univie.ac.at · 2 Abstract and Applied Analysis We use Π...

21
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 695183, 20 pages doi:10.1155/2012/695183 Research Article The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces Rabian Wangkeeree and Pakkapon Preechasilp Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand Correspondence should be addressed to Rabian Wangkeeree, [email protected] Received 5 August 2012; Accepted 12 December 2012 Academic Editor: Abdelaziz Rhandi Copyright q 2012 R. Wangkeeree and P. Preechasilp. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature. 1. Introduction Let E be a normed linear space. Let T be a self-mapping on E. Then T is said to be asymptotically nonexpansive if there exists a sequence {k n }⊂ 1, with lim n →∞ k n 1 such that for each x, y E, T n x T n y k n x y , n 1. 1.1 The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk 1 as an important generalization of the class of nonexpansive maps i.e., mappings T : E E such that Tx Tyx y, for all x, y E. We use FT to denote the set of fixed points of T , that is, FT {x E : Tx x}. A self-mapping f : E E is a contraction on E if there exists a constant α 0, 1 such that f x f ( y ) α x y , x, y E. 1.2

Transcript of univie.ac.at · 2 Abstract and Applied Analysis We use Π...

Page 1: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2012, Article ID 695183, 20 pagesdoi:10.1155/2012/695183

Research ArticleThe General Iterative Methods for AsymptoticallyNonexpansive Semigroups in Banach Spaces

Rabian Wangkeeree and Pakkapon Preechasilp

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Correspondence should be addressed to Rabian Wangkeeree, [email protected]

Received 5 August 2012; Accepted 12 December 2012

Academic Editor: Abdelaziz Rhandi

Copyright q 2012 R. Wangkeeree and P. Preechasilp. This is an open access article distributedunder the Creative Commons Attribution License, which permits unrestricted use, distribution,and reproduction in any medium, provided the original work is properly cited.

We introduce the general iterative methods for finding a common fixed point of asymptoticallynonexpansive semigroups which is a unique solution of some variational inequalities. We provethe strong convergence theorems of such iterative scheme in a reflexive Banach space which admitsa weakly continuous duality mapping. The main result extends various results existing in thecurrent literature.

1. Introduction

Let E be a normed linear space. Let T be a self-mapping on E. Then T is said to beasymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with limn→∞kn = 1 suchthat for each x, y ∈ E,

∥∥Tnx − Tny

∥∥ ≤ kn

∥∥x − y

∥∥, ∀n ≥ 1. (1.1)

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk [1] as animportant generalization of the class of nonexpansive maps (i.e., mappings T : E → E suchthat ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ E). We use F(T) to denote the set of fixed points ofT , that is, F(T) = {x ∈ E : Tx = x}. A self-mapping f : E → E is a contraction on E if thereexists a constant α ∈ (0, 1) such that

∥∥f(x) − f

(

y)∥∥ ≤ α

∥∥x − y

∥∥, ∀x, y ∈ E. (1.2)

Page 2: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

2 Abstract and Applied Analysis

We useΠE to denote the collection of all contractions onE. That is,ΠE = {f : f is a contractionon E}.

A family S = {T(s) : 0 ≤ s < ∞} of mappings of E into itself is called a strongly con-tinuous semigroup of Lipschitzian mappings on E if it satisfies the following conditions:

(i) T(0)x = x for all x ∈ E;

(ii) T(s + t) = T(s)T(t) for all s, t ≥ 0;

(iii) for each t > 0, there exists a bounded measurable function Lt : (0,∞) → [0,∞)such that ‖T(t)x − T(t)y‖ ≤ Lt‖x − y‖, for all x, y ∈ E;

(iv) for all x ∈ E, the mapping t → T(t)x is continuous.

A strongly continuous semigroup of Lipchitszian mappings S is called strongly continuoussemigroup of nonexpansive mappings if Lt = 1 for all t > 0 and strongly continuous semigroup ofasymptotically nonexpansive if lim supt→∞Lt ≤ 1. Note that for asymptotically nonexpansivesemigroup S, we can always assume that the Lipchitszian constant {Lt}t>0 is such that Lt ≥ 1for each t > 0, Lt is nonincreasing in t, and limn→∞Lt = 1; otherwise we replace Lt, for eacht > 0, with Lt := max{sups≥tLs, 1}. We denote by F(S) the set of all common fixed points of S,that is,

F(S) := {x ∈ E : T(t)x = x, 0 ≤ t < ∞} =⋂

t≥0F(T(t)). (1.3)

S is called uniformly asymptotically regular on C [2, 3] if for all h ≥ 0 and any bounded subsetB of C,

limt→∞

supx∈B

‖T(h)T(t)x − T(t)x‖ = 0, (1.4)

and almost uniformly asymtotically regular on C [4] if

limt→∞

supx∈B

∥∥∥∥∥T(h)

1t

∫ t

0T(s)x ds − 1

t

∫ t

0T(s)x ds

∥∥∥∥∥= 0. (1.5)

Let u ∈ C. Then, for each t ∈ (0, 1) and for a nonexpansive map T , there exists a uniquepoint xt ∈ C satisfying the following condition:

xt = (1 − t)Txt + tu, (1.6)

since the mapping Gt(x) = (1 − t)Tx + tu is a contraction. When H is a Hilbert space and Tis a self-map, Browder [5] showed that {xt} converges strongly to an element of F(T) whichis nearest to u as t → 0+. This result was extended to more various general Banach space byMorales and Jung [6], Takahashi and Ueda [7], Reich [8], and a host of other authors.

Many authors (see, e.g., [9, 10]) have also shown the convergence of the path xn =(1 − αn)Tnxn + αnu, in Banach spaces for asymptotically nonexpansive mapping self-map Tunder some conditions on αn.

Page 3: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 3

It is an interesting problem to extend the above results to a strongly continuous semi-group of nonexpansive mappings and a strongly continuous semigroup of asymptoticallynonexpansive mappings.

Let S be a strongly continuous semigroup of nonexpansive self-mappings. In 1998Shioji and Takahashi [11] introduced, in Hilbert space, the implicit iteration

un = (1 − αn)1tn

∫ tn

0T(s)un ds + αnu, u ∈ C, n ≥ 0, (1.7)

where {αn} is a sequence in (0, 1), {tn} is a sequence of positive real numbers divergentto ∞. Under certain restrictions to the sequence {αn}, Shioji and Takahashi proved strongconvergence of (1.7) to a member of F(S). Recently, Zegeye et al. [4] introduced theimplicit (1.7) and the following explicit iteration process for a semigroup of asymptoticallynonexpansive mappings:

un+1 = (1 − αn)1tn

∫ tn

0T(s)un ds + αnu, u ∈ C, n ≥ 0, (1.8)

where tn ∈ R+ and αn ∈ (0, 1) in a reflexive strictly convex Banach space with a uniformly

Gateaux differentiable norm. Suppose, in addition, that S is almost uniformly asymptoticallyregular. Then the implicit sequence (1.7) and explicit sequence (1.8) converge strongly to apoint of F(S).

On the other hand, by a gauge function ϕ we mean a continuous strictly increasingfunction ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Let E∗ be the dualspace of E. The duality mapping Jϕ : E → 2E

∗associated to a gauge function ϕ is defined by

Jϕ(x) ={

f∗ ∈ E∗ :⟨

x, f∗⟩ = ‖x‖ϕ(‖x‖), ∥∥f∗∥∥ = ϕ(‖x‖)}, ∀x ∈ E. (1.9)

In particular, the duality mapping with the gauge function ϕ(t) = t, denoted by J , isreferred to as the normalized duality mapping. Clearly, there holds the relation Jϕ(x) =(ϕ(‖x‖)/‖x‖)J(x) for all x /= 0 (see [12]). Browder [12] initiated the study of certain classesof nonlinear operators by means of the duality mapping Jϕ. Following Browder [12], we saythat a Banach space E has a weakly continuous duality mapping if there exists a gauge ϕ forwhich the duality mapping Jϕ(x) is single valued and continuous from the weak topologyto the weak∗ topology; that is, for any {xn} with xn ⇀ x, the sequence {Jϕ(xn)} convergesweakly∗ to Jϕ(x). It is known that lp has a weakly continuous duality mapping with a gaugefunction ϕ(t) = tp−1 for all 1 < p < ∞. Set

Φ(t) =∫ t

0ϕ(τ)dτ, ∀t ≥ 0, (1.10)

then

Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ E, (1.11)

where ∂ denotes the subdifferential in the sense of convex analysis.

Page 4: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

4 Abstract and Applied Analysis

In a Banach space E having a weakly continuous duality mapping Jϕ with a gaugefunction ϕ, an operator A is said to be strongly positive [13] if there exists a constant γ > 0with the property

Ax, Jϕ(x)⟩ ≥ γ‖x‖ϕ(‖x‖), (1.12)

∥∥αI − βA

∥∥ = sup

‖x‖≤1

∣∣⟨(

αI − βA)

x, Jϕ(x)⟩∣∣, α ∈ [0, 1], β ∈ [−1, 1], (1.13)

where I is the identity mapping. If E := H is a real Hilbert space, then the inequality (1.12)reduces to

〈Ax, x〉 ≥ γ‖x‖2 ∀x ∈ H. (1.14)

A typical problem is to minimize a quadratic function over the set of the fixed points of anonexpansive mapping on a real Hilbert space H:

minx∈C

12〈Ax, x〉 − 〈x, b〉, (1.15)

where C is the fixed point set of a nonexpansive mapping T on H and b is a given pointin H. In 2009, motivated and inspired by Marino and Xu [14], Li et al. [15] introduced thefollowing general iterative procedures for the approximation of common fixed points of aone-parameter nonexpansive semigroup {T(s) : s ≥ 0} on a nonempty closed convex subsetC in a Hilbert space:

yn = αnγf(

yn

)

+ (I − αnA)1tn

∫ tn

0T(s)yn ds, n ≥ 0,

xn+1 = αnγf(xn) + (I − αnA)1tn

∫ tn

0T(s)xn ds, n ≥ 0,

(1.16)

where {αn} and {tn} are sequences in [0, 1] and (0,∞), respectively, A is a strongly positivebounded linear operator on H, and f is a contraction on H. And their convergencetheorems can be proved under some appropriate control conditions on parameter {αn} and{tn}. Furthermore, by using these results, they obtained two mean ergodic theorems fornonexpansive mappings in a Hilbert space.

All of the above brings us to the following conjectures.

Question 1. Could we obtain strong convergence theorems for the general class of stronglycontinuous semigroup of asymptotically nonexpansive mappings in more general Banachspaces? such as a reflexive Banach space which admits a weakly continuous duality mappingJϕ, where ϕ : [0,∞) → [0,∞) is a gauge function.

In this paper, inspired and motivated by Shioji and Takahashi [11], Zegeye et al. [4],Marino and Xu [14], Li et al. [15], and Wangkeeree et al. [13], we prove the strong con-vergence theorems of the iterative approximation methods (1.16) for the general class of

Page 5: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 5

the strongly continuous semigroup of asymptotically nonexpansive mappings in a reflexiveBanach space which admits a weakly continuous duality mapping Jϕ, where ϕ : [0,∞) →[0,∞) is a gauge function and A is a strongly positive bounded linear operator on a Banachspace E. The results in this paper generalize and improve some well-known results in Shiojiand Takahashi [11], Li et al. [15], and many others.

2. Preliminaries

Throughout this paper, let E be a real Banach space and E∗ be its dual space. We write xn ⇀ x(resp., xn⇀

∗x) to indicate that the sequence {xn} weakly (resp., weak∗) converges to x; asusual xn → x will symbolize strong convergence. Let U = {x ∈ E : ‖x‖ = 1}. A Banach spaceE is said to uniformly convex if, for any ε ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ U,‖x − y‖ ≥ ε implies ‖(x + y)/2‖ ≤ 1 − δ. It is known that a uniformly convex Banach space isreflexive and strictly convex (see also [16]). A Banach space E is said to be smooth if the limitlimt→ 0((‖x + ty‖ − ‖x‖)/t) exists for all x, y ∈ U. It is also said to be uniformly smooth if thelimit is attained uniformly for x, y ∈ U.

Now we collect some useful lemmas for proving the convergence result of this paper.The first part of the next lemma is an immediate consequence of the subdifferential

inequality and the proof of the second part can be found in [10].

Lemma 2.1 (see [10]). Assume that a Banach space E has a weakly continuous duality mapping Jϕwith gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

Φ(∥∥x + y

∥∥) ≤ Φ(‖x‖) + ⟨

y, Jϕ(

x + y)⟩

. (2.1)

In particular, for all x, y ∈ E,

∥∥x + y

∥∥2 ≤ ‖x‖2 + 2

y, J(

x + y)⟩

. (2.2)

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E.

Then the following identity holds:

lim supn→∞

Φ(∥∥xn − y

∥∥)

= lim supn→∞

Φ(‖xn − x‖) + Φ(∥∥y − x

∥∥)

, ∀x, y ∈ E. (2.3)

The next valuable lemma is proved for applying our main results.

Lemma 2.2 (see [13, Lemma 3.1]). Assume that a Banach space E has a weakly continuous dualitymapping Jϕ with gauge ϕ. Let A be a strong positive linear bounded operator on E with coefficientγ > 0 and 0 < ρ ≤ ϕ(1)‖A‖−1. Then ‖I − ρA‖ ≤ ϕ(1)(1 − ργ).

In the following, we also need the following lemma that can be found in the existingliterature [17, 18].

Page 6: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

6 Abstract and Applied Analysis

Lemma 2.3 (see [18, Lemma 2.1]). Let {an} be a sequence of a nonnegative real number satisfyingthe property

an+1 ≤(

1 − γn)

an + γnβn, n ≥ 0, (2.4)

where {γn} ⊆ (0, 1) and {βn} ⊆ R such that∑∞

n=0 γn = ∞ and lim supn→∞ βn ≤ 0. Then {an}converges to zero, as n → ∞.

3. Main Theorem

Theorem 3.1. Let E be a reflexive Banach space which admits a weakly continuous duality mappingJϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let S = {T(s) : s ≥ 0} be a strongly continuoussemigroup of asymptotically nonexpansive mappings on E with a sequence {Lt} ⊂ [1,∞) andF(S)/= ∅. Let f ∈ ΠE with coefficient α ∈ (0, 1), let A be a strongly positive bounded linear operatorwith coefficient γ > 0 and 0 < γ < ϕ(1)γ/α, and let {αn} and {tn} be sequences of real numbers suchthat 0 < αn < 1, tn > 0. Then the following holds.

(i) If ((1/tn)∫ tn0 Ls ds−1)/αn < ϕ(1)γ − γα, for all n ≥ 0, then there exists a sequence {yn} ⊂

E defined by

yn = αnγf(

yn

)

+ (I − αnA)1tn

∫ tn

0T(s)yn ds, n ≥ 0. (3.1)

(ii) Suppose, in addition, that S is almost uniformly asymptotically regular and the realsequences {αn} and {tn} satisfy the following conditions:

(B1) limn→∞ tn = ∞;(B2) limn→∞ αn = 0;(B3) limn→∞((1/tn)

∫ tn0 Ls ds − 1)/αn = 0.

Then {yn} converges strongly as n → ∞ to a common fixed point x in F(S) which solves thevariational inequality:

⟨(

A − γf)

x, Jϕ(x − z)⟩ ≤ 0, z ∈ F(S). (3.2)

Proof. We first show the uniqueness of a solution of the variational inequality (3.2). Supposeboth x ∈ F(S) and x∗ ∈ F(S) are solutions to (3.2), then

⟨(

A − γf)

x, Jϕ(x − x∗)⟩ ≤ 0,

⟨(

A − γf)

x∗, Jϕ(x∗ − x)⟩ ≤ 0.

(3.3)

Adding (3.3), we obtain

⟨(

A − γf)

x − (

A − γf)

x∗, Jϕ(x − x∗)⟩ ≤ 0. (3.4)

Page 7: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 7

Noticing that for any x, y ∈ E,

⟨(

A − γf)

x − (

A − γf)

y, Jϕ(

x − y)⟩

=⟨

A(

x − y)

, Jϕ(

x − y)⟩ − γ

f(x) − f(

y)

, Jϕ(

x − y)⟩

≥ γ∥∥x − y

∥∥ϕ

(∥∥x − y

∥∥) − γ

∥∥f(x) − f

(

y)∥∥∥∥Jϕ

(

x − y)∥∥

≥ γΦ(∥∥x − y

∥∥) − γαΦ

(∥∥x − y

∥∥)

=(

γ − γα)

Φ(∥∥x − y

∥∥)

≥ (

γϕ(1) − γα)

Φ(∥∥x − y

∥∥) ≥ 0.

(3.5)

Therefore x = x∗ and the uniqueness is proved. Below, we use x to denote the unique solutionof (3.2).

Since limn→∞ αn = 0, we may assume, without the loss of generality, that αn <ϕ(1)‖A‖−1.

For each integer n ≥ 0, define a mapping Gn : E → E by

Gn

(

y)

= αnγf(

y)

+ (I − αnA)1tn

∫ tn

0T(s)y ds, ∀y ∈ E. (3.6)

We show that Gn is a contraction mapping. For any x, y ∈ E,

∥∥Gn(x) −Gn

(

y)∥∥

=

∥∥∥∥∥αnγf(x) + (I − αnA)

1tn

∫ tn

0T(s)x ds − αnγf

(

y) − (I − αnA)

1tn

∫ tn

0T(s)y ds

∥∥∥∥∥

≤ ∥∥αnγ

(

f(x) − f(

y))∥∥ +

∥∥∥∥∥(I − αnA)

(

1tn

∫ tn

0T(s)x ds − 1

tn

∫ tn

0T(s)y ds

)∥∥∥∥∥

≤ αnγα∥∥x − y

∥∥ + ϕ(1)

(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

∥∥x − y

∥∥

=

(

αnγα + ϕ(1)1tn

∫ tn

0Ls ds − ϕ(1)αnγ

1tn

∫ tn

0Ls ds

)

∥∥x − y

∥∥

≤(

1tn

∫ tn

0Ls ds − αn

(

ϕ(1)γ1tn

∫ tn

0Ls ds − γα

))

∥∥x − y

∥∥.

(3.7)

Since 0 < ((1/tn)∫ tn0 Ls ds − 1)/αn < ϕ(1)γ − γα, we have

0 <(1/tn)

∫ tn0 Ls ds − 1αn

< ϕ(1)γ − γα ≤ ϕ(1)γ1tn

∫ tn

0Ls ds − γα. (3.8)

Page 8: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

8 Abstract and Applied Analysis

It then follows that 0 < ((1/tn)∫ tn0 Ls ds − αn(ϕ(1)γ(1/tn)

∫ tn0 Ls ds − γα)) < 1. We have Gn is

a contraction map with coefficient ((1/tn)∫ tn0 Ls ds − αn(ϕ(1)γ(1/tn)

∫ tn0 Ls ds − γα)). Then, for

each n ≥ 0, there exists a unique yn ∈ E such that Gnyn = yn, that is,

yn = αnγf(

yn

)

+ (I − αnA)1tn

∫ tn

0T(s)yn ds, n ≥ 0. (3.9)

Hence (i) is proved.(ii) We first show that {yn} is bounded. Letting p ∈ F(S) and using Lemma 2.2, we

can calculate the following:

∥∥yn − p

∥∥ =

∥∥∥∥∥αnγf

(

yn

)

+ (I − αnA)1tn

∫ tn

0T(s)yn ds − p

∥∥∥∥∥

=

∥∥∥∥∥αnγf

(

yn

) − αnγf(

p)

+ αnγf(

p)

+ (I − αnA)1tn

∫ tn

0T(s)yn ds − (I − αnA)p − (αnA)p

∥∥∥∥∥

≤ αnγ∥∥f

(

yn

) − f(

p)∥∥ + αn

∥∥γf

(

p) −A

(

p)∥∥

+ ϕ(1)(

1 − αnγ)

∥∥∥∥∥

1tn

∫ tn

0T(s)yn ds − 1

tn

∫ tn

0T(s)p ds

∥∥∥∥∥

≤ αnγα∥∥yn − p

∥∥ + αn

∥∥γf

(

p) −A

(

p)∥∥ + ϕ(1)

(

1 − αnγ) 1tn

∫ tn

0Lsds

∥∥yn − p

∥∥

≤ αnγα∥∥yn − p

∥∥ + αn

∥∥γf

(

p) −A

(

p)∥∥ + ϕ(1)

1tn

∫ tn

0Ls ds

∥∥yn − p

∥∥

− ϕ(1)αnγ1tn

∫ tn

0Ls ds

∥∥yn − p

∥∥

≤ αnγα∥∥yn − p

∥∥ + αn

∥∥γf

(

p) −A

(

p)∥∥ +

1tn

∫ tn

0Ls ds

∥∥yn − p

∥∥

− ϕ(1)αnγ1tn

∫ tn

0Ls ds

∥∥yn − p

∥∥.

(3.10)

Thus, we get that

∥∥yn − p

∥∥ ≤ αn

∥∥γf

(

p) −A

(

p)∥∥

1 − αnγα − (1/tn)∫ tn0 Ls + ϕ(1)αnγ(1/tn)

∫ tn0 Ls ds

. (3.11)

Page 9: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 9

Calculating the right-hand side of the above inequality, we have

αn

∥∥γf

(

p) −A

(

p)∥∥

1 − αnγα − (1/tn)∫ tn0 Ls + ϕ(1)αnγ(1/tn)

∫ tn0 Ls ds + ϕ(1)αnγ

=αn

∥∥γf

(

p) −A

(

p)∥∥

1 − αnγα − (1/tn)∫ tn0 Ls + ϕ(1)αnγ(1/tn)

∫ tn0 Ls ds + ϕ(1)αnγ − ϕ(1)αnγ

=αn

∥∥γf

(

p) −A

(

p)∥∥

ϕ(1)αnγ − αnαγ + 1 − (1/tn)∫ tn0 Ls ds + ϕ(1)αnγ(1/tn)

∫ tn0 Ls ds − ϕ(1)αnγ

=αn

∥∥γf

(

p) −A

(

p)∥∥

αn

(

ϕ(1)γ − αγ) −

(

(1/tn)∫ tn0 Ls ds − 1

)

+ ϕ(1)αnγ(

(1/tn)∫ tn0 Ls ds − 1

)

=αn

∥∥γf

(

p) −A

(

p)∥∥

αn

(

ϕ(1)γ − αγ) − (

1 − ϕ(1)αnγ)(

(1/tn)∫ tn0 Ls ds − 1

) .

(3.12)

Thus, we get that

∥∥yn − p

∥∥ ≤

∥∥γf

(

p) −A

(

p)∥∥

(

ϕ(1)γ − αγ) − (

1 − αnγ)

dn

, (3.13)

where dn = ((1/tn)∫ tn0 Ls ds − 1)/αn. Thus, there exists N > 0 such that ‖yn − p‖ ≤

‖γf(p) − A(p)‖/(ϕ(1)γ − γα), for all n ≥ N. Therefore, {yn} is bounded and hence {f(yn)}and {(1/tn)

∫ tn0 T(s)yn ds} are also bounded.

Let δtn(yn) = (1/tn)∫ tn0 T(s)yn ds. Then, from (3.1), we get

∥∥yn − δtn

(

yn

)∥∥ = αn

∥∥γf

(

yn

) −Aδtn(

yn

)∥∥ −→ 0 as n −→ ∞. (3.14)

Since S is almost uniformly asymptotically regular and (3.14), we have

∥∥yn − T(h)yn

∥∥

≤ ∥∥yn − δtn

(

yn

)∥∥ +

∥∥δtn

(

yn

) − T(h)δtn(

yn

)∥∥ +

∥∥T(h)δtn

(

yn

) − T(h)yn

∥∥

≤ ∥∥yn − δtn

(

yn

)∥∥ +

∥∥δtn

(

yn

) − T(h)δtn(

yn

)∥∥ + Ls

∥∥δtn

(

yn

) − yn

∥∥ −→ 0.

(3.15)

It follows from the reflexivity of E and the boundedness of sequence {yn} that there exists{ynj} which is a subsequence of {yn} converging weakly to w ∈ E as j → ∞. Since Jϕ isweakly sequentially continuous, we have by Lemma 2.1 that

lim supj→∞

Φ(∥∥∥ynj − y

∥∥∥

)

= lim supj→∞

Φ(∥∥∥ynj −w

∥∥∥

)

+ Φ(∥∥y −w

∥∥)

, ∀x ∈ E. (3.16)

Page 10: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

10 Abstract and Applied Analysis

Let

H(x) = lim supj→∞

Φ(∥∥∥ynj − y

∥∥∥

)

, ∀y ∈ E. (3.17)

It follows that

H(

y)

= H(w) + Φ(∥∥y −w

∥∥)

, ∀y ∈ E. (3.18)

For h ≥ 0, from (3.15)we obtain

H(T(h)w) = lim supj→∞

Φ(∥∥∥ynj − T(h)w

∥∥∥

)

= lim supj→∞

Φ(∥∥∥T(h)ynj − T(h)w

∥∥∥

)

≤ lim supj→∞

Φ(∥∥∥ynj −w

∥∥∥

)

= H(w).(3.19)

On the other hand, however,

H(T(h)w) = H(w) + Φ(‖T(h)w −w‖). (3.20)

It follows from (3.19) and (3.20) that

Φ(‖T(h)w −w‖) = H(T(h)w) −H(w) ≤ 0. (3.21)

This implies that T(h)w = w for all h ≥ 0, and so w ∈ F(S). Next, we show that ynj → w

as j → ∞. In fact, since Φ(t) =∫ t

0 ϕ(τ)dτ , for all t ≥ 0, and ϕ : [0,∞) → [0,∞) is a gaugefunction, then for 1 ≥ k ≥ 0, ϕ(kx) ≤ ϕ(x) and

Φ(kt) =∫kt

0ϕ(τ)dτ = k

∫ t

0ϕ(kx)dx ≤ k

∫ t

0ϕ(x)dx = kΦ(t). (3.22)

Page 11: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 11

Following Lemma 2.1, we have

Φ(∥∥yn −w

∥∥)

= Φ

(∥∥∥∥∥(I − αnA)

1tn

∫ tn

0T(s)yn ds − (I − αnA)w

+αn

(

γf(

yn

) − γf(w) + γf(w) −A(w))

∥∥∥∥∥

)

≤ Φ

(∥∥∥∥∥(I − αnA)

1tn

∫ tn

0T(s)yn ds − (I − αnA)w + αnγ

(

f(

yn

) − f(w))

∥∥∥∥∥

)

+ αn

γf(w) −A(w), Jϕ(

yn −w)⟩

≤ Φ

(

ϕ(1)(

1 − αnγ)

∥∥∥∥∥

1tn

∫ tn

0T(s)yn ds − 1

tn

∫ tn

0T(s)wds

∥∥∥∥∥+ αnγα

∥∥yn −w

∥∥

)

+ αnγ⟨

f(w) − f(w), Jϕ(

yn −w)⟩

≤ Φ

(

ϕ(1)(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

∥∥yn −w

∥∥ + αnγα

∥∥yn −w

∥∥

)

+ αn

γf(w) −A(w), Jϕ(

yn −w)⟩

≤ Φ

([

ϕ(1)(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

+ αnγα

]

∥∥yn −w

∥∥

)

+ αn

γf(w) −A(w), Jϕ(

yn −w)⟩

≤[

ϕ(1)(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

+ αnγα

]

Φ(∥∥yn −w

∥∥)

+ αn

γf(w) −A(w), Jϕ(

yn −w)⟩

.

(3.23)

This implies that

Φ(∥∥yn −w

∥∥) ≤ 1

1 − ϕ(1)(

1 − αnγ)(

(1/tn)∫ tn0 Ls ds

)

+ αnγααn

γf(w) −A(w), Jϕ(

yn −w)⟩

,

(3.24)

also

Φ(∥∥yn −w

∥∥) ≤ 1

(

ϕ(1)γ − αγ) − (

1 − αnγ)

dn

γf(w) −A(w), Jϕ(

yn −w)⟩

, (3.25)

Page 12: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

12 Abstract and Applied Analysis

where dn = ((1/tn)∫ tn0 Ls ds − 1)/αn. Now observing that ynj ⇀ w implies Jϕ(ynj − w)⇀∗0,

we conclude from the above inequality that

Φ(∥∥∥ynj −w

∥∥∥

)

−→ 0 as j −→ ∞. (3.26)

Hence ynj → w as j → ∞. Next, we prove that w solves the variational inequality (3.2). Forany z ∈ F(S), we observe that

⟨(

yn − 1tn

∫ tn

0T(s)yn ds

)

−(

z − 1tn

∫ tn

0T(s)zds

)

, Jϕ(

yn − z)

=⟨

yn − z, Jϕ(

yn − z)⟩ −

1tn

∫ tn

0T(s)yn ds − 1

tn

∫ tn

0T(s)zds, Jϕ

(

yn − z)

≥ Φ(∥∥yn − z

∥∥) −

∥∥∥∥∥

1tn

∫ tn

0T(s)yn ds − 1

tn

∫ tn

0T(s)zds

∥∥∥∥∥

∥∥Jϕ

(

yn − z)∥∥

≥ Φ(∥∥yn − z

∥∥) − 1

tn

∫ tn

0Ls ds

∥∥yn − z

∥∥∥∥Jϕ

(

yn − z)∥∥

= Φ(∥∥yn − z

∥∥) − 1

tn

∫ tn

0Ls dsΦ

(∥∥yn − z

∥∥)

=

(

1 − 1tn

∫ tn

0Ls ds

)

Φ(∥∥yn − z

∥∥)

.

(3.27)

Since

yn = αnγf(

yn

)

+ (I − αnA)1tn

∫ tn

0T(s)yn ds, (3.28)

we can derive that

(

A − γf)(

yn

)

= − 1αn

(

yn − 1tn

∫ tn

0T(s)yn ds

)

+

(

A(

yn

) −A

(

1tn

∫ tn

0T(s)yn ds

))

.

(3.29)

Page 13: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 13

SinceΦ is strictly increasing and ‖yn−p‖ ≤ M for someM > 0, we haveΦ(‖yn−p‖) ≤ Φ(M).Thus

⟨(

A − γf)(

yn

)

, Jϕ(

yn − z)⟩

= − 1αn

⟨(

yn − 1tn

∫ tn

0T(s)yn ds

)

−(

z − 1tn

∫ tn

0T(s)zds

)

, Jϕ(

yn − z)

+

A(

yn

) −A

(

1tn

∫ tn

0T(s)yn ds

)

, Jϕ(

yn − z)

(

(1/tn)∫ tn0 Ls ds − 1

)

αnΦ(∥∥yn − z

∥∥)

+

A(

yn

) −A

(

1tn

∫ tn

0T(s)yn ds

)

, Jϕ(

yn − z)

(

(1/tn)∫ tn0 Ls ds − 1

)

αnΦ(M) +

A

(

yn − 1tn

∫ tn

0T(s)yn ds

)

, Jϕ(

yn − z)

.

(3.30)

Notice that

ynj −1tnj

∫ tnj

0T(s)ynj ds −→ w − 1

tnj

∫ tnj

0T(s)wds = w −w = 0. (3.31)

Now using (B3) and replacing n with nj in (3.30) and letting j → ∞, we have

⟨(

A − γf)

w, Jϕ(w − z)⟩ ≤ 0. (3.32)

So, w ∈ F(S) is a solution of the variational inequality (3.2), and hence w = x by theuniqueness. In a summary, we have shown that each cluster point of {yn} (at n → ∞) equalsx. Therefore, yn → x as n → ∞. This completes the proof.

If A ≡ I, the identity mapping on E, and γ = 1, then Theorem 3.1 reduces to thefollowing corollary.

Corollary 3.2. Let E be a reflexive Banach space which admits a weakly continuous duality mappingJϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let S = {T(s) : s ≥ 0} be a strongly continuoussemigroup of asymptotically nonexpansive mappings on E with a sequence {Lt} ⊂ [1,∞) andF(S)/= ∅. Let f ∈ ΠE with coefficient α ∈ (0, 1) and let {αn} and {tn} be sequences of real numberssuch that 0 < αn < 1 and tn > 0. Then the following holds.

(i) If (1/tn)∫ tn0 Ls ds − 1 < αn(1 − α), for all n ∈ N, then there exists a sequence {yn} defined

by

yn = αnf(

yn

)

+ (1 − αn)1tn

∫ tn

0T(s)yn ds, n ≥ 0. (3.33)

Page 14: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

14 Abstract and Applied Analysis

(ii) Suppose, in addition, that S is almost uniformly asymptotically regular and the realsequences {αn} and {tn} satisfy the following:

(B1) limn→∞ tn = ∞;(B2) limn→∞ αn = 0;(B3) limn→∞((1/tn)

∫ tn0 Ls ds − 1)/αn = 0.

Then {yn} converges strongly as n → ∞ to a common fixed point x in F(S) which solves thevariational inequality:

⟨(

I − f)

x, Jϕ(x − z)⟩ ≤ 0, z ∈ F(S). (3.34)

If E := H is a Hilbert space and S = {T(s) : s ≥ 0} is a strongly continuous semigroupof nonexpansive mappings on H, then we have Lt ≡ 1 and Theorem 3.1 reduces to thefollowing corollary.

Corollary 3.3 (see [15, Theorem 3.1]). Let H be a real Hilbert space. Suppose that f : H → H isa contraction with coefficient α ∈ (0, 1) and S = {T(s) : s ≥ 0} a strongly continuous semigroup ofnonexpansive mappings onH such that F(S)/= ∅. LetA be a strongly positive bounded linear operatorwith coefficient γ > 0 and let {αn} and {tn} be sequences of real numbers such that 0 < αn < 1, tn > 0such that limn→∞ tn = ∞ and limn→∞ αn = 0, then for any 0 < γ < γ/α, there is a unique {yn} inH such that

yn = αnγf(

yn

)

+ (I − αnA)1tn

∫ tn

0T(s)yn ds, n ≥ 0 (3.35)

and the iterative sequence {yn} converges strongly as n → ∞ to a common fixed point x in F(S)which solves the variational inequality:

⟨(

A − γf)

x, x − z⟩ ≤ 0, z ∈ F(S). (3.36)

Theorem 3.4. Let E be a reflexive strictly convex Banach space which admits a weakly continuousduality mapping Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let S = {T(s) : s ≥ 0} bea strongly continuous semigroup of asymptotically nonexpansive mappings on E with a sequence{Lt} ⊂ [1,∞) and F(S)/= ∅. Let f ∈ ΠE with coefficient α ∈ (0, 1); let A be a strongly positivebounded linear operator with coefficient γ > 0 and 0 < γ < ϕ(1)γ/α. For any x0 ∈ C, let the sequence{xn} be defined by

xn+1 = αnγf(xn) + (I − αnA)1tn

∫ tn

0T(s)xn ds, n ≥ 0. (3.37)

Suppose, in addition, that S is almost uniformly asymptotically regular. Let {αn} and {tn} besequences of real numbers such that 0 < αn < 1, tn > 0,

(C1) limn→∞ tn = ∞;

(C2) limn→∞ αn = 0,∑∞

n=0 αn = ∞;

(C3) limn→∞((1/tn)∫ tn0 Ls ds − 1)/αn = 0.

Page 15: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 15

Then {xn} converges strongly as n → ∞ to a common fixed point x in F(S) which solves thevariational inequality (3.2).

Proof. First we show that {xn} is bounded. By condition (C3) and given 0 < ε < ϕ(1)γ − αγ

there exists N > 0 such that ((1/tn)∫ tn0 Ls ds − 1)/αn < ε for all n ≥ N. Thus

(

1 − ϕ(1)γαn

)

(

1tn

∫ tn

0Ls ds − 1

)

≤ 1tn

∫ tn

0Ls ds − 1 < εαn, (3.38)

for all n ≥ N. Since limn→∞ αn = 0, we may assume, without the loss of generality, thatαn < ϕ(1)‖A‖−1.

Claim that ‖xn − p‖ ≤ M, n ≥ 0, where M := max{‖x0 − p‖, . . . , ‖xN − p‖, ‖f(p) −p‖/(ϕ(1)γ − αγ − ε)}.

Let p ∈ F(S). Then from (3.56) we get that

∥∥xn+1 − p

∥∥ =

∥∥∥∥∥αnγf(xn) + (I − αnA)

1tn

∫ tn

0T(s)xn ds − p

∥∥∥∥∥

≤∥∥∥∥∥αnγf(xn) + (I − αnA)

1tn

∫ tn

0T(s)xn ds − αnA

(

p) − (I − αnA)p

∥∥∥∥∥

≤ ∥∥αnγf(xn) − αnγf

(

p)

+ αnγf(

p) − αnA

(

p)∥∥

+

∥∥∥∥∥(I − αnA)

(

1tn

∫ tn

0T(s)xn ds − 1

tn

∫ tn

0T(s)p ds

)∥∥∥∥∥

≤ ∥∥αnγf(xn) − αnγf

(

p)

+ αnγf(

p) − αnA

(

p)∥∥

+ ‖I − αnA‖∥∥∥∥∥

1tn

∫ tn

0T(s)xn ds − 1

tn

∫ tn

0T(s)p ds

∥∥∥∥∥

≤ αn

∥∥γf

(

p) −Ap

∥∥ + αnαγ

∥∥xn − p

∥∥ + ϕ(1)

(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

∥∥xn − p

∥∥

= αn

∥∥γf

(

p) −Ap

∥∥ +

(

αnαγ + ϕ(1)(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

))

∥∥xn − p

∥∥

≤ αn

∥∥γf

(

p) −Ap

∥∥ +

(

αnαγ +1tn

∫ tn

0Ls ds − ϕ(1)αnγ

1tn

∫ tn

0Ls ds

)

∥∥xn − p

∥∥

≤ αn

∥∥γf

(

p) −Ap

∥∥

+

(

1 +(

1 − ϕ(1)αnγ)

(

1tn

∫ tn

0Ls ds − 1

)

− αn

(

ϕ(1)γ − αγ)

)

∥∥xn − p

∥∥

Page 16: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

16 Abstract and Applied Analysis

≤ αn

∥∥f

(

p) − p

∥∥ +

(

1 − αn

(

ϕ(1)γ − αγ)

+ εαn

)∥∥xn − p

∥∥

= αn

∥∥f

(

p) − p

∥∥ +

(

1 − αn

(

ϕ(1)γ − αγ − ε))∥∥xn − p

∥∥

≤ max

{ ∥∥f

(

p) − p

∥∥

(

ϕ(1)γ − αγ − ε) ,

∥∥xn − p

∥∥

}

.

(3.39)

By induction,

∥∥xn − p

∥∥ ≤ max

{ ∥∥f

(

p) − p

∥∥

(

ϕ(1)γ − αγ − ε) ,

∥∥xN − p

∥∥

}

, ∀n ≥ N, (3.40)

and hence {xn} is bounded, so are {f(xn)} and {(1/tn)∫ tn0 T(s)xn ds}. Let δtn(xn) :=

(1/tn)∫ tn0 T(s)xn ds. Then, since αn → 0 as n → ∞, we obtain that

‖xn+1 − δtn(xn)‖ = αn

∥∥γf(xn) −Aδtn(xn)

∥∥ −→ 0 as n −→ ∞. (3.41)

For any h > 0, we have

‖T(h)xn+1 − xn+1‖ ≤ ‖T(h)xn+1 − T(h)δtn(xn)‖ + ‖T(h)δtn(xn) − δtn(xn)‖ + ‖δtn(xn) − xn+1‖≤ Lh‖xn+1 − δtn(xn)‖ + ‖T(h)δtn(xn) − δtn(xn)‖ + ‖δtn(xn) − xn+1‖,

(3.42)

it follows from (3.41) and S is almost uniformly asymptotically regular that

‖T(h)xn+1 − xn+1‖ −→ 0 as n −→ ∞. (3.43)

Next, we prove that

lim supn→∞

γf(x) −Ax, Jϕ(xn − x)⟩ ≤ 0. (3.44)

Let {xnk} be a subsequence of {xn} such that

limk→∞

γf(x) −Ax, Jϕ(xnk − x)⟩

= lim supn→∞

γf(x) −Ax, Jϕ(xn − x)⟩

. (3.45)

It follows from the reflexivity of E and the boundedness of sequence {xnk} that there exists{xnki

} which is a subsequence of {xnk} converging weakly to w ∈ E as i → ∞. Since Jϕ isweakly continuous, we have by Lemma 2.1 that

lim supi→∞

Φ(∥∥∥xnki

− x∥∥∥

)

= lim supi→∞

Φ(∥∥∥xnki

−w∥∥∥

)

+ Φ(‖x −w‖), ∀x ∈ E. (3.46)

Page 17: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 17

Let

H(x) = lim supi→∞

Φ(∥∥∥xnki

− x∥∥∥

)

, ∀x ∈ E. (3.47)

It follows that

H(x) = H(w) + Φ(‖x −w‖), ∀x ∈ E. (3.48)

From (3.43), for each h > 0, we obtain

H(T(h)w) = lim supi→∞

Φ(∥∥∥xnki

− T(h)w∥∥∥

)

= lim supi→∞

Φ(∥∥∥T(h)xnki

− T(h)w∥∥∥

)

≤ lim supi→∞

Φ(∥∥∥xnki

−w∥∥∥

)

= H(w).(3.49)

On the other hand, however,

H(T(h)w) = H(w) + Φ(‖T(h)w −w‖). (3.50)

It follows from (3.49) and (3.50) that

Φ(‖T(h)w −w‖) = H(T(h)w) −H(w) ≤ 0. (3.51)

This implies that T(h)w = w for all h > 0, and sow ∈ F(S). Since the duality map Jϕ is singlevalued and weakly continuous, we get that

lim supn→∞

γf(x) −Ax, Jϕ(xn − x)⟩

= limk→∞

γf(x) −Ax, Jϕ(xnk − x)⟩

= limi→∞

γf(x) −Ax, Jϕ(

xnki− x

)⟩

=⟨(

A − γf)

x, Jϕ(x −w)⟩ ≤ 0

(3.52)

as required. Finally, we show that xn → x as n → ∞. It follows from Lemma 2.1(i) that

Φ(‖xn+1 − x‖) = Φ

(∥∥∥∥∥(I − αnA)

1tn

∫ tn

0T(s)xn ds − (I − αnA)x

+αn

(

γf(xn) − γf(x) + γf(x) −A(x))

∥∥∥∥∥

)

Page 18: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

18 Abstract and Applied Analysis

≤ Φ

(∥∥∥∥∥(I − αnA)

1tn

∫ tn

0T(s)xn ds − (I − αnA)x + αnγ

(

f(xn) − f(x))

∥∥∥∥∥

)

+ αn

γf(x) −A(x), Jϕ(

yn − x)⟩

≤ Φ

(

ϕ(1)(

1 − αnγ)

∥∥∥∥∥

1tn

∫ tn

0T(s)xn ds − 1

tn

∫ tn

0T(s)xds

∥∥∥∥∥+ αnγα‖xn − x‖

)

+ αnγ⟨

f(x) − f(x), Jϕ(

yn − x)⟩

≤ Φ

(

ϕ(1)(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

‖xn − x‖ + αnγα‖xn − x‖)

+ αn

γf(x) −A(x), Jϕ(xn − x)⟩

≤ Φ

([

ϕ(1)(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

+ αnγα

]

‖xn − x‖)

+ αn

γf(x) −A(x), Jϕ(xn − x)⟩

≤[

ϕ(1)(

1 − αnγ)

(

1tn

∫ tn

0Ls ds

)

+ αnγα

]

Φ(‖xn − x‖)

+ αn

γf(x) −A(x), Jϕ(xn − x)⟩

≤[

(

1 − ϕ(1)αnγ)

(

1tn

∫ tn

0Ls ds − 1

)

+ 1 − αn

(

ϕ(1)γ − γα)

]

Φ(‖xn − x‖)

+ αn

γf(x) −A(x), Jϕ(xn − x)⟩

≤ (

1 − αn

(

ϕ(1)γ − γα))

Φ(‖xnX − x‖) + (

1 − ϕ(1)αnγ)

(

1tn

∫ tn

0Ls ds − 1

)

M

+ αn

γf(x) −A(x), Jϕ(xn − x)⟩

,

(3.53)

where M > 0 such that Φ(‖xn − x‖) ≤ M. Put

sn = αn

(

ϕ(1)γ − γα)

,

tn =(1 − ϕ(1)αnγ

ϕ(1)γ − γα

)(

(1/tn)∫ tn0 Ls ds − 1αn

)

M +1

(

ϕ(1)γ − γα)

γf(x) −A(x), Jϕ(xn − x)⟩

.

(3.54)

Then (3.53) is reduced to

Φ(‖xn+1 − x‖) ≤ (1 − sn)Φ(‖xn − x‖) + sntn. (3.55)

Page 19: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Abstract and Applied Analysis 19

Applying Lemma 2.3 to (3.55), we conclude that Φ(‖xn+1 − x‖) → 0 as n → ∞; that is,xn → x as n → ∞. This completes the proof.

If A ≡ I, the identity mapping on E, and γ = 1, then Theorem 3.4 reduces to thefollowing corollary.

Corollary 3.5. Let E be a reflexive strictly convex Banach space which admits a weakly continuousduality mapping Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let S = {T(s) : s ≥ 0} bea strongly continuous semigroup of asymptotically nonexpansive mappings from C into C with asequence {Lt} ⊂ [1,∞), F(S)/= ∅. Let f ∈ ΠE with coefficient α ∈ (0, 1) and the sequence {xn} bedefined by x0 ∈ C,

xn+1 = αnf(xn) + (1 − αn)1tn

∫ tn

0T(s)xn ds, n ≥ 0. (3.56)

Suppose, in addition, that S is almost uniformly asymptotically regular. Let {αn} and {tn} besequences of real numbers such that 0 < αn < 1, tn > 0,

(C1) limn→∞ tn = ∞;

(C2) limn→∞ αn = 0,∑∞

n=0 αn = ∞;

(C3) limn→∞((1/tn)∫ tn0 Ls ds − 1)/αn = 0.

Then {xn} converges strongly as n → ∞ to a common fixed point x in F(S) which solves thevariational inequality:

⟨(

I − f)

x, Jϕ(x − z)⟩ ≤ 0, z ∈ F(S). (3.57)

If E := H is a Hilbert space and S = {T(s) : s ≥ 0} is a strongly continuous semigroupof nonexpansive mappings on H, then we have Lt ≡ 1 and Theorem 3.4 reduces to thefollowing corollary.

Corollary 3.6 (see [15, Theorem 3.2]). Let H be a real Hilbert space. Suppose that f : H → H isa contraction with coefficient α ∈ (0, 1) and S = {T(s) : s ≥ 0} a strongly continuous semigroup ofnonexpansive mappings onH such that F(S)/= ∅. LetA be a strongly positive bounded linear operatorwith coefficient γ > 0 and 0 < γ < γ/α and let the sequence {xn} be defined by x0 ∈ C,

xn+1 = αnγf(xn) + (I − αnA)1tn

∫ tn

0T(s)xn ds, n ≥ 0. (3.58)

Let {αn} and {tn} be sequences of real numbers such that 0 < αn < 1, tn > 0,

(C1) limn→∞ tn = ∞;

(C2) limn→∞ αn = 0,∑∞

n=0 αn = ∞.

Then {xn} converges strongly as n → ∞ to a common fixed point x in F(S) which solves thevariational inequality:

⟨(

A − γf)

x, x − z⟩ ≤ 0, z ∈ F(S). (3.59)

Page 20: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

20 Abstract and Applied Analysis

Acknowledgment

R. Wangkeeree is supported by Naresuan University.

References

[1] K. Goebel and W. A. Kirk, “A fixed point theorem for asymptotically nonexpansive mappings,”Proceedings of the American Mathematical Society, vol. 35, pp. 171–174, 1972.

[2] A. Aleyner and Y. Censor, “Best approximation to common fixed points of a semigroup of non-expansive operators,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 137–151, 2005.

[3] A. Aleyner and S. Reich, “An explicit construction of sunny nonexpansive retractions in Banachspaces,” Fixed Point Theory and Applications, vol. 2005, no. 3, pp. 295–305, 2005.

[4] H. Zegeye, N. Shahzad, and O. A. Daman, “Strong convergence theorems for a semigroup of asym-ptotically nonexpansive mappings,” Mathematical and Computer Modelling, vol. 54, no. 9-10, pp. 2077–2086, 2011.

[5] F. E. Browder, “Convergence of approximants to fixed points of nonexpansive nonlinear mappings inbanach spaces,” Archive for Rational Mechanics and Analysis, vol. 24, no. 1, pp. 82–90, 1967.

[6] C. H. Morales and J. S. Jung, “Convergence of paths for pseudo-contractive mappings in banachspaces,” Proceedings of the American Mathematical Society, vol. 128, no. 11, pp. 3411–3419, 2000.

[7] W. Takahashi and Y. Ueda, “On Reich’s strong convergence theorems for resolvents of accretiveoperators,” Journal of Mathematical Analysis and Applications, vol. 104, no. 2, pp. 546–553, 1984.

[8] S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,”Journal of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287–292, 1980.

[9] J. Schu, “Approximation of fixed points of asymptotically nonexpansive mappings,” Proceedings of theAmerican Mathematical Society, vol. 112, no. 1, pp. 143–151, 1991.

[10] T. C. Lim andH. K. Xu, “Fixed point theorems for asymptotically nonexpansive mappings,”NonlinearAnalysis, vol. 22, no. 11, pp. 1345–1355, 1994.

[11] N. Shioji and W. Takahashi, “Strong convergence theorems for asymptotically nonexpansive semi-groups in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 34, no. 1, pp. 87–99,1998.

[12] F. E. Browder, “Convergence theorems for sequences of nonlinear operators in Banach spaces,”Mathematische Zeitschrift, vol. 100, no. 3, pp. 201–225, 1967.

[13] R. Wangkeeree, N. Petrot, and R. Wangkeeree, “The general iterative methods for nonexpansivemappings in Banach spaces,” Journal of Global Optimization, vol. 51, no. 1, pp. 27–46, 2011.

[14] G. Marino and H. K. Xu, “A general iterative method for nonexpansive mappings in Hilbert spaces,”Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006.

[15] S. Li, L. Li, and Y. Su, “General iterative methods for a one-parameter nonexpansive semigroup inHilbert space,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 9, pp. 3065–3071, 2009.

[16] W. Takahashi,Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publish-ers, Yokohama, Japan , 2000.

[17] H. K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of MathematicalAnalysis and Applications, vol. 298, no. 1, pp. 279–291, 2004.

[18] H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory andApplications, vol. 116, no. 3, pp. 659–678, 2003.

Page 21: univie.ac.at · 2 Abstract and Applied Analysis We use Π EtodenotethecollectionofallcontractionsonE.Thatis,Π E {f : f isacontraction on E}. A family S {T s :0≤s

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of