(2) Heat Conduction Equation S2 2014-2015

download (2) Heat Conduction Equation S2 2014-2015

of 24

Transcript of (2) Heat Conduction Equation S2 2014-2015

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    1/55

     

    (2) H ea t ondu c t ion Equa t ionby 

     Assoc Prof Leong Kai ChoongSchool of Mechanical and Aerospace Engineering

    MA3003 Heat TransferSemester 2, AY 2014-2015

    Read Chapter 2 of textbook

    before these lecture slides

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    2/55

    2

     At the end of these lectures, you should be able to

    understand multidimensionality and time dependence of

    heat transfer, and the conditions under which a heattransfer problem can be approximated as being one-

    dimensional,

    derive the heat conduction equation in various

    coordinate systems and simplify it for the steady-stateone-dimensional case,

    identify the thermal conditions at the boundaries of solids

    and express them mathematically as boundary or initial

    conditions, and appreciate the different solution methods for simple and

    complex heat conduction problems.

    Learning Objectives

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    3/55

    3

    Scope of these lectures

    • Basic Concepts• Fourier’s Law as a Vector Equation

    • Derivation of the Heat Conduction Equation

    • Boundary and Initial Conditions

    • Formulation of Heat Conduction Problems

    • Introduction to Solution Methods

    Note that unless otherwise indicated, figures are taken from the prescribed

    textbook, Çengel, Y.A., and Ghajar, A.J., Heat and Mass Transfer:Fundamentals and Applications, 5th Ed. (SI Units), McGraw-Hill, 2015.

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    4/55

    4

    Basic Concepts

    Temperature & Heat Transfer – Scalar & Vector

    quantities

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    5/55

    5

    Coordinate Systems

    or Cartesian coordinates

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    6/55

    6

    Steady (or steady-state) versus Transient Heat

    Transfer

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    7/55

    7

    Fourier’s Law as a Vector Equation

    For an isotropic material, for which the thermal

    conductivity is the same in all directions, Fourier’slaw in Cartesian coordinates is 

    )1(....;;

     z

    T k q

     y

    T k q

     x

    T k q  z y x

    ∂−=

    ∂−=

    ∂−=  

    where 

     x x,y,z,t T  x

     xq x

    torespectwith)(of derivative partial

    directionincomponentfluxheat

    =∂

    =

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    8/55

    8

    T k ∇−=q

    =∇T  Gradient of scalar temp. field 

    zyx   qkq jqiq     ++=

    In vector form, Eq. (1) can be written more

    compactly as 

    where  =q Conduction heat flux vector  

    In Cartesian coordinates 

     z

     y

     x

    T T 

    ∂∂

    +∂∂

    +∂∂

    =∇   k ji

    where i,  j and k are the unit vectors in the x, y 

    and z directions, respectively. 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    9/55

    9

    Vector representation of Fourier’s Law

    q  yq

    q

    q

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    10/55

    10

    Heat Transfer Vectors and Isotherms

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    11/55

    11

    Derivation of Heat ConductionEquation in Cartesian coordinates 

    Source: Incropera et al. (2013) with change of symbols

     xQ

    dx xQ +

    dz zQ +

    dy yQ +

     yQ

     zQ

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    12/55

    12

    Energy balance: 

    Rate of heat rate conducted into solid + rate of

    heat rate generated inside solid - rate of heatconducted out of solid = rate of increase of

    internal energy (or rate of heat stored)

    ( )

    ( )   ( ) .......(2) 

    of formsimplified 

    dxdydz

    T cQQQ

    dxdydzeQQQdt

    dE  E  E  E  E 

     pdz zdy ydx x

    gen z y x

    system

    st out genin

    ∂ρ=++−

    +++

     

     

     

     =−+

    +++ 

    genewhere = rate of heat generation per unit

    volume (W/m3) 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    13/55

    13

    Rate of heat conducted into solid across face at x is

    Using Taylor series expansion and neglecting

    higher order terms, the rate of heat conducted outof the solid at x + dx is

    ( ) ( ) ...3

    3

    32

    2

    2

    +∂

    +∂

    +∂

    +=+   dx x

    Q

    dx x

    Q

    dx x

    Q

    QQ

      x x x

     xdx x

    ( )dxdydz xT 

    k  xdx x

    Q

    QQ  x

    dx x x    

      

     ∂

    −∂

    −=∂

    −=−   +

    Using Fourier’s law, net heat inflow in  x direction

     xQ

    Negligible

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    14/55

    14

    Do the same for y and z directions.

    Net heat conduction into volume = 

    ( )dxdydz z

    T k 

     z y

    T k 

     y x

    T k 

     x 

     

      

     ∂∂

    ∂∂

      

     

    ∂∂

    ∂∂

      

     ∂∂

    ∂∂

    gene

    ( )dxdydzegen

    Rate of heat generation within elemental

    volume = 

    where = rate of heat generation per unit

    volume (W/m3) 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    15/55

    15

    )3...(t 

    T ce

     z

    T k 

     z y

    T k 

     y x

    T k 

     x  pgen ∂

    ∂ρ=+  

      

    ∂∂

    ∂∂+

      

      

    ∂∂

    ∂∂+

      

      

    ∂∂

    ∂∂

    Substituting in Equation (2) and dividing

    throughout by dxdydz,

    - general form of heat conduction equation in

    Cartesian coordinates.If k  is not a function of temperature and position,

    ydiffusivit thermalwhere

    .....(4) 1

    2

    2

    2

    2

    2

    2

     p

    gen

    c

    e

     z

     y

     x

    ρ=α

    ∂∂

    α=+

    ∂∂

    +∂∂

    +∂∂  

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    16/55

    16

    Thermal Diffusivityα

    Table 1: Thermal diffusivity of typical materials

     Averagetemperature

    °C

    Diffusivity

    α × 106 

    m

    2

    /sCopper 0 114.1Zinc 0 41.3

    Brick, fireclay 204 0.516Rubber, soft 0.077

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    17/55

    17

    Table 2: Effect of thermal diffusivity on the

    rate of heat propagation

    Material Silver Copper Steel Glassα × 106

    m2/s

    170 103 12.9 0.59

    Time 9.5min

    16.5min

    2.2 h 2.00days

    Semi-infinite medium initially at T i = 100°C.

    Surface x = 0 suddenly lowered to 0°C. What

    is the time taken for x = 30 cm to reach 50°C ? x = 30 cm

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    18/55

    18

    Expressing the heat conduction equation for

    constant k  in compact form using the Laplacianoperator  ∇2,  we have

    ......(5) 12

    eT 

      gen

    ∂∂

    α=+∇  

    In Cartesian coordinates,

    2

    2

    2

    2

    2

    22

     z y x   ∂∂+

    ∂∂+

    ∂∂=∇

    EquationsFourier'(6)..... 1

    ,0For

    2

    2

    2

    2

    2

    2

     z

     y

     x

    egen

    ∂∂

    α=∂∂

    +∂∂

    +∂∂

    =

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    19/55

    19

    const 

    0 i.e.

    0

    (3),Eq.fromcaseD-1For

    Equations Laplace'(7).... 0

    ,conditionsgenerationheatnoand state-steadyFor

    2

    2

    2

    2

    2

    2

    =⇒

    =

      

     

    =

    ∂+

    ∂+

     x

     x

    q

    dx

    qd 

    dx

    dT k 

    dx

     z

     y

     x

    Pi Si L l

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    20/55

    20

    Pierre-Simon LaplaceBorn: 23-Mar-1749 (son of a farm-

    labourer )

    Birthplace: Beaumont-en-Auge,

    Normandy, FranceFather: Farmer

    Died: 5-Mar-1827

    Location of death:  Paris, France

    Cause of death: unspecified

    Occupation: Mathematician,

    Politician.

    Jean le Rond d'Alembert was his

    “mentor”.

    Fourier was his student. At 27, he was called “the Newton of

    France”

    Source: http://www.nndb.com/people/871/000031778/ 

    http://www.nndb.com/people/871/000031778/http://www.nndb.com/people/871/000031778/

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    21/55

    21

    Cylindrical Coordinate System 

    dz zQ +

     zQ

    r Q

    φQ

    φ+φ   d Q

    dr r Q +

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    22/55

    22

    Spherical Coordinate System 

    θ+θ   d Q

    θQ

    r Q

    φQ

    φ+φ   d Q

    dr r Q +

    General Heat Conduction Equations

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    23/55

    23

    General Heat Conduction Equations

    Cartesian coordinates:

    Cylindrical coordinates:

    Spherical coordinates:

    ce z

    k  z y

    k  y x

    k  x   pgen ∂

    ρ=+ 

     

     

     

     

     

     

     

     

     

     112

    T ce

     z

    T k 

     z

    T k 

    r r 

    T kr 

    r r 

      pgen

    ∂ρ=+

     

     

     

     

    ∂+

     

     

     

     

    φ∂

    φ∂

    ∂+

     

     

     

     

    T ce

    T k 

    T k 

    r r 

    T kr 

    r r   pgen ∂

    ∂ρ=+

     

     

     

     ∂θ

    ∂θ

    θ∂

    θ+

     

     

     

     

    ∂φ

    ∂φ

    θ+

     

     

     

     ∂

    ∂sin

    sin

    1

    sin

    11222

    2

    2

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    24/55

    30

    Boundary ConditionsBoundary conditions for the heat conduction

    equation at surface x = 0 

    1. Constant surface

    temperature 

    (First-kind or Dirichlet *)

    sT t T    =),0(

    * Johann Peter Gustav Lejeune Dirichlet Born: 13 Feb 1805 in Düren, FrenchEmpire (now Germany), Died: 5 May 1859 in Göttingen, Hanover (now Germany).Studied under Georg Ohm and provided proof of Fermat’s Last Theorem. 

    Specified or prescribed

    temperature

    No three positive integers  a, b, and  c can satisfy the equation

     a n + b n = c n for any integer value of n greater than 2.

    2 C t t f h t f l

    http://en.wikipedia.org/wiki/Positive_numberhttp://en.wikipedia.org/wiki/Integerhttp://en.wikipedia.org/wiki/Integerhttp://en.wikipedia.org/wiki/Positive_number

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    25/55

    31

    2. Constant surface heat f lux 

    (Second kind or Neumann )

    (a) Finite heat flux

    s

     x

    q x

    T k    =∂∂

    −=0

    (b) Adiabatic surface 

    0

    0

    =

    = x x

    sq

      John von Neumann (December 28, 1903 – February 8,

    1957) was a Hungarian American mathematician who made

    major contributions to a vast range of fields.

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    26/55

    32

    3. Convection surface condit ion 

    (Third kind or mixed)

    ( )[ ]t T T h x

    T k 

     x

    ,00

    −=∂∂

    −   ∞=

    Note that T  at x = 0 is unknown and hence we do not

    write it as T s.

    4 R di ti b d diti (F th ki d)

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    27/55

    33

    4. Radiation boundary condition (Fourth kind) 

    ( )[ ]44 1,10

    ,0 t T T  x

    T k  surr 

     x

    −σε=∂

    ∂−

    =

    Note that T  at x = 0 is unknown and hence we do not write

    it as T s. Temperatures must be in kelvins!

    Homework: Write down the four kinds of boundary

    conditions for the surface x =  L of the plane wall. 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    28/55

    34

    5. Interface boundary conditions 

    00   x x

     B B

     x x

     A A

     x

    T k  x

    T k ==   ∂

    ∂−=∂∂−

    ( ) ( )t  xT t  xT   B A ,, 00   =

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    29/55

    35

    For block of ice melting in warm water, 

    ( )

     fs

    us

    us

    su

    hm xT k 

     xT k 

    hhm x

    T k 

     x

    T k 

    ''

    ''

    +∂∂=∂∂

    −= 

      

     

    ∂∂

    −−∂∂

    iceof fusionof heat)latent(orenthalpy- us fs   hhh   =

    skg/mof unitshasfluxMass 2'' ⋅m

    6. Phase change boundary condition 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    30/55

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    31/55

    Th l d t i t

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    32/55

    38

    Thermal and geometric symmetry

    Boundary conditions & geometrical shape are

    symmetrical about a common axis or plane.

    Hence, temp. distribution is symmetrical about

    the same axis and heat conduction analysis is

    greatly simplified.

     planeor axissymmetryat0=

     x

    Thermal & geometric symmetry

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    33/55

    39

    Thermal & geometric symmetryabout a plane wall 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    34/55

    40

    Solve for just half the wall from x = 0 to x =  L/2 withthe following boundary conditions 

    [ ]∞∞=

    =

    −=∂

    =∂∂

    T  LT h x

     x

     L x

     x

    )2/(

    2/

    0

    Surface at x = 0 may also be considered to beadiabatic (or perfectly insulated). 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    35/55

    41

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    36/55

    42

    Initial conditions

    For transient heat conduction problems,temperature of the entire solid must be known at

    some instant of time (usually t  = 0) before thesubsequent variation in temperature with time can

    be determined.For example, 

    0)0,(   T  xT    =

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    37/55

    Solution :

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    38/55

    Solution :

    Start with general heat conduction equation

    b

    ss

     x   A

    Qq

    dx

    dT k 

      ==−=0

    02

    2

    =dx

    T d where T  = T ( x)

    t T ce

     zT k 

     z yT k 

     y xT k 

     x  pgen ∂∂ρ=+     ∂∂∂∂+     ∂∂∂∂+     ∂∂∂∂

    ( )[ ]∞=

    −=−   T  LT hdx

    dT k 

     L x

    2nd Order ODE in space ⇒ two (2) boundary

    conditions

    44

    Example 2: Heating of a copper bar

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    39/55

    45

    Example 2: Heating of a copper bar  

     Assumptions: (1) 1-D in x since W  >> L and bar is long  (2)Uniform heat generation, and (3) Constant properties (k , α). 

    gene

    Source: Incropera et al. (2007) with change of symbols

    Mathematical formulation to f ind T ( x,t)?

    oi   T T   =

    Model

    Solution :

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    40/55

    Solution :

    Start with general heat conduction equation

    2nd Order PDE in space ⇒ two (2) boundary conditions

    1st Order PDE in time ⇒ one (1) initial condition 

    [ ]∞=

    −=∂∂

    −   T t  LT h x

    T k 

     L x

    ),(

    e

     x

    T    gen

    ∂∂

    α=+

    ∂∂ 1

    2

    2

    where T  = T ( x, t )

    oT  xT    =)0,(

    oT t T    =),0(

    t T ce

     zT k 

     z yT k 

     y xT k 

     x  pgen ∂∂ρ=+     ∂∂∂∂+     ∂∂∂∂+     ∂∂∂∂

    46

    gene

    Example 3: Steady-state heat

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    41/55

    47

    Example 3: Steady state heatconduction across a circular pipe

    ∞T 

    Inside surface of circular pipe of inside radius r 1,outside radius r 2, and thermal conductivity k  is

    maintained at T i by flowing steam. The outsidesurface dissipates heat by convection with a heat

    transfer coefficient h into ambient air attemperature 

    Develop the mathematical formulation of the

    problem of determining the steady-state heatconduction across the pipe. 

    St t ith l h t d ti ti

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    42/55

    48

    For 1-D, steady-state, constant k  and no heat generation, 

    constantor  01

    =∂∂

      

     ∂∂

    ∂∂

    T r 

    T r 

    r r 

    Constant temperature boundary condition on inner

    surface 1at   r r T T  i   ==

    ( )[ ] 22 at2

    r r T r T hdr 

    dT k 

    r r 

    =−=−   ∞=

    Convection boundary condition on outer surface 

    T ce

     z

    T k 

     z

    T k 

    r r 

    T kr 

    r r 

      pgen

    ∂ρ=+

     

     

     

     

    ∂+

     

     

     

     

    φ∂

    φ∂

    ∂+

     

     

     

     

    2

    11

    Start with general heat conduction equation, 

    Example 4: Transient heat

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    43/55

    49

    Example 4: Transient heatconduction across a plane wall

     A plane wall of thickness L with constant thermal

    properties is initially at uniform temperature T 0  . At

    time t  = 0, the surface at x = L is subjected toheating by a flow of hot gas at temperature

    while the surface at x = 0 is kept perfectly insulated(adiabatic). The heat transfer coefficient between

    the hot gas and the surface is h. There is no energygeneration within the wall. 

    ∞T 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    44/55

    50

    Schematic of plane wall example

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    45/55

    51

    Develop the mathematical formulation of the

    problem of determining the unsteady heatconduction across the plane wall.

    Do not solve the problem. 

    Solution: 

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    46/55

    52

    1-D, time-dependent problem with constant

    thermal properties and no heat generation.

    [ ]

    ( )   xT  xT ndition Initial co

    t  L xT  LT h

     x

    T k 

    t  x x

    onditions Boundary c

    t  L xt 

     x

    equational Differenti

     L x

     x

     allfor0,:

    0 ,at)(

    0,0at0

    :

    0,0for1

    :

    0

    0

    2

    2

    =

    >=−=∂

    ∂−

    >==∂∂

    >

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    47/55

    53

    radiation from a metal ball

     A spherical metal ball of radius r o is heated to a

    certain temperature T i and is then taken out of theoven to cool in ambient air at temperature . The

    thermal conductivity of the ball material is k  and the

    heat transfer coefficient on the outer surface is h.The emissivity of the ball surface is ε and the

    temperature of the surroundings is T surr . There is no

    energy generation within the wall. Develop the

    mathematical formulation of the problem. 

    ∞T 

    Start with general heat conduction equation, 

    TTTT ∂ ∂∂ ∂∂ ∂∂ 111

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    48/55

    54

    ( )[ ]   ( )[ ]44 surr oor r  T r T T r T hr T 

    k o

    −εσ+−=∂

    ∂−   ∞

    =

    Convection & radiation boundary

    condition on outer surface 

    T ce

    T k 

    T k 

    r r 

    T kr 

    r r   pgen ∂

    ∂ρ=+

     

      

     ∂θ

    ∂θ

    θ∂

    θ+

     

      

     

    ∂φ

    ∂φ

    θ+

     

      

     ∂

    ∂sin

    sin

    1

    sin

    11222

    2

    2

    For transient conduction, constant k  and no heatgeneration, 

    T r 

    r r    ∂

    α=

     

      

     

    ∂ 11 22

     At the inner surface  00=∂∂ =r r 

    Initial condit ion:  iT r T    =)0,(

    Thermal & geometric

    symmetry

    Boundary

    Conditions:

    Example 6: Combined convection,radiation and heat flux

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    49/55

    55

    radiation and heat flux

    ( )[ ]   ( )[ ]   solar sky L x qT  LT T  LT hdxdT k    α−−σε+−=−   ∞=  44

    222

    ( )[ ]0110

    T T hdx

    dT k 

     x

    −=−   ∞=

    Boundary condit ions on inner and

    outer surfaces of house?

    T sky = effective sky temperature (here it

    includes sky, ground and surrounding

    structures); = incident solar heat flux

    Steady-state, one-dimensional problem

    with boundary conditions

    solar q

    Basic Steps in the Solution of HeatTransfer Problems

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    50/55

    56

    Transfer Problems

    Solution Methods

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    51/55

    57

    Mainly grouped under

    (1)  Analytical methods 

    e.g. separation of variables & transform methods

    Requires

    1.simple geometry

    2.boundary conditions to be of simple mathematical

    forms, and

    3.constant thermophysical properties.

    (2) Numerical methods e.g. finite difference & finite element methods

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    52/55

    58

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    53/55

    59

    Note the limitations of analytical methods.

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    54/55

    60

    You may wish to read more about the finite difference

    method in Chapter 5 of Çengel and Ghajar (2011).

    Some Review Questions

  • 8/9/2019 (2) Heat Conduction Equation S2 2014-2015

    55/55

    61

    1. How does transient heat transfer differ from steady state heat

    transfer?

    2. How does one-dimensional heat transfer differ from two-dimensional heat transfer?

    3. Which property of a material determines (a) the amount of

    heat it can store per unit volume, (b) the heat it can conduct

    under steady-state conditions, and (c) the rate at which it willreact to transient temperature changes?

    4. What physical principles are represented by the general heat

    conduction equation?

    5. What are the typical boundary conditions for heatconduction? Read Chapter 2: Sections 2-5, 2-6 and 2-7 and

    Chapter 3: Sections 3-1 to 3-5 of the textbook

    before the next lecture!