

π

I = 4

π

Page 25: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 25

9)

2

0

sin x dx

sin x cos x

π

+∫

Ans. I =

2

0

sin x dx

sin x cos x

π

+∫ ...(i)

I =

2

0

sin x2

dx

sin x cos x2 2

π π −

π π − + −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

2

0

cos xdx

cos x sin x

π

+∫ ...(ii)

Adding (i) and (ii), we have

2I =

2

0

sin x cos xdx

sin x cos x cos x sin x

π

+ + +

2I =

2

0

dx

π

2I = ( )2

0x

π

2I = 2

π

I = 4

π

10)

2

0

sec xdx

sec x cos ecx

π

+∫

Ans. I =

2

0

sec xdx

sec x cos ecx

π

+∫ ...(i)

I =

2

0

sec x2

dx

sec x cos ec x2 2

π π −

π π − + −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I =

2

0

cos ecxdx

sec x sec x

π

+∫ ...(ii)

Adding (i) and (ii), we have

2I =

2

0

secx cos ecxdx

sec x cos ecx cos ec x sec x

π

+

+ + ∫

2I =

2

0

dx

π

2I = ( )2

0x

π

2I = 2

π

I = 4

π

11)

a

2 20

dx

x a x+ −∫

Ans. I =

a

2 20

dx

x a x+ −∫

Let x = a sin θ ∴∴∴∴ dx = a cos θ dθ

when x = a, θ = 2

π

x = 0, θ = 0

∴∴∴∴ I =

2

0

a cos d

a sin a cos

π

θ θ

θ + θ∫ .

I =

2

0

cos d

sin cos

π

θ θ

θ + θ∫ ...(i)

I =

2

0

cos d2

sin cos2 2

π π − θ θ

π π

− θ + − θ

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

∴∴∴∴ I =

2

0

sin d

cos sin

π

θ θ

θ + θ∫ ...(ii)

Adding (i) and (ii), we have

Page 26: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

26 Mahesh Tutorials Science

2I =

2

0

cos sind

sin cos cos sin

π

θ θ + θ

θ + θ θ + θ ∫

∴∴∴∴ 2I =

2

0

d

π

θ∫

∴∴∴∴ 2I = ( )2

0x

π

∴∴∴∴ 2I = 2

π

∴∴∴∴ I = 4

π

12)( )

2 2

20

sin xdx

sin x cos x

π

+∫

Ans. I = ( )

2 2

20

sin xdx

sin x cos x

π

+∫ ...(i)

I =

22

20

sin x2

sin x cos x2 2

π π −

π π − + −

( ) ( )a a

0 0

f x dx f a x dx = − ∫ ∫∵

I=( )

2 2

20

cos xdx

cos x sin x

π

+∫ ...(ii)

Adding (i) and (ii), we have

2I = ( ) ( )

2 2 2

2 20

sin x cos xdx

sin x cos x cos x sin x

π + + +

∴∴∴∴ 2I =( )

2

20

dxdx

sin x cos x

π

+∫

Now

cos x + sin x =1 1

2 cos x. sin x.2 2

+

= 2 cos x cos sin4xsin4 4

π π +

= 2 cos x4

π −

∴∴∴∴ 2I =

2

20

dx

2 cos x4

π

π −

∴∴∴∴ 2I=

22

0

1sec x dx

2 4

π

π −

∴∴∴∴ 2I =2

0

1tan x

2 4

π π

∴∴∴∴ 2I =1

tan tan4 2 4 4

π π π − − −

∴∴∴∴ I =1

tan tan4 4 4

π π +

∴∴∴∴ I = 1

24

×

∴∴∴∴ I = 1

2

13) ( )4

0

log 1 tan x dx

π

+∫

Ans. I = ( )4

0

log 1 tan x dx

π

+∫

I =

4

0

log 1 tan x dx4

π

π + −

I =

4

0

tan tanx4log 1 dx

1 tan tanx4

π π −

+ π +

I =

4

0

1 tanxlog 1 dx

1 tanx

π

− + +

∫ .

I =

4

0

1 tan x 1 tan xlog dx

1 tan x

π

+ + − +

Page 27: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 27

I =

4

0

2log dx

1 tan x

π

+ ∫

∴∴∴∴ I = ( )4

0

log 2 log 1 tanx dx

π

− + ∫

∴∴∴∴ I = ( )4 4

0 0

log 2 dx log 1 tan x dx

π π

+∫ ∫

∴∴∴∴ I = ( )4

0log 2 x

π

...(i)

∴∴∴∴ 2I = log 24

π

∴∴∴∴ I = log 28

π

14)

2 2

0

sin x dx

sin x cos x

π

+∫

Ans. I =

2 2

0

sin x dx

sin x cos x

π

+∫ ...(i)

∴∴∴∴ I =

22

0

sin x2

dx

sin x cos x2 2

π π −

π π

− + −

( ) ( )a a

0 0

f a dx f a x dx = − ∫ ∫∵

I =

2 2

0

cos xdx

cos x sin x

π

+∫ ...(ii)

Adding (i) and (ii) we have,

2I =

2 2 2

0

sin x cos xdx

sin x cos x sin x cos x

π

+ + + ∫

2I =

2

0

dx

sin x cos x

π

+∫

Now

sinx + cos x =

2

2 2

x x2tan 1 tan

2 2x x

1 tan 1 tan2 2

+

+ +

=

2

2

x x2tan 1 tan

2 2x

sec2

+ −

∴∴∴∴ 2I =

2

20

2

dx

x x2tan 1 tan

2 2x

sec2

π

+ −∫

∴∴∴∴ 2I =

22

20

xsec dx

2x x

2tan 1 tan2 2

π

+ −∫

Let tan 2

π= z sec2

2

πdx = 2dz

When x = 2

π, z = 1

x = 0, z = 0

2I =

1

20

2dz

2z 1 z+ −∫

= ( )

1

20

dz2

2 z 2z 1− − +∫

∴∴∴∴ 2I = ( ) ( )

1

2 20

dz2

2 z 1− −∫

∴∴∴∴ 2I =

1

0

1 2 z 1log

2 2 2 z 1

+ −

− +

∴∴∴∴ 2I =1 2 2 1

log log2 2 2 2 1

−−

∴∴∴∴ I =

( )

( )

2 11 2 1log

2 2 2 12 1

− − − × −+

∴∴∴∴ I =

( )2

2 11log

2 12 2

− −

∴∴∴∴ I = ( )1

.2log 2 12 2

− −

∴∴∴∴ I = ( )1log 2 1

2− −

Page 28: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

28 Mahesh Tutorials Science

∴∴∴∴ I = ( )1 1

log1 log 2 12 2

− − −

∴∴∴∴ I = 1 1 2 1

log2 2 1 2 1

+− × − +

∴∴∴∴ I = 1 2 1

log2 2 1

+ +

∴∴∴∴ I = ( )1

log 2 12

+

GROUP (E)-HOME WORK PROBLEMS

1)

1 2

21

1 xdx

1 x−

+∫

Ans. I =

1 2

21

1 xdx

1 x−

+∫

( )2

2

1 xf x

1 x

−=

+

( )( )( )

2

2

1 xf x

1 x

− −

− =

+ − = ( )

2

2

1 xf x

1 x

−− =

+ = f(x)

∴∴∴∴ f(x) is even function

1 2

20

1 xI 2 dx

1 x

−=

+∫

( )( )21

20

x 1 22 dx

1 x

− + +

=+

1 1

20 0

dxI 2 dx 2

1 x

= − + + ∫ ∫

11

0I 2 x 2tan x− = − +

1I 2 1 2tan 1 0− = − + −

I 2 1 24

π = − + ×

I 2= π −

2)

1 2

21

xdx

x 1− +∫

Ans. f (x) =

2

2

x

x 1+

f (– x) =( )

( )

2 2

2 2

x x

x 1x 1

−=

+− +

f (– x) = f(x)

∴∴∴∴ f (x) is even function

∴∴∴∴

1 2

20

xI 2 dx

x 1=

+∫

∴∴∴∴

1 2

20

x 1 1I 2 dx

x 1

+ −=

+∫

1

20

1I 2 1 dx

x 1

= −

+ ∫

1 10I 2 x tan x− = −

1I 2 1 tan 1− = −

I 2 14

π = −

∴∴∴∴ I 22

π= −

3)

a 3

2a

xdx

4 x− −∫

Ans. I =

a 3

2a

xdx

4 x− −∫

f (x) =

3

2

x

4 x−

f (– x) = ( )

( )

3

2

x

4 x

− − =

3

2

x

4 x

f (– x) = – f (x)

∴∴∴∴ f (x) is odd function

a 3

2a

xI dx

4 x−

=−

I = 0

4)

26

2

cos x dx

π

−π∫

Ans. I =

26

2

cos x dx

π

−π∫

f (x) = cos 6 x

f (– x) = cos6 (– x) = cos 6 x

∴∴∴∴ f (x) is even function

Page 29: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 29

I =

26

0

2 cos x dx

π

n 1n

n 2

cos x sin x n 1cos x dx

4 n

cos xdx

−= +

5 32cos x sin x 5 cos x sin x 3

I 2 cos x dx6 6 4 4

= + +

53 2cos x sin x 5 15

I 2 cos x sin x cos x dx6 24 24

= + +

53

10

cos x sin x 5 15cos x sin x

6 24 24I 2

cos x sin x 1cos x

2 2

+ +

=

+

5 23

0

cos x sin x 5 15cos x sin x

6 24 48I 215

cos x sin x x48

π

+ + =

+

15

I 2 0 0 0 048 2

π = + + + −

2 15

I48 2

× π=

×

5

I16

π=

5)

43

4

tan xsec x dx

π

−π∫

f (x) = tan3 x sec x

f (–x) = tan3 (– x) sec (– x)

= – tan3 x sec x

f (– x) = – f (x)

∴∴∴∴ f (x) is odd function

∴∴∴∴ I =

43

4

tan xsec x dx 0

π

−π

=∫

GROUP (F)-HOME WORK PROBLEMS

1) ( )2

0

log cos x dx

π

Ans. I = ( )2

0

log cos x dx

π

∫ ...(i)

Replace x by x2

π−

I =

2

0

log cos x dx2

π

π −

I = ( )2

0

log sin x dx

π

∫ ...(ii)

Adding (i) and (ii)

∴∴∴∴ 2I = ( ) ( )2

0

log sin x log cos x dx

π

+∫

∴∴∴∴ 2I =

2

0

2sin x cos xlog dx

2

π

2I = ( )2

0

log log sin2x log 2 dx

π

−∫

2I =

/22

0 0

log sin2x dx log 2 dx

ππ

−∫ ∫

2I = I1 – I

2 ...(i)

∴∴∴∴ I1 =

0

1log sin d

2

π

π π∫

=

2.2

0

1log sin d

2

π

π π∫

( ) ( )If f 2a x f x i.e.sin 2. sin2

π − = − π = π

/2

0

1.2 log sin d

2

π

= π π∫

( ) ( )/2 b b

0 a a

log sin d f x dx f y dy

π = π π =

∫ ∫ ∫

Page 30: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

30 Mahesh Tutorials Science

( ) ( )/2 a a

0 0 0

log sin x dx f x dx f a x da2

π π = − = −

∫ ∫ ∫

/2

0

log cos xdx

π

= ∫

= I ....(ii)

I2

/2

0

log 2 dx

π

= ∫

= ( )/2

0x log 2

π

...(iii)

= log 22

π

from (i)

2I = log 2 log 22

π (by ii and iii)

∴∴∴∴ I = log 22

π−

∴∴∴∴ I = log 22

π−

∴∴∴∴ I = log1 log 22 2

π π−

=1

log2 2

π

2)

14

0

sin x cos x dx∫

Ans. I =

14

0

sin x cos x dx∫

cos x = t

– sin x dx = dt

sin x dx = – dt

cos x = t

When x = 1 ; x = 0

cos 1 = t ; cos 0 = t

0 = t; 2

π= t

( )0

4

2

I t dt

π

= −∫

24

0

I t dt

π

= ∫

5 2

0

tI

5

π

=

51

I 05 2

π = −

51I

5 32

π= ×

5

I160

π=

3)0

x sin xI dx

1 sin x

π

=+∫

Ans.( ) ( )

( )0

x sin xI dx

1 sin x x

ππ − π −

=+ π −∫

∴∴∴∴( )

0

x sin xI dx

1 sin x

ππ −

=+∫

∴∴∴∴0 0

sin x x sin xI dx dx

1 sin x 1 sin x

π π

= π −+ +∫ ∫

∴∴∴∴ 2I = ( )

( ) ( )0 0

sin x 1 sin xsin x dxdx

1 sin x 1 sin x 1 sin x

π π−

π = π+ + −∫ ∫

∴∴∴∴ 2I = ( )

20

sin x 1 sin xdx

cos x

π−

π∫

∴∴∴∴ 2I =

2

20

sin x sin xdx

cos x

π −π

∴∴∴∴ 2I = ( )2

0

sec x tan x tan x dx

π

π −∫

∴∴∴∴ 2I = 2

0 0

sec x tan x dx tan xdx

π π π − ∫ ∫

∴∴∴∴ 2I = 2

0 0 0

sec x tan x dx sec x dx dx

π π π π − + ∫ ∫ ∫

∴∴∴∴ 2I = ( ) ( ) ( )0 0 0

sec x tan x xπ π π

π − +

∴∴∴∴ 2I = ( ) ( )1 1 0 0π − − − − + π

Page 31: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 31

∴∴∴∴ 2I = ( )22

π− + π = ( )2

2

ππ −

4)

/2

0

x2

sin x cos x2 2

ππ

π π − + −

Ans.

/2

0

x2

I

sin x cos x2 2

ππ

=π π

− + −

∴∴∴∴

/2

0

x dx2

Icos x sin x

ππ

=+∫

∴∴∴∴

/2 /2

0 0

dx xdxI

2 sin x cos x sin x cos x

π ππ

= −+ +

∫ ∫

∴∴∴∴ 2I =

/2

0

dx

2 sin x cos x

ππ

+∫

sin x + cosx =

2

2 2

x x2tan 1 tan

2 2x x

1 tan 1 tan2 2

+

+ +

2

2

x x2tan 1 tan

2 2x

1 tan2

+ −

=

+

∴∴∴∴

2/2

20

x1 tan dx

22I

x x22tan 1 tan

2 2

π

+ π

=

+ −∫

∴∴∴∴

2/2

20

xsec

22I dxx x2

2tan 1 tan2 2

ππ

=

+ −∫

Let tan 2

α= π

2 x 1sec . dx d

2 2

= π

∴∴∴∴2 x

sec . dx 2d2

= π

when x2

π= , π = 1

x = 0 π = 0

∴∴∴∴ 2I =

1

20

2d

2 2 1

π π

π + − π∫

∴∴∴∴ 2I = ( )

1

20

d.2

2 2 2 1

π π

− π − π +∫

∴∴∴∴ 2I = ( ) ( )

1

2 20

d

2 1

ππ

− π −∫

∴∴∴∴ 2I =

1

0

1 2 1. log2 2 2 1

+ π −π

− π +

∴∴∴∴ 2I = 2 2 1

log log2 2 2 2 1

π −− +

∴∴∴∴ 2I =

( ) ( )

( ) ( )

2 1 2 10 log

2 2 2 1 2 1

− −π − + −

∴∴∴∴ 2I = ( )

22 1

log2 12 2

−π

∴∴∴∴ 2I = .2log 2 12 2

π−

∴∴∴∴ I = ( )log 2 12 2

π− −

I = ( )log 2 12 2

π+

5) ( )/2

0

log sin x dx

π

Ans. ( )/2

0

I log sin x dx

π

= − ∫ ...(i)

/2

0

log sin x dx2

ππ

= − −

/2

0

log cos x dx

π

= − ∫ ...(ii)

Adding (i) and (ii) we have

2I = ( )/2

0

log sin x log cos x dx

π

− +∫

Page 32: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

32 Mahesh Tutorials Science

∴∴∴∴ 2I =

/2

0

2sin x cos xlog dx

2

π

∴∴∴∴ 2I = ( )/2

0

log sin2x log 2 dx

π

− −∫

∴∴∴∴ 2I =

/2 /2

0 0

log sin2x dx log 2 dx

π π

− +∫ ∫

∴∴∴∴ 2I = I1 + I

2

I1 =

/2

0

log sin2x dx

π

− ∫

put 2x = π

dx =d

2

π

when x = 2

π , z = π

x = 0, z = 0

∴∴∴∴ I1 =

0

1log sin z dz

2

π

− ∫

∴∴∴∴ I1 =

0

1log sin x dx

2

π

− ∫

∴∴∴∴ I1 =

2.2

0

1log sin x dx

2

π

− ∫

∴∴∴∴ I1=

2.2

0

1log sin x dx

2

π

− ∫

∴∴∴∴ I1 ( ) ( )

0

1.2 log sin x dx f 2a x f x

2

π

− − = ∫ ∵

∴∴∴∴ I1 = I ...(iii)

I2 = log 2

/2

0

dx

π

∴∴∴∴ I2 = ( )

/2

0x log 2

π

∴∴∴∴ I2 = log 2

2

π .....(iv)

∴∴∴∴ 2I = I + log 22

π(by iii and iv)

∴∴∴∴ I = log 22

π

6)

2

0

1x dxcos xIsin x

1cos x

π

=

+∫

Ans.

2

0

1x dxcos xIsin x

1cos x

π

=

+∫

2

0

xdx

cos xIcos x sin x

cos x

π

=+∫

∴∴∴∴

2

0

x dxI

sinx cos x

π

=+∫

Refer as Group F class work (5)

5) ( )20

log cos ecx dxπ

I = ( )20

log sin x dxπ

−∫

I = ( )20

log sin x dxπ

−∫ ...(i)

Refer as Group F class work (2)

GROUP (G)-HOME WORK PROBLEMS

Q -1)

9 3

3 33

12 xdx

x 12 x

+ −∫

Ans. Let I =

9 3

3 33

12 xdx

x 12 x

+ −∫ ...(i)

using ( ) ( )b b

a af x dx f a b x dx= + −∫ ∫

=( )

( )

39

33 3

12 12 xdx

12 x 12 12 x

− −

− + − −∫

=

39

333

xdx

12 x x− +∫ ... (ii)

Adding (i) and (ii)

2I =

3 39

3 33

x 12 xdx

x 12 x

+ −

+ + −∫

∴∴∴∴ 2I = [ ]9 9

331dx x=∫

∴∴∴∴ 2I = 6

∴∴∴∴ I = 3

Page 33: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 33

2)( )

( )

26

22 2

8 xdx

x 8 x

+ −∫

Ans. Let I =( )

( )

26

22 2

8 xdx

x 8 x

+ −∫ ...(i)

( )

( ) ( )

26

22 2

8 8 xdx

8 x 8 8 x

− − =

− + − − ∫

∴∴∴∴ ( )

26

22 2

xI dx

8 x x=

− +∫ ...(ii)

Adding (i) and (ii)

∴∴∴∴ ( )

( )

2 26

22 2

8 x x2I dx

x 8 x

− +=

+ −∫

∴∴∴∴ [ ]6 6

222I 1dx x= =∫

∴∴∴∴ 2I = 4

∴∴∴∴ I = 2

3)

13

3 31

x 52I dx

x 5 9 x

+=

+ + −∫

Ans. I =

13

3 31

x 52I dx

x 5 9 x

+=

+ + −∫ ...(i)

using ( ) ( )b b

a a

f x dx a b x dx= + −∫ ∫

33

3 31

9 xI dx

9 x 5 x

−=

− + +∫ ...(ii)

Adding (i) and (ii)

∴∴∴∴

3 33

3 31

9 x x 52I dx

9 x x 5

− + +=

− + +∫

∴∴∴∴ [ ]3 3

112I dx x= =∫

∴∴∴∴ 2I = 2

I = 1

4)

3

6

1dx

1 tanx

π

π +∫

Ans. Let I =

3

6

1dx

1 tanx

π

π +∫

3

6

1dx

1 sin x/cos x

π

π

=+

3

6

cos xdx

cos x sin x

π

π

=+

∫ ... (i)

( ) ( )b b

a a

f x dx a b x dx= + −∫ ∫

∴∴∴∴

3

6

cos x2

I dx

cos x sin x2 2

π

π

π −

=

π π − + −

3

6

sin xI dx

cos x sin x

π

π

=+

∫ ... (ii)

Adding (i) and (ii)

∴∴∴∴

3

6

sin x cos x2I dx

sin x cos x

π

π

+=

+∫

∴∴∴∴[ ]

3

6

3

6

2I dx x

π

π

π

π

= =∫

∴∴∴∴ 2I =6

π

I = π / 12

5)3

36 2

dx

1 cot x

π

π

+

Ans. I = 3

36 2

dx

1 cot x

π

π

+

∫ ...(i)

( )

33

6 2

dxdx

1 cos x/sin x

π

π=

+∫

∴∴∴∴

32

33 3

6 2 2

sin xI dx

sin x cos x

π

π=

+

∫ ...(ii)

Adding (i) and (ii)

∴∴∴∴ [ ]3

6

3

6

2I 1dx x6

π

π

π

ππ= = =∫

Page 34: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

34 Mahesh Tutorials Science

∴∴∴∴ I = 12

π

6)

333 3

6

sin xdx

sin x cos x

π

π+

Ans. I =

333 3

6

sin xdx

sin x cos x

π

π+

∫ ...(i)

using ( ) ( )b b

a a

f x dx a b x dx= + −∫ ∫

3

3

6 3 3

sin x2

dx

sin x cos x2 2

π

π

π −

=

π π − + −

∴∴∴∴

333 3

6

cos xI dx

cos x sin x

π

π=

+∫ ... (ii)

Adding (i) and (ii)

∴∴∴∴

3 333 3

6

cos x sin x2I dx

cos x sin x

π

π

+=

+∫

∴∴∴∴ [ ]3

6

3

6

2I 1dx x

π

π

π

π= =∫

∴∴∴∴ 2I = π /6

∴∴∴∴ I = 12

π

7)7

2

xdx

x 9 x+ −∫

Ans. I = 7

2

xdx

x 9 x+ −∫ ... (i)

( )

7

2

9 xdx

9 x 9 9 x

−=

− + − −∫

7

2

9 xdx

9 x x

−=

− +∫ ... (ii)

Adding (i) and (ii)

∴∴∴∴7

2

9 x x2I dx

9 x x

− +=

− +∫

∴∴∴∴ [ ]7 7

222I 1. dx x= =∫

∴∴∴∴ 2I = 5

∴∴∴∴ I = 5/2

8)5

2

xdx

7 x x− +∫

Ans. I = 5

2

xdx

7 x x− +∫ ... (i)

I = ( )

5

2

7 xdx

7 7 x 7 x

− − + −∫

5

2

7 xdx

x 7 x

+ −∫ ... (ii)

Adding (i) and (ii)

∴∴∴∴ 2I = 5

2

7 x xdx

7 x x

− +

− +∫

∴∴∴∴ 2I = [ ]5 5

221 dx x=∫

∴∴∴∴ 2I = 3

∴∴∴∴ I = 3/2

GROUP (H)-HOME WORK PROBLEMS

1) ( )5

24x 3 dx+∫

Ans. Let I = ( )5

24x 3 dx+∫

Let f(x) = 4x + 3; a = 2, b = 5

h = b a

n

−= 5 2

n

−=3

n

∴∴∴∴ nh = 3

∴∴∴∴ ( ) ( )5

21

lim f a rhn

n r

f x dx h→∞

=

= +∑∫

= ( )1

lim f 2 rhn

n r

h→∞

=

+∑

( )( )1

lim 4 2 rh 3n

n r

h→∞

=

= + +∑

( )1

lim 11 4rhn

n r

h→∞

=

= +∑

2

1 1

lim 11 4n n

n r r

h h r→∞

= =

= +

∑ ∑

( )2 1

lim 11 42n

n nnh h

→∞

+ = + ×

Page 35: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

Mahesh Tutorials Science 35

( ) 2 2

11

lim 11 3 42n

nh n

→∞

+

= + ×

( )( )2 1 0

33 4 32

+ = + ×

( )33 2 9= +

= 33 + 18

= 51

2) ( )3

02x 3 dx+∫

Ans. Let, I = ( )3

02x 3 dx+∫

Let f(x) = 2x + 3, a = 0, b = 3

b a

nh

−= =

3 0

n

∴∴∴∴ nh = 3

∴∴∴∴ ( ) ( )3

01

f x dx lim f a + rhn

nr

h→∞

=

= ∑∫

( )1

lim f rhn

nr

h→∞

=

= ∑ [ ]a 0=∵

( )( )1

lim 2 rh 3n

nr

h→∞

=

= +∑

( )2

1

lim 2rh 3hn

nr

→∞=

= +∑

n n2

r 1 r 1

lim 2h r 3h 1n→∞

= =

= +

∑ ∑

( )2

1

1lim 2h 3h n

2

n

nr

n n

→∞=

+ = × + ×

( )2 2 12h n 1n

lim 3nh2n→∞

× + = +

( ) ( )

( )2 2

2 3 1 03 3

2

× += +

= 9 + 9

= 18

3) ( )1

02x 3 dx+∫

Ans. Let, I = ( )1

02x 3 dx+∫

f(x) = 2x + 3, a = 0, b = 1

∴∴∴∴ ( )1

01

1f x dx lim f

n

nr

r

n n→∞=

=

∑∫

1

1 rlim 2 3

n

n

nr

n→∞=

= +

1

1 2lim 3

n

nr

r

n n→∞=

= +

21 1

2 3lim 1

n n

nr r

rnn→∞

= =

= +

∑ ∑

( )

2

n n 12 3lim n

2 nnn→∞

+ = × + ×

( )2

2

1n 12lim 3

2nn

n

→∞

+ = × +

( )2 1 0

32

+= +

= 1 + 3

= 4

4) ( )2

03x 5 dx+∫

Ans. Let,I = ( )2

03x 5 dx+∫

Let f(x) = 3x + 5, a = 0, b = 2

∴∴∴∴b a

hn

−= =

2 0

n

− = 2

n

∴∴∴∴ nh = 2

∴∴∴∴ ( ) ( )2

01

f x dx lim hf a rhn

nr

→∞=

= +∑∫

( )1

lim hf rhn

nr

→∞=

= ∑ [ ]a 0=∵

( )( )1

lim h 3 rh 5n

nr

→∞=

= +∑

n2

1 r 1

lim 3h r 5h 1n

nr

→∞= =

= +

∑ ∑

( )2 n n 1

lim 3h 5hn2n→∞

+ = × +

Page 36: 2 Mahesh Tutorials Science · 1 x + 2 ∫ dx = 2 2 2 2 0 0 1 dx 8 dx x 2 ... 1 1 2 1 0 0 1 1 x logx 5 4. tan 2 5 5 ...

Definite Integration

36 Mahesh Tutorials Science

( )2 2 13h n 1lim 5hn

2n

n

→∞

× + = +

( ) ( )

( )2

3 2 1 05 2

2

+= +

= 6 + 10

= 16

5) ( )2 2

02x 5 dx+∫

Ans. Let I = ( )2 2

02x 5 dx+∫

Let f(x) = 2x2 + 5, a = 0, b = 2

∴∴∴∴b a

hn

−= =

2 0

n

− = 2

n

∴∴∴∴ n h = 2

∴∴∴∴ ( ) ( )2

01

f x dx lim hf a rhn

nr

→∞=

= +∑∫

( )1

lim hf rhn

nr

→∞=

= ∑ [ ]a 0=∵

( )( )2

1

lim h 2 rh 5n

nr

→∞=

= +∑

( )3 2

1

lim 2h r 5hn

nr

→∞=

= +∑

n n3 2

1 r 1 r 1

lim 2h r 5h 1n

nr

→∞= = =

= +

∑ ∑ ∑

( ) ( )3 n n 1 2n 1

lim 2h 5hn6n→∞

+ + = × +

( ) ( )( )

3 3 1 12h n 1 2n

lim 5 26n

n

→∞

× + + = +

( ) ( ) ( )3

2 2 1 0 2 010

6

+ += +

3210

6= +

= 46

3

6) ( )2 2

03x 5 dx+∫

Ans. Let, I = ( )2 2

03x 5 dx+∫

let f(x) = 3x2 + 5, a = 0, b = 2

∴∴∴∴ h = b a

n

− = 2 0

n

− =2

n

∴∴∴∴ nh = 2

( ) ( )2

01

f x dx lim hf a rhn

nr

→∞=

= +∑∫

( )1

lim hf rhn

nr

→∞=

= ∑ [ ]a 0=∵

( )( )2

1

lim h 3 rh 5n

nr

→∞=

= +∑

( )2 3

1

lim 3r h 5hn

nr

→∞=

= +∑

n3 2

1 1 r=1

lim 3h 5h 1n n

nr r

r

→∞= =

= +

∑ ∑ ∑

( ) ( )3 n n 1 2n 1

lim 3h 5h n6n→∞

+ + = × + ×

( ) ( )3 3 1 13h n 1 2lim 5nh

6n

n n

→∞

× + + = +

( ) ( ) ( )

( )3

3 2 1 0 2 05 2

6

+ += +

= 8 + 10

= 18