16 PN Junctions - nanohub.org

21
ECE-305: Spring 2016 Intgroduction to PN Junctions I: Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 2/16/16 Pierret, Semiconductor Device Fundamentals (SDF) pp. 195-209

Transcript of 16 PN Junctions - nanohub.org

Page 1: 16 PN Junctions - nanohub.org

Lundstrom ECE 305 S16

ECE-305: Spring 2016

Intgroduction to

PN Junctions I:

Professor Mark Lundstrom Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA [email protected]

2/16/16

Pierret, Semiconductor Device Fundamentals (SDF) pp. 195-209

Page 2: 16 PN Junctions - nanohub.org

announcements

2 Lundstrom ECE 305 S16

If you are planning to attend graduate or professional school, you will need 3 faculty references. I only give references to people who have: 1)  Visited me during my office hours at least twice.

It would also be very helpful for you all to: 2) e-mail me a photo of yourself.

Page 3: 16 PN Junctions - nanohub.org

ECE 305: Spring 2016: Exam 2

Out of 75 points:

Lundstrom ECE-305 S15 3

N: 22 Mean: 74.8% (56.1/75) SD: 17.5% Min: 26.7% Max: 96% Median: 80.7% (60.5/75)

20 30 40 50 60 70 80 90 1000

1

2

3

4

5

6

7

8

9

10

Count

E X AM  2  P erc ent  %

Page 4: 16 PN Junctions - nanohub.org

How to succeed in ECE 305

Lundstrom ECE-305 S15 4

1)  Do the assigned reading before class.

2)  Listen to lecture, ask questions.

3)  Review the lecture notes and reading afterwards.

4)  Work the HW problems, then look at solutions.

5)  Ask questions.

https://www.edx.org

Page 5: 16 PN Junctions - nanohub.org

NP junction (equilibrium)

5

N P

p0 ! NA

ρ ! 0 n0 ! ND

ρ ! 0

Lundstrom ECE 305 S16

Page 6: 16 PN Junctions - nanohub.org

“the semiconductor equations”

6

∂ p∂t

= −∇i

!Jpq

⎝⎜⎞

⎠⎟+Gp − Rp

∂n∂t

= −∇i!Jn−q

⎛⎝⎜

⎞⎠⎟+Gn − Rn

0 = −∇i ε

!E( ) + ρ

Three equations in three unknowns:

p!r( ), n !r( ), V !r( )

ρ = q p − n + N D

+ − N A−( )

!

E !r( ) = ∇V !r( )Lundstrom ECE 305 S16

equilibrium

Page 7: 16 PN Junctions - nanohub.org

NP junction

7

N P

p0 ! NA

ρ ! 0 n0 ! ND

ρ ! 0

transition region

Find: electric field, electrostatic potential, n(x), p(x), rho(x)

xp−xn 0

+

-

EVL > VR

ρ < 0NA

ρ > 0ND

+

Lundstrom ECE 305 S16

Page 8: 16 PN Junctions - nanohub.org

energy band approach

8

EC

EVEF

Ei V = 0

EC

EV

Ei

1) Fermi-level must be constant in equilibrium. 2) Positive electrostatic potentials lower the electron energy 3)  Left side must develop a positive potential, Vbi.

EF

qVbiV = Vbi

Lundstrom ECE 305 S16

Page 9: 16 PN Junctions - nanohub.org

eq. energy band diagram

9

EFEF

1) Begin with EF 2) Draw the E-bands where you know the carrier density 3) Electrostatic potential by flipping E-band upside down. 4) E-field from slope 5) n(x), p(x) from the E-band diagram 6) rho(x) from n(x) and p(x) 7) diffusion current from (5) or from (6)

EC x( ) = EC− ref − qV x( )

E x( ) = 1

qdEC x( ) dx

Lundstrom ECE 305 S16

Page 10: 16 PN Junctions - nanohub.org

energy band diagram

10

EF

EC

EV

x

E

Ei

x = xpx = 0x = −xnLundstrom ECE 305 S16

Page 11: 16 PN Junctions - nanohub.org

“read” the e-band diagram

11

1)  Electrostatic potential vs. position

2)  Electric field vs. position

3)  Electron and hole densities vs. position

4)  Space-charge density vs. position

Lundstrom ECE 305 S16

Page 12: 16 PN Junctions - nanohub.org

electrostatics: V(x)

12

V

x

N P

xp−xn

Vbi

Lundstrom ECE 305 S16

Page 13: 16 PN Junctions - nanohub.org

NP junction

13

N P

p0 ! NA

ρ ! 0 n0 ! ND

ρ ! 0

transition region

Find: electric field, electrostatic potential, n(x), p(x), rho(x)

xp−xn 0

+

-

EVL > VR

ρ < 0NA

ρ > 0ND

+

Lundstrom ECE 305 S16

Page 14: 16 PN Junctions - nanohub.org

electrostatics: E (x)

14

E

xN P xp−xn

Lundstrom ECE 305 S16

Page 15: 16 PN Junctions - nanohub.org

NP junction

15

N P

p0 ! NA

ρ ! 0 n0 ! ND

ρ ! 0

transition region

Find: electric field, electrostatic potential, n(x), p(x), rho(x)

xp−xn 0

+

-

EVL > VR

ρ < 0NA

ρ > 0ND

+

Lundstrom ECE 305 S16

Page 16: 16 PN Junctions - nanohub.org

carrier densities vs. x

16

log10 n x( ), log10 p x( )

xN P xp−xn

p0P = NA

p0N = ni2 ND

n0N = ND

n0 p = ni2 NA

n0N << ND p0P << NA

Lundstrom ECE 305 S16

Page 17: 16 PN Junctions - nanohub.org

NP junction

17

N P

p0 ! NA

ρ ! 0 n0 ! ND

ρ ! 0

transition region

Find: electric field, electrostatic potential, n(x), p(x), rho(x)

xp−xn 0

+

-

EVL > VR

ρ < 0NA

ρ > 0ND

+

Lundstrom ECE 305 S16

Page 18: 16 PN Junctions - nanohub.org

electrostatics: rho(x)

18

ρ

x

N P

xp−xn

qND

−qNA

Lundstrom ECE 305 S16

Page 19: 16 PN Junctions - nanohub.org

NP junction

19

N P

p0 ! NA

ρ ! 0 n0 ! ND

ρ ! 0

transition region

Find: electric field, electrostatic potential, n(x), p(x), rho(x)

xp−xn 0

+

-

EVL > VR

ρ < 0NA

ρ > 0ND

+

Lundstrom ECE 305 S16

Page 20: 16 PN Junctions - nanohub.org

the built-in potential

20

EC

EVEFP

Ei V = 0

EC

EV

Ei

EFN

qVbiV = Vbi

n0 = nieEFN −Ei( ) kBT p0 = nie

Ei−EFP( ) kBT

n0p0 = NDNA = ni2e EFN −EFP( ) kBT = eqVbi kBT

Vbi =kBTqln NDNA

ni2

⎛⎝⎜

⎞⎠⎟

Page 21: 16 PN Junctions - nanohub.org

NP junction electrostatics

21

How do we calculate rho(x), E(x), and V(x)?

Lundstrom ECE 305 S16