115 kV / 34.5 kV Solar Power Plant /...

40
115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602 INDUSTRY CLIENT: Black & Veatch CLIENT CONTACTS: Adam Literski, Rahul Ramanan ADVISORS: Venkataramana Ajjarapu, Anne Kimber TEAM EMAIL: [email protected] TEAM: Chase Benton, Senko Dizdarevic, Arif Ibrahim, Makoko Mukumbilwa

Transcript of 115 kV / 34.5 kV Solar Power Plant /...

Page 1: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

115 kV / 34.5 kV Solar

Power Plant / Substation Design Document

MAY1602

INDUSTRYCLIENT: Black&VeatchCLIENTCONTACTS: AdamLiterski,RahulRamananADVISORS: VenkataramanaAjjarapu,AnneKimberTEAMEMAIL: [email protected]: ChaseBenton,SenkoDizdarevic,ArifIbrahim,MakokoMukumbilwa

Page 2: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

2

CONTENTS1 OVERVIEW......................................................................................................................................................41.1 ProjectScope..........................................................................................................................................41.1.1 ProjectScale...................................................................................................................................41.1.2 UtilizedSoftware............................................................................................................................41.1.3 Deliverables....................................................................................................................................41.1.4 PhysicalLayout...............................................................................................................................51.1.5 DrawingsandDocumentation........................................................................................................51.1.6 ProjectScheduleandBudget.........................................................................................................5

1.2 ProjectSpecification...............................................................................................................................71.2.1 SolarPowerPlantSpecifications....................................................................................................71.2.2 SubstationSpecifications................................................................................................................7

2 HIGHLEVELSYSTEMDESIGN..........................................................................................................................82.1 SystemPowerFlow................................................................................................................................82.1.1 ComplementaryDocuments...........................................................................................................8

2.2 SolarComponentDesign........................................................................................................................92.2.1 SolarLandRequirements...............................................................................................................92.2.2 ImportantTermsandConcepts......................................................................................................92.2.3 ArrayLayout.................................................................................................................................10

2.3 SubstationComponentDesign.............................................................................................................112.3.1 SubstationComponentFunctions................................................................................................12

3 LOWLEVELDESIGN......................................................................................................................................143.1 SolarComponentDesign......................................................................................................................143.1.1 ArrayParameters..........................................................................................................................143.1.2 SolarArrayLayout........................................................................................................................18

3.2 SubstationComponentDesign.............................................................................................................213.2.1 CollectorArrangement.................................................................................................................213.2.2 Feeders.........................................................................................................................................243.2.3 KeyProtection..............................................................................................................................253.2.4 LineCurrentsandConductors......................................................................................................30

3.3 NFPA70NECCompliance......................................................................................................................304 PRODUCTIONSIMULATION&COST.............................................................................................................314.1 AnnualSolarRadiation.........................................................................................................................314.2 KWHProduction...................................................................................................................................324.3 SystemLosses.......................................................................................................................................334.4 Cost.......................................................................................................................................................344.4.1 SolarComponentCost..................................................................................................................344.4.2 SubstationComponentCost.........................................................................................................34

5 APPENDIX.....................................................................................................................................................355.1 GlossaryofCommonTerms.................................................................................................................355.2 AutoCADDrawingList..........................................................................................................................365.3 DocumentandMarketLiteratureSources...........................................................................................375.3.1 MarketLiteratureSouces.............................................................................................................37

Page 3: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

3

5.3.2 ArcadiaSubstationOne-LineDiagram..........................................................................................395.4 ComponentSpecificationSheets..........................................................................................................405.4.1 HanwhaQCELLSQPlusL-G4.1325W..........................................................................................405.4.2 EatonXpert1670kWInverterandTransformer..........................................................................405.4.3 CombinerBoxes............................................................................................................................40

5.5 OriginalProjectPlan.............................................................................................................................40

Page 4: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

4

1 OVERVIEWSolarpowergenerationisarenewablemethodofprovingelectricalpowertoagridorload.Thesolarplantwillproducepowerwhichwillbedirectedtothegridviaasubstation.Theplantwillcontainthesolararraysandinverters.Thesubstationcontainallnecessarycomponentsincludingtransformers,protectionrelays,monitoringequipment,andcapacitorbank.

1.1 ProjectScope

DuetoincreasingrenewableenergystandardssetbyRES,Black&Veatchissponsoringaseniordesignprojecttodesigna60MWgridtiedsolarpowerplantwithanattached115kV/34.5kVsubstation.Theseniordesignteamwilldesignbothpartsoftheprojectincludingthesolarlayout,substationlayout,andassociateddeliverables.

1.1.1 ProjectScale

Duetothelargescaleofthesolarpowerplantandsubstationproject,twoBlack&Veatchengineerswillmanagetheseniordesignteam’sdesignandschedule.

1.1.2 UtilizedSoftware

ThesoftwarerequirementsforthisprojectareAutoCAD,HelioScope,andMicrosoftOfficeproducts.

1.1.3 Deliverables

Thefirstsemesterdeliverableswillconsistofthefollowingdocuments:

• Solarplantarrayparameters.• Solarplantlayoutdrawings.• Substationone-linedrawings.• Conductorsizing.• Engineeringman-hourbudget.

Thesecondsemesterdeliverableswillconsistofthefollowingdocuments:

• Optimizedsolarplantarrayparameters.• Optimizedsolarplaylayoutdrawings.• Substationthree-linedrawings.• Engineeringman-hourbudget.

Page 5: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

5

1.1.4 PhysicalLayout

Solararrayswillbethevastmajorityofthespacerequirement,thesubstationspacerequirementisminimal.Theteamisresponsiblefordeterminingspacerequirementsfortheentireproject.

1.1.5 DrawingsandDocumentation

Theproperdocumentationofthedesignwillbetheresponsibilityoftheseniordesignteam.Detaileddrawingsforthesolararrayandsubstationwillberequired.Thefirstsemesterwillfocusonthesolargenerationschematicsandone-linedrawingsforthesubstation.Duringthesecondsemestertheteamwillbegindetailedthree-linedrawingsforthesubstation.

1.1.6 ProjectScheduleandBudget

Firstandsecondsemesterengineeringscheduleislaidoutinfigure1.Thespring2016scheduleisaprojectionasofDecember2015.Thefirstsemesterofthedesignprojectwillconsistmainlyofsolarplantsizing,plantlayout,substationlayout,componentsizing,circuitprotection,andbudget.Thesecondsemesterwillconsistoffinalizationofdesignincludingbutnotlimitedtodetailedthree-linesubstationdrawings,optimization,andpresentationtofacultyandBlack&Veatch.Figure1showsabudgetandactualhoursspentondesign.Additionally,itshowsthepercentoverorunderbudgetofactualhours.Theyellowboxshowsthebillablehoursasperbudget.Theactualman-hourbudgetisconsiderablyaboveprojections.Butitwasalearningexperience.

Page 6: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

6

Figure1:ProjectScheduleandBudget

115kV/34.5kVSolarPowerPlant/SubstationStartWeek

Break Projected Overrun BillableHoursWeek 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Aug Sep Sep Sep Sep Oct Oct Oct Oct Nov Nov Nov Nov Nov Dec Dec31 7 14 21 28 5 12 19 26 2 9 16 23 30 7 14 Tasks/Assignements

Meetings-client&advisorsAssigntasks/beginresearch

5 Teamroles/advisorsmeetings

1 Discussprojectscopewithclient

0 Solarplantsizedetermination

2 ProjectPlanV1DesigndocumentV1Solararrayparameters

L Solararraylayout

L Solarplantconductors

A Substationone-linedrawings

F Substationthree-linedrawingsProjectPlanV2DesignDocumentV2PresentationslidesandrehearsalFacultypresentationFinalizedeliverables

SUM

HoursBudget 5.0 10.0 10.0 10.0 20.0 20.0 20.0 30.0 30.0 15.0 15.0 30.0 0.0 40.0 10.0 2.0 267.0

HoursActual 4.0 10.0 8.5 16.5 25.0 16.5 44.0 37.0 24.0 16.0 18.0 31.5 0.0 59.0 29.5 1.0 340.5

%ofBudget 80 100 85 165 125 83 220 123 80 107 120 105 0 148 3 1 127.5

StartWeekBreak Projected Overrun BillableHours

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16StartDate Jan Jan Jan Feb Feb Feb Feb Feb Mar Mar Mar Mar Apr Apr Apr Apr

11 18 25 1 8 15 22 29 7 14 21 28 4 11 18 25 Tasks/AssignementsMeetings-client&advisors

6 Fall2015review

1 3-lineacdrawings

0 3-line89drawings

2 3-linebankdrawings3-linebudrawing3-linecommdrawings

G 3-linedcdrawings/ethernet

N 3-linefeederdrawings

I DesigndocumentV3

R Optimization

P Presentationpreperation

S BVpresentationIRPpresentation

SUM

HoursBudget 8.0 8.0 8.0 8.0 8.0 10.0 10.0 8.0 15.0 0.0 10.0 20.0 20.0 10.0 20.0 2.0 165.0

HoursActual 7.5 18.5 19.5 17.5 4.5 9.0 16.5 23.0 41.5 0.0 8.5 24.0 34.0 19.0 25.0 2.0 270.0

%ofBudget 94 231 244 219 56 90 165 288 277 0 85 120 170 190 125 100 163.6

Jan11,2016

Aug31,2015

StartDate

Page 7: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

7

1.2 ProjectSpecification

InputandoutputspecificationsareprovidedbyBlack&Veatch,thesespecificationsmaychangeduringthedesignprocess.Additionally,alldesignsmustmeetNFPA70NationalElectricalCode(NEC)requirements.

1.2.1 SolarPowerPlantSpecifications

Thespecifiedsolararrayparametersandcomponentsareasfollows.TheteamisfreetoutilizeanyadditionalcomponentsandtomeetorexceedspecificationsandIEEEstandards.

• Location–Iowa• SolarInverter–EatonXpert1670kW• SolarPanel–Hanwha325kW• CombinerBoxDCVoltage–1500V• InverterLoadRatio(ILR)–about1.30• CombinedSolarInverterOutput–60MW• FixedRackSystem

1.2.2 SubstationSpecifications

ThesubstationcomponentoftheprojectwillbebasedontheArcadiasinglelinediagram(see5.3.2)andspecificationswithinSystemProtectionRequirementsprovidedbyBlack&Veatch.

• Substationcollectorinputvoltage–34.5kV• Substationpointofinterconnectoutput–115kV

Page 8: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

8

2 HIGHLEVELSYSTEMDESIGNThissectionwilloutlinethehighlevelsystemdesignandexplainimportantterms.Focusisonsingle-linediagrams.

2.1 SystemPowerFlowAsolar(PV)plantconsistingofarrayswilloutputpowertoagrid-tiedsubstation.Theoutputoftheplantis60MW.Figure2belowshowsthepowerflowfromgenerationtogrid(lefttoright).ThesolarpowerplantwillproduceDCcurrentwhichisroutedthroughasetofseries/parallelconductorstoaninverter.TheinverteroutputsthreephaseACcurrenttoastep-uptransformer.Thestep-uptransformeroutputstoacollectorinthesubstationcomponent,inwhichflowstothecollectorarrangement,feederarrangementandkeyprotectioncomponent.Finally,itisfedtothegridat115kV.

2.1.1 ComplementaryDocuments

Informationfromcomplementarydocumentswillsummarizedandexplainedinthisdesigndocument.Forfurtherdetailsanddata,Seelistofcomplimentarydocumentsbelow.

• Array_Parameter_Tool_13–Thisfilecontainsallcalculations,parameters,conductorsizing,andproductionsimulation.

• Drawing_List–Listof30AutoCADdrawingswithtask,titleandstatusofeachdrawing.AlsoprovidedinAppendix.

• AutoCADdrawings.• System_Protection_Requirement

Figure2.HighLevelSystemBlockDiagram

Page 9: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

9

2.2 SolarComponentDesign

Thissectionwilloutlinehighlevelaspectsofthesolarcomponentoftheproject.

2.2.1 SolarLandRequirements

Afterdeterminingthesolarmodulestobeused,325W,thecalculationofspacerequirementsforthePVplantmaybeaccomplishedasfollows.60MWistherequiredplantcapacity,1.30isthedesiredILR(seeGlossaryofCommonTerms)usedtoscalelandrequirement.Thus,wedeterminedtheamountofspacebythefollowingcalculation:

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃𝑎𝑛𝑒𝑙𝑠𝑁𝑒𝑒𝑑𝑒𝑑 =60𝑀𝑊325𝑊 1.30 = 240000𝑝𝑎𝑛𝑒𝑙𝑠

𝑃𝑎𝑛𝑒𝑙𝐴𝑟𝑒𝑎 = 21.45𝑓𝑡>𝑇𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎𝑜𝑓𝑃𝑎𝑛𝑒𝑙𝑠 = 240000 ∗ 21.45𝑓𝑡> = 5147990𝑓𝑡>

Therefore,

𝑇𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎𝑁𝑒𝑒𝑑𝑒𝑑 = 5147990𝑓𝑡> = 0.185𝑚𝑖> = 120𝑎𝑐𝑟𝑒𝑠Tosplitthesolarpanelsintoarrays,wedividedtherequiredoutputbytheinverterpowerrating.

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐴𝑟𝑟𝑎𝑦𝑠 =60𝑀𝑊1670𝑘𝑊 = 36𝑎𝑟𝑟𝑎𝑦𝑠

Includingtherowspacing,inverterskid,andaccessroad;thetotalareabecomesabout240acresfortheentiresolarplant.

2.2.2 ImportantTermsandConcepts

Thefollowingisalistofimportanttermsandconceptsreferencedthroughoutthedocument.

2.2.2.1 InverterLoadRatioThemostimportantfactorinsolarpowergenerationdesignistheinverterloadratio(ILR).TheILRistheratioofDCsolarcapacityandinverterACoutput.Sincepanelproductionconditionsandactualconditionsvarysignificantlyatanygiventimeandday,theDCpowerinputdesignshouldabout130%oftheACoutputrating.ThiscorrespondstoanILRofabout1.30.Formajorityofthetime,theinverterinputwillnotoutputaboveratedACcapacity,inthetimesthatitdoes,theinverterswillclipoutputanddissipatetheexcesspowerasheat.ThustheILRisametricofinverterutilization.

2.2.2.2 IrradianceCorrectionFactorAsecondsafetyfactorcalledtheirradiancecorrectionfactor(Isc–irradiancecorrection)wasutilizedasafailsafeforcurrentspikesastringmayexperienceintimesofexceptionallyhighsolarradiation.

Page 10: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

10

Thisfactorisvaluedat1.25.NEC690.8(B)requiresasecondarycorrectionfactorbeforeallothers.Allconductorsmustbedesignedwiththiscalculatedcurrentscalarapplied.

2.2.2.3 InverterTheinverterconvertssolarDCoutputto3-phaseoutputtothecollector.Thisinverterissuppliedwithamatchingstepuptransformer.

2.2.2.4 ContinuousCurrentMultiplierAsafetymultiplier,NEC690.8(A)requiresovercurrentdeviceratingsshallnotbelessthan125%ofthemaximumcurrentscalculated.Allconductorsmustberatedforcontinuouscurrentalongwiththeirradiancecorrectionfactor.

2.2.3 ArrayLayout

Thearrayswillbelaidoutinasingleblockcontainingallpanels,racks,invertersandstep-uptransformer.Therewillbeatotalof36arraysintheplant.Eacharraymeasures551.04x508.69ft.Seefigure3.Therowspacingis12.0ft,theinverteraccessroadis16.0ftwide.

Page 11: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

11

Figure3.SingleArrayLayout

2.3 SubstationComponentDesign

Thepurposeofthesubstationistocollectallsolararraypowerandfeedintothegridaftersteppingupvoltagetodistributionlevel.ThissubstationisbasedonanArcadiadesign(see5.3.2),modifiedfortheproject.Powerflowisbottomtotop,34.5kVbusto115kVbus.Itwillconsistofthefollowingmajordrawings(one-linedrawings).

• Collector–Inputfromsolararrays’transformer.• Feeder–Outputfromcollector,inputto34.5kVbus.• KeyProtection–Circuitbreakers,protectionrelays,capacitorbank,andstep-uptransformer.

Outputstogridat115kV.

551.04ft91.84ft

12.63ft

1

2

3

508.69ft4

516.00ft

6 7

8

9

10

11

12.00ft

LegendRack CombinerBoxwithidentificationnumber

InverterSkid--NottoScale Inverter/Step-upXformer

Page 12: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

12

Thepowerflowblockdiagraminfigure4showstheinputcurrentflowfromarrayskids.Arrayskidscontaintheinverterandstep-uptransformer.Powerflowisbottomtotop.

Figure4.SubstationPowerFlowBlock

2.3.1 SubstationComponentFunctions

• PrimaryTransformer–Theprimarytransformerisan85MVAthatstepsupthefeederbusinputof34.5kVtodesired115kV

• CurrentTransformer(CT)–Dropscurrenttomanageablelevelforrelay,usuallybetween1and5amps.

• CircuitBreakers–Adeviceinkeyprotectionthatopensthefeederswitchwhenrelaydetectsanovercurrentcondition.

Page 13: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

13

• Relays–Relaysaremonitoringdevicesusedtodetectgroundfaultcurrentsandreducesaturation.Ifthereisanovercurrentfaulttheycommandthecircuitbreakerstoopenthecircuit.Oncecurrentrevertstonormallevel,therelaywillcommandthecircuitbreakerclosed.

• CapacitorBank–The9.0MVARcapacitorbankstabilizesharmonicsassociatedwiththree-phasecurrentsandhelpsmaintainapowerfactorof0.95.ComponentspecificationswereprovidedbyutilityandBlack&Veatch.

• SurgeArrestor–SurgeArrestorsaredevicesthatareusedtomaintainequipmentprotectedfromovervoltagetransientscausedbylightningstrikes,orswitchingovervoltageswithinthesubstationitself.Inthisprojecttheyareusedtoprotectthefourterminalsgoingintoeachofthethreefeedertransmissionlines.

Page 14: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

14

3 LOWLEVELDESIGNThissectionwillfocusondetaileddesignelements.Componentsforboththesolarandsubstationcomponentwillbeexplainedindetail.Thedesignconditionsforthe60MWpowerplantarebasedonacentralIowasolarradiationpatterns.

3.1 SolarComponentDesign

Inthissection,thelowlevelsolardesignaspectwillbethoroughlyexplained.Itisimportanttoconsultthearrayparametertool,figure6,duringtheentiresolardesignaspect.Astringconsistsof28modules(orpanels)areconnectedinseries.Twostringsinparallelconstitutearack.Atotalof12rackswillbecombinedinparallelatthecombinerboxes.Thesimplifiedracktotransformercurrentpathisshowninfigure5.

Figure5.SimplifiedArrayPowerFlowDiagram

3.1.1 ArrayParameters

Herewewilluseanarrayparametertool(figure6),isanExcelspreadsheetprovidedbyBlack&Veatchandmodifiedbytheteam,toassistindesigningthesolararraylayout.Takingintoconsiderationpanelparameters,stringparameters,currentoutput,combinerboxcapacity,invertercapacity,ILR,andirradiancecorrectionfactor,andcontinuouscurrentcorrection.ThepanelsusedareHanwhaQCELLSQPlusL-G4.1325Wsolarmodules(seeAppendixforspecificationsheet).Theefficiencyofthepanelsis16.3%.

Page 15: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

15

Figure6.ArrayParameterTool

StringSize CBcapacity

MinTemp -26 C Modulewidth 3.28 ft Module/stringIsc(series) 9.44 Amoduleheight 6.54 ft Isccontinouscurrentmultiplier 1.25 see(a)

Voc 46.43 V NomIsc 11.8 AReftemp 25 C Rackwidth 28 modules Iscirradiancecorrection 1.25 see(b)

Rackheight 2 modules MaxIscstring 14.75 ATempCoeffofVoc -0.0029 perdegC MaxIscrack,atCB 29.5 ATempdelta -51 Rackwidth 91.84 ft AllowedcurrentCB 400 Atempcorrection 1.15 Rackheight 13.08 ft MaxcurrentperCB 354 AVoccorrected 53.297 StringsperCB 27.118644

Framewidth 1.38 in NumberofCBperarray 11Stringvoltage/CBinvoltage 1500 V ActualstringsperCB 24 ****Stringsize 28.14417stringsize(series) 28 modulesStringvoltagecalculated 1492.3 V

(a) NEC690.8(B)(1)requiresovercurrentdeviceratingsshallnotbelessthan125%ofthemaximumcurrentscalculated.(b) NEC690.8(A)(1)requiresanother125%correctionmultiplierbeforetheapplicatonofothercorrectionfactors.

Theirradiancecorrectionfactorisamultiplierforthecurrentoutputofasolarpanel.Panelscanhavepowerspikeswithhighersolarirradiance.Thusthetotalcurrentcorrectionfactorsare156%

(c) Thetotalcomponentareaincludestheracksandinverterskid.Doesnotincludenegligableareaofconverterboxesorrecombiners.(rackarea)(118)+(invskidarea)(d) Referencedfromtruenorth.Azimuthismeasuredclockwisefromtruenorthtothepointonthehorizondirectlybelowtheobject.** Accessroadincluded*** Assumes6x6configuration&16ftspacingbetweenarrays.**** EceptCB6andCB7,seeCB&InverterSheet(thisxlsx)

ElectricalRackSize

ArrayDesign ArraySize PlantTotals

A Racksperrow 6 Tilt 15 Degrees ArrayBlocks 36see(a) Azimuth 180 Degrees see(d)A Rowsperblock 20 Rackheightproj 12.63431 ft NumberofCBs 396see(b)A Racksremoved 2 Rowspac 12 ft Inverters 36AA TotalRacks 118 Pitch 24.63431 ft Modules/Panels 237888A

TotalmodulesinArray 6608 Arrayheight 492.6862 ft TotalStrings 236TotalRacks 472

**** ModuleDCcapacity 325 W Arraywidth 551.04 ft ACPlantOutput 59.976 MWACDCArrayOutput 77.314 MWDC

DCcapacity 2147.6 kW Accessroadwidth 16 ftArraySizewithaccessroad&spacing: PVPlantHeight 3132 ft***

Invertercapacity 1666 kW Arrayheight 508.6862 ft** PVPlantWidth 3386 ft***InverterScapcity 1831 kVA Arraywidth 551.04 ftILR->Invin/Invout 1.289076 ArrayArea 280306.4 ft^2 SolarPlantArea 10605349 ft^2***

26041.32 m^2 0.380 mi^2CB'sperArray 11 Inverterskid 22x8.5 ft 243.5 acres

Inverterskidarea 187 ft^2 985269.1 m^2Thetotalcomponentareaincludestheracksandinverterskid.Doesnotincludenegligableareaofconverterboxesorrecombiners.(rackarea)(118)+(invskidarea) PowerperCB 195.2364 kW Areaofcomponents 141936.5 ft^2

PowerperRack 18.2 kW GroundCoverageRatio(GCR) 0.506362 see(c)

Page 16: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

16

3.1.1.1 CorrectionFactorsTheparametertoolallowsefficientstringandrackcurrentcalculationwiththenecessary125%continuouscurrentmultiplierinaccordancewithNEC690(B)(1).Also,asecondsafetyfactorcalledtheirradiancecorrectionfactorisutilizedasafailsafeforcurrentspikesastringmayexperienceintimesofexceptionallyhighsolarradiation.Thisfactorisalsovaluedat125%ofcalculatedcurrent.Seefigure5.Thefigurealsocontainsmechanicalmodulespecifications.

Theminimumtemperatureinfigure6isanabsoluteminimumtemperaturerecordedincentralIowa(dataprovidedbyASHRAE).Temperatureisanimportantaspectofsolarpowergenerationbecauseopencircuitvoltagevariesgreatlywiththetemperatureofthepanels.ThetemperaturecoefficientofopencircuitvoltageistherateofvoltageriseperdegreeCelsius,solarcellopencircuitvoltagerisesastemperaturedecreases.

3.1.1.2 StringVoltageAfterdeterminingtheopencircuitvoltageforeachmodule,wecalculatedthestringsizeof28modulesinseriestostayunderthe1500VDCrequirementunderabsoluteextremeconditions.Theactualcalculatedvalueis1492.3VDC.

3.1.1.3 CombinerBoxesTheseriesstringcurrentneedstobenomorethan400Awithallcorrectionfactorstakenintoconsideration.400Aisthemanufacturerspecifiedlimitforthecombinerboxcurrent.Thestandardtestcondition(STC)modulecurrentis9.44A.Applyingthecorrectionfactors,NECmandatedcontinuouscurrentandirradiancecorrectionfactor,thusincreasingthedesigncalculatedstringmaximumshortcircuitcurrentfrom9.44Ato14.75A(MaxIscstring)andthemaximumrackshortcircuitcurrentto29.5A(MaxIscrack).ApplyingthecorrectionfactorstotheCBoutputwecalculate354A.NotalltheCBswillhave354Aoutput,duetoplacementlimitation.Asseeninfigure3,noCBiscrossingtheinverter.Therefore,CB6willhave6rackinputs(177A),andCB7willhave4rackinputs(118A).Seefigure7fordetails.Thecombinerswillbepolemountednexttotheracks.

Page 17: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

17

Figure7.CBI/ODetail

3.1.1.4 ConductorsandFuseProtectionTheconductorselectionisbasedoncorrectionscaledcurrentsasdiscussedin3.1.1.1.Thestringconductorispreselectedbythemodulemanufacturer.Fusesareselectedbasedonmaximumcurrentcalculations.Themaximumcalculatedcurrentsfromarrayparameter(figure6)andselectedconductorsarelistedinfigure8.Thestringconductorsandjumperswillbeopenair.DCfeederconductorwillbeburiedatleast30inches,measuredfromtopofconductor,asperNEC310Table300.50.

Figure8.ConductorSpecifications

3.1.1.5 InverterandStep-UpTransformerTheinverter(seespecificationsheetinAppendix)has11CBDCinputs,totaling2147.6kW.Theinverteroutputwillbe1670kW,357Vac3-phaseviadirectthroatconnectiontoamatching1831

Combiner(CB) StringsIn RacksIn PerCBOutput(A)CB1 24 12 354CB2 24 12 354CB3 24 12 354CB4 24 12 354CB5 24 12 354CB6 12 6 177CB7 8 4 118CB8 24 12 354CB9 24 12 354CB10 24 12 354CB11 24 12 354

TotalInverter 3481

Conductors MaxIsc(A) Type Material AWGStringConductor 14.75 FreeAir Copper 12RacktoCB-Jumper 29.5 FreeAir Copper 10CBtoInverter-DCfeeder 354 Buried Aluminum 700Conductors CableRating(A) MinimumDepth Temp(degC) FuseStringConductor 35 NA 75 15RacktoCB-Jumper 50 NA 75 30CBtoInverter-DCfeeder 375 30inch 75 355

Page 18: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

18

kVAstep-uptransformer.Thetransformeroutputis34.5kV.Thetransformerhighsideisfedtothecollectorarrangement.

3.1.1.6 TiltAngleandAzimuthThesolarmoduletiltangleisdeterminedthroughmultiplesimulationrunswithHelioScope.Tiltangleisdependentonterrain,latitudeandweatherpatterntoasmalldegree.TheoptimalanglefortheselectedareainBooneis15%.Note,thiswillchangebasedonterraininclination.Whiletheazimuthof180degreeswithrespecttotruenorthimpliesmid-daypeakload,thisanglewaschosenwiththeIowaStateUniversitypeakpowerusageforareference.

3.1.2 SolarArrayLayout

Thissectionwillexplainthefullsolarplantlayout.

3.1.2.1 SingleSolarArrayDrawingThefollowingAutoCADdrawing,figure9,showsthedetailedlayoutofasinglearray.Anarraycontains118solarracks,inverterskid,combinerboxes,andallassociatedconductors.

Page 19: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

19

Figure9.SingleArrayDrawing

Figure10showsthelegendandnotessectionassociatewithfigure9.Figures9and10arefromMAY1602-W04AutoCADfile.Asinglearraymeasures551.04ftinwidthand493.6ftinheight.Thearraydrawinghelpsshowthescaleofanarrayandconductorroutinglayout.Thelightblueconductorsarefromracktocombinerbox(jumpers).Themagentaconductorsarefromcombinerboxestoinverter(DCfeeders).Alsoseeninfigure5;eachrackfeedsintoacombinerbox,thecombinerboxes

Page 20: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

20

feedintotheinverter.Thegroundsideconductorswillrunalongsidetheirrespectivepositivesideconductors.

Figure10.LegendforFigure9

3.1.2.2 CompletePlantLayoutThereare36totalarraysinthesolarplant,thehighleveloverviewisshowninfigure11.The6x6arrangementisnotnecessary,itisthemostefficientarrangementasitpertainstotheconductors.Thearrangementisflexible,couldbearrangedinanymannersolongasastraight16ftaccessroadismaintainedtoeachinverterskid.Thetotalnumberofpanelswillbe237,888.

Page 21: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

21

Figure11.SolarPlantLayout

3.2 SubstationComponentDesign

Powerflowthroughthesubstationcomponentbeginsatthecollectorarrangement,thenflowingthrough3feedersthe34.5kVbus,finallyvoltageissteppedupandsenttothe115kVbus.Consultfigure4forasimplifiedblock.Detaileddrawingsareprovidedwiththecomplementarydocumentsoutlinedinthedrawinglist.

3.2.1 CollectorArrangement

Thecollectorarrangementisthesetofinputsfrominverterskid.Inthisprojectthecomponentofthecollectorarrangementconsistsoftheinverterandtransformerwhichsitonaninverterskid.Attachedtoeachoftheinverterisatransformerwhichstepsupthevoltagetobringittoasub-transmissionlevel(34.5kV).Thecollectorisnotdirectlylocatedatthesubstationbutisthesumofalltheinverterskids(inverterswithattachedtransformers)ineacharrayofthesolarpowerplant.TheAutoCADdrawingofthecollector(MAY1602-W03file)illustratesastring,whichismadeupof3inverterskidsinparallelandbeingsenttoaselectterminalofthefeeder.Using31/0concentricneutralconductorseachofthesestringstodirecttothefeederarrangement.However,thedrawingonlyrepresents1of12ofthesesaidstrings.Thereare3inverterskidsperinverterstring,seefigure12.Thereis4inverter

Page 22: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

22

stringsperfeeder,seefigure15.And12inverterstringstotalwhichmakes36totalinputsfrom36arrays.

Figure12.InverterStringinCollector

Figure13.CollectorArrangement

Page 23: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

23

Figure14.InverterSkidDetail

3.2.1.1 SurgeArrestorInthisdesign,thereareatotalof12SurgeArrestorswithratingsof22kVMCOV.TheratingsofthesesurgearrestorswereobtainedbasedonsectionC62.11-1987intheIEEEstandards.EachoneoftheseSurgeArrestorswillbeattachedtothreegroupedinverterskids,seefigure13.TheCollectorArrangementdrawing(MAY1602-W02)showsaclearillustrationofhowasingleSurgeArrestorisconnectedtothreeInverters.ThemainpurposeofhavingSurgeArrestorsistoprotectequipmentinthesubstationfromthemaximumcontinuousvoltageexperiencedduetosummingupthecurrentcomingfromeachoftheinverters,aswellastheunexpectedovervoltagecausedduetolightningstrikes.Figure4,showsanotherrepresentationofhowtheoverallcollectorarrangementsystemisconnectedtothesubstationthroughthethreemainfeeders.Wecanseehowthereare4inputsperfeederandhoweachoftheseinputshavethreeinvertersfeedingintoit.

Page 24: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

24

3.2.2 Feeders

Thefeeders’roleinthissystemistogrouptheoutputsofthecollectedpowerinto3feedersandthentransmitthepowertothesubstation.Eachfeederhas4terminalswithattachedsurgeprotection(allratedat22kV)toeachterminalandaswitchusedforlineprotection.Onestringswhichismadeupofthreeskids(mentionearlierinsection3.2.1)istheinputofeachterminal.Giventhatthereareatotalof12inverter-transformerskidsattachedtoeachofthe3feeders.Figure4showsarepresentationoftheflowofpowerandhoweachstringofskidsisinputtoeachterminalandhoweachterminalisattachedtoeachfeederline.Withtherebeing4terminalsattachedtoeachofthe3feedersthecurrentismultipliedbyafactorof4.Therefore,alargecableratingisneeded,inthiscasea600KCMACSRconductorwasequippedtoeachline.Seefigure16forAutoCADdrawing.

Figure15.CollectortoFeederArrangement

Page 25: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

25

Figure16.FeederArrangementDrawing

3.2.3 KeyProtection

Keyprotectionisthebulkofthesubstationdesign,nearlyalloftheprotectiondevicesandcircuitryiscontainedinthiscomponent.ConsultANSIStandardDeviceNumberIndexintheAppendixforDevicenumberdescriptions.ThefollowingAutoCADdrawingsarekeyprotectiondetail.Pleasenotepowerflowisfromfigure20tofigure19.

Figure17.KeyProtectionDrawingLegend

Page 26: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

26

Figure18.CapacitorBankDetail.

Page 27: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

27

Figure19.KeyProtection115kVBus

Figure20.FeedersF1,F2&F3

Page 28: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

28

3.2.3.1 RelaysInthisprojectweareusing2differentprotectionrelays.Therelaysactasacentralcontrolsystemforthekeyprotection(MAY1602-W01file)monitoringthecurrentlevelsinthefeederstoprotectthesystemfromfaults.Theyworktogethertodirectthecircuitbreakerstocloseortripdependingonthestabilityoftheline.WeusefiveSEL351SprotectiverelaysandoneSEL487E(differentialrelay)relaywhichistheprimaryrelay.

Forourproject,wehaveone351Srelaymonitoringeachfeederandispositionedaheadofeachcircuitbreaker(CB311,312,313).EachofthoserelaysmeasurethecurrentafterthecircuitbreakerwhilerelaySEL487E(connectedbeforeeachcircuitbreaker)measuresthecurrentbeforeeachofthecircuitbreakersandcalculatesthedifferencebetweenthetwo.Ifanovercurrentisdetected,the351Srelaystripthecircuitbreakerandwillnotrecloseuntilthecurrentisnormalized.

Another351Srelayismonitoringonthehighersideofourmaincircuitbreaker(CB317)withtheprimaryrelaySEL487EmeasuringthecurrentbelowCB317.Onceagain,itiscalculatingthedifferenceinthecurrentmeasurementsfromeachsideandlookingforovercurrents.IfthereareovercurrentsrelaySEL351Swilltripandwillnotreclosethelineuntilitstabilizes.

Thereisonemore351Srelay,whichisourbackuprelay,monitoringontheutilitysideofthetransformer.Thisprovidesbackupprotectionandcontrolscircuitswitch682.Eachoftheswitcheslocatedonourkeyprotectionarealsousedformaintenancepurposes.Ifabreakerorcurrenttransformerneedsrepairedorreplaced,theswitchesallowustoisolatethatpartoftheline.

3.2.3.2 CurrentTransformersCurrenttransformers(CT)areoftenusedtomonitorhazardouslyhighcurrentsandreducedthemtolowcurrentsathighvoltages.Inthisdesign,weuseamultitudeofcurrenttransformerstohelpmeasurethecurrentinavarietyofpositionsinthesubstation.CT’sarespecifiedbytheirprimarytosecondarycurrentratio.

3.2.3.3 CircuitBreakerAcircuitbreakerisanautomaticallyoperatedelectricalswitchdesignedtoprotectelectricalcircuits.Inthecaseofthisproject,theyarecontrolledbytheprotectiverelays.Therelaysdirectthecircuitbreakerstointerruptthecurrentflowbytrippingthecircuitiftheydetectafaultcondition.Thiswillprotecttheelectricalcircuitryfromseriousdamage.Weusefourcircuitbreakersinoursubstation,threelocatedoneachofthethreefeederlinesandoneontheprimarylineallwiththesamepurposeofprotectingthelineandallbeingcontrolledbytheprotectionrelays.Iftherelaysnoticesapossiblefault,adrivetolockout(DTLO)inputisinitiatedintherelay,followedbytherelayoutputtinganordertothecircuitbreakertotrip.ItwillremaintrippeduntiltheDTLOinputhasended,thentherelaywilloutputandordertothecircuitbreakertoreclosetheline.

Page 29: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

29

3.2.3.4 CapacitorBankThecapacitorbankminimizesharmonicsinthethreephasesystemandmaintainthepowerfactorof0.95.Thecapacitorbankratingof9MVARisdeterminedbyrunningsimulationsusingETAPsoftware.InthecaseofthisprojectduetolicensingrestrictionsBlack&Veatchprovideduswiththepfvalueandcapacitorbankrating.Seefigure18forcapacitorbankdetail.Note,thecapacitorbankisconnectedtothe34.5kVbus.

3.2.3.5 PrimaryLineTransformerTheprimarylinevoltagetransformeristhemaincomponentofthesubstationanditpresentstheforemostpurposeofhavingasubstation.Forthisprojectweareutilizingastepofprimarytransformerbetweenthetwobuses,whichissteppingupfrom34.5kVtoatransmissionlevelof115kV.

3.2.3.6 ABS681/684SwitchesAir-breakerBypassSwitchesaremanualswitchesonthehighvoltagesideofthesubstationtransmissionline(115kV).Theirmainpurposeisformaintenanceinthetransmissionline.

3.2.3.7 CommunicationsThecommunicationcomponentsinthesubstationaremostlymadeupoftheOrionLXRemoteTerminalUnit(RTU),aCisco2520ConnectedGridSwitchesandaCisco2010ConnectedGroundRouter.TheRTUconnectstosubstationmeters,eventrecorders,distributedI/O,andsubstation’sprotectiverelaysusingFiberandEthernetconnections.While,Cisco’sCGS2050andCGR2010deploytogethertoprovidearuggednetworkingsolutionthatenablesreliableandsecuretwo-waycommunicationforsubstationautomation.

3.2.3.8 DCLoadCenterTheAuxiliaryDCloadcenteristhemostcriticalprotectioncomponentofthesubstation,itsprimaryfunctionistopowerthesubstation’sprotectiverelaysandcircuitbreakersinordertodetectandtripfaults.Itmainlyconsistofabattery,batterycharger,distributionsystem,switching,protectivedevices,andmonitoringequipment.

3.2.3.9 ACLoadCenterTheACloadcenterofthesubstationisapanelboardconsistingofasinglepaneloragroupofpanelsplacedinsideonepanel.Itisusuallyequippedwithswitchestocontrollights,heat,andotherpowercircuitsthroughoutthesubstation.

Page 30: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

30

3.2.4 LineCurrentsandConductors

TheconductordetailisspecifiedinthesubstationAutoCADdrawings.Thecalculatedcurrentsarebasedonthe1831kVAstep-uptransformerontheinverterskidbydividingbythevoltage(34.5kV).Allcurrentsarescaledbyacontinuouscurrentmultiplierof125%asperNEC690(B).

Figure21.ComponentConductors.

3.3 NFPA70NECCompliance

Theentiretyofthesystem,particularlythesolarcomponentdesigncomplieswiththeNFPA70NationalElectricalCode.Specificcodecompliancesarereferencedthroughoutthisdocument.

Component MaxIsc(A) Size Type//Seepanelmechanicalspecs,doesnotrequireprotectionasperNEC240(4)(D) XformertoCollector/InverterString 120 1\0AWG ConcentricNeutral-Buried

Feeder 600 600KCM ACSR-Buried

Page 31: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

31

4 PRODUCTIONSIMULATION&COSTThekWhproductionsimulationwasperformedwithHelioScope.HelioScopeisathoroughsimulationthatconsidersmonthlyaveragesolarirradiation,shading,conductorlosses,statisticalcomponentmismatch,inverterclippingandsoiling.Solaroutputwillbecomparedtosimilarsystemslocatedinsimilarlatitudeandweathersettings.Thesolarpanelsarerated325WnominallyatSTC,theyarecapableofproducingthisatIowalatitude.

4.1 AnnualSolarRadiation

TheannualsolarradiationdatawasobtainedfromNREL.Figure22showsthetheannualsolarradiationmonthlyinconvenientunits.

Figure22.AnnualSolarRadiation. Unsurprisinglyweseeapatternofhighsolarenergydensityinthesummermonthswithmoreaverage sunlightandlongerdaylight.Wecanexpectthesummertobethemostproductiveperiod.

2.05

3.18

3.814.18

5.16 5.255.58

5.36

4.36 4.35

2.94

1.74

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

kWh/m^2/day

Month

AnnualSolarRadiationSource:NREL

Basedon30yearsofweatherdata.

Page 32: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

32

4.2 KWHProduction

Aspreviouslystated,HelioScopewasusedtolayoutthesolarpowerplantandprovideproperinputincludingthepanelspecifications,ILR,inverterspecifications,step-uptransformerspecifications,conductor,conductorlayout,precisegeographiclocation,weatherdatafromNREL.Weatherdataisastatisticalmodelforecastbasedondatathirtyyearsprior.Theresultsareshowninfigure23.

Figure23.HelioScopeEstimatedkWhProduction.

Onanannualbasiswehaveanestimated97,713,637millionkWh(97.7GWh).Toachievethisamountofproduction,tuningoftherowspacingwasneededtominimizeshadinglosses.Ithasbeendeterminedthat12footrowspacingistheoptimalcompromisebetweenspacesavingandminimalshadingusingHelioScopesimulations.Also,withspacingadjustmenttuningitwaspossibletomaximizethekWhproductioninFebruaryandOctober.Thusonlythreemonthsoftheyearwillhavebelowaverageproduction.

4.86

6.83

8.59

9.75 9.9410.53

12.24

10.849.76

7.20

4.814.36

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

kWh(in

million)

Month

EstimatedMonthlyProduction- HelioScopeSimulation

Page 33: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

33

4.3 SystemLosses

Theprimaryproductionlossisthroughinverterclipping.Thisisacompromisebetweenlesseningthehighsolarirradianceproductionandincreasingproductionduringlowersolarirradiance.Thusproducingamoreconsistentdailypowerproduction.Seefigure24.

Figure24.SystemLosses.Source:HelioScope.

Lessobvioussourcesoflossesareexplainedinthefollowinglist.

• Clipping–Powerlossduetoinverterinputvoltageandoutputpowerlimits.• Mismatch–Powerlossduetocomponentmanufacturingdefectscausingpanelstoperform

outofMPPrange.Basedonstatisticaldata.• Soiling–Lossesduetodebrisbuildupfromtheenvironment.• Irradiance–Lossesduetoduskandeveninglowsolarirradiancecausinginvertersnottoturn

on.Usingpaneltilttuning,thiswasreducedtozero.• Shading–Lossescausedbyshadingfromrackrowscastingshadowsontoeachotherand

weatherpatternforecasting.• Reflection–Powerlossduetoreflectivityofpanels.

Thetotalsystemlossis17.9%oftotalDCoutputof77.3MW.Thelossminimizationwouldhavetobetunedforeverylocation.

Page 34: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

34

4.4 Cost

ThesolarcomponentcostwasdeterminedwithNREL’sPVWattscalculator.WhilethesubstationestimatewasprovidedbyBlack&Veatch.Totalcostisabout$275,134,800.

4.4.1 SolarComponentCost

Theprojectedcostofthesolarcomponentisabout$255,134,800,notincludinganysubsidies.Thisisabout$4.25perMW.Forcomparison,theTopazPVPlantcostwas$4.53millionperMW.

4.4.2 SubstationComponentCost.

Includingtwotransformers,tworowsofswitchgear,andallotherassociatedcomponents.Thecostisabout$20Million.

Page 35: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

35

5 APPENDIXThisappendixcontainsthedefinitionoftermsusedthroughoutthisdesigndocument,allassociatedexternaldocumentlinks,AutoCADdrawinglist,andtheoriginalprojectplanlink.

5.1 GlossaryofCommonTerms

• ILR–Inverterloadratio,theratioDCinputcapacityandtheinverterACoutputcapacity,ahigherDCinputisrequiredtooverruntheinverterbecausethemajorityofoperationtheinverterisunderrun.

• IrradianceCorrectionFactor–Amultiplierforthecurrentoutputofasolarpaneltocompensateforcurrentspikesduetohighsolarradiation.

• Collector–Thesubstationinputfromsolararray.• XfmrorXformer–Transformerabbreviation.• CT–Currenttransformer.• Feeder–Collectorarrangementto34.5kVbus.• Array–Acompleteunitofsolarpanelsandallassociatedcomponentsincludinginverters.• PV–Acronymforphotovoltaic.• PVmodule/panel–singlesolarmoduleorpanelunit.Moduleandpanelareinterchangeableterms.• STC–Standardtemperatureconditions,1000wattspermetersquaredirradiation&-25°C.• InverterSkid–Baseplateforinverterandstep-uptransformerinanarray.• Jumper–Copperconductorsconnectingsolarmodulesinseriesstring.• String–Aseriescombinationofmodules.• Rack–Twosolarstringsinparallel.• CombinerBox–WeatherproofenclosureforcouplingDCconductorswithserviceabledisconnects,

NEC690.16(B).• Azimuth–Anglebetweenthenorthvectorandtheperpendicularprojectionofthestardownonto

thehorizon.• MCOV–MaximumContinuousOperatingVoltage,maximumdesignatedRMSvalueofpower

frequencyvoltagethatmaybeappliedcontinuouslybetweensurgearresterterminals.

Page 36: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

36

5.2 AutoCADDrawingList

IOWASTATESENIORDESIGNTEAMAUGUST2015-MAY2016 BLACK&VEATCH115KV/34.5KVSOLARPOWERPLANT/SUBSTATIONDRAWINGLIST PROJECTNO.MAY1602

TaskNo. DrawingName DrawingTitle Revision Date DrawingStatus1602 MAY1602-W01 KEYPROTECTION 7 3/2/16 COMPLETE

60MWCAPACITY-SUBSTATION1602 MAY1602-W02 115/34.5KVSINGLELINEDIAGRAM 6 2/29/16 COMPLETE

60MWCAPACITY-SUBSTATION1602 MAY1602-W03 115/34.5KVACSINGLELINEDIAGRAM 5 2/29/16 COMPLETE

60MWCAPACITY-SUBSTATION1602 MAY1602-W04 SOLARARRAYLAYOUT 6 3/3/16 COMPLETE

60MWCAPACITY-SUBSTATION1602 MAY1602-W05 ACSCHEMATICBANK1 6 3/24/16 COMPLETE

115/34.5KV-PART11602 MAY1602-W06 ACSCHEMATICBANK1 6 3/10/16 COMPLETE

115/34.5KV-PART21602 MAY1602-W07 DCSCHEMATICCB311 4 3/11/16 COMPLETE

FEEDER11602 MAY1602-W08 DCSCHEMATICCB312 4 3/24/16 COMPLETE

FEEDER21602 MAY1602-W09 DCSCHEMATICCB313 4 3/24/16 COMPLETE

FEEDER31602 MAY1602-W10 DCSCHEMATIC 6 3/24/16 COMPLETE

ABS681115KV1602 MAY1602-W11 DCSCHEMATIC 6 3/24/16 COMPLETE

ABS684115KV1602 MAY1602-W12 DCSCHEMATICBANK1 4 4/4/16 COMPLETE

PRIMARYRELAY1602 MAY1602-W13 DCSCHEMATICBANK1 3 4/4/16 COMPLETE

BACKUPRELAY1602 MAY1602-W14 DCSCHEMATIC 5 4/4/16 COMPLETE

CB317RELAY1602 MAY1602-W15 DCSCHEMATIC 2 3/11/16 COMPLETE

34.5KVBUS1BREAKER1602 MAY1602-W16 DCSCHEMATIC 2 3/11/16 COMPLETE

BANK1ANNUNCIATOR1602 MAY1602-W17 ACSCHEMATIC 1 3/10/16 COMPLETE

BANK1AUXILIARY1602 MAY1602-W18 DCSCHEMATIC 1 3/12/16 COMPLETE

RTU,ROUTER&ETHERNETSWITCH1602 MAY1602-W19 DCSCHEMATIC 1 3/12/16 COMPLETE

RLHCARD1602 MAY1602-W20 DCSCHEMATIC 1 3/24/16 COMPLETE

DISTRIBUTEDI/OMODULE1602 MAY1602-W21 ACSCHEMATIC 2 3/24/16 COMPLETE

MAINCONNECTION1602 MAY1602-W22 ACSCHEMATIC 2 3/24/16 COMPLETE

YARD&BUILDINGLOADCENTER1602 MAY1602-W23 DCSCHEMATIC 2 3/24/16 COMPLETE

STATIONBATTERY,DCLOADCENTER&125VBATTERYCHARGER1602 MAY1602-W24 BUILDING 1 3/24/16 COMPLETE

LAYOUT-PART11602 MAY1602-W25 BUILDING 1 3/24/16 COMPLETE

LAYOUT-PART21602 MAY1602-W26 BUILDING 1 3/24/16 COMPLETE

LAYOUT-PART31602 MAY1602-W27 PANELELEVATION-PANEL101 1 3/24/16 COMPLETE

COMMUNICATION,ABS681,ABS6841602 MAY1602-W28 PANELELEVATION-PANEL103 1 3/9/16 COMPLETE

115/34.5KVBANK1PROTECTION&CONTROL1602 MAY1602-W29 PANELELEVATION-PANEL104 1 3/9/16 COMPLETE

34.5KVBUSCIRCUITS1602 MAY1602-W30 DCSCHEMATIC 2 3/24/16 COMPLETE

115KVBUS1TLSCONTROLLER

Page 37: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

37

5.3 DocumentandMarketLiteratureSources

5.3.1 MarketLiteratureSouces

• NFPA70NationalElectricalCode(NEC)2014Edition.• IEEEStandardsAssociation.• AmericanSocietyofHeatingRefrigerationandAirConditioningEngineers(ASHRAE)–Solar

radiationdata.• IowaEnergyCenter–SolarCalculatorTools.• NationalRenewableEnergyLaboratory(NREL)–Advancedsolarradiationdata.• AmericanNationalStandardsInstitute(ANSI)–StandardDeviceNumberIndex.

Page 38: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

38

5.3.1.1 ANSIStandardDeviceNumberIndexUsefordrawingcomponentreference.

Page 39: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

39

5.3.2 ArcadiaSubstationOne-LineDiagram

Page 40: 115 kV / 34.5 kV Solar Power Plant / Substationmay1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/design...115 kV / 34.5 kV Solar Power Plant / Substation Design Document MAY1602

MAY1602 DESIGNDOCUMENT APRIL17,2016

40

5.4 ComponentSpecificationSheets

5.4.1 HanwhaQCELLSQPlusL-G4.1325W

http://www.q-cells.us/uploads/tx_abdownloads/files/Hanwha_Q_CELLS_Data_sheet_QPLUS_G4_270-280_2015-04_Rev02_NA.pdf

5.4.2 EatonXpert1670kWInverterandTransformer

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjmnNHTgI_MAhVIWCYKHSvZAFMQFgglMAE&url=http%3A%2F%2Fwww.eaton.com%2Fecm%2Fidcplg%3FIdcService=GET_FILE%26allowInterrupt=1%26RevisionSelectionMethod=LatestReleased%26no

5.4.3 CombinerBoxes

http://www.solarbos.com/data/files/60/2016SolarBOS1500VDCSolutions.pdf

5.5 OriginalProjectPlan

http://may1602.sd.ece.iastate.edu/uploads/6/2/1/4/62140729/project_plan_may1602_v3_.pdf