of 59

• date post

02-Jun-2018
• Category

## Documents

• view

227

0

Embed Size (px)

### Transcript of 11. Logarithms

• 8/10/2019 11. Logarithms

1/59

• 8/10/2019 11. Logarithms

2/59

Session

Logarithms

• 8/10/2019 11. Logarithms

3/59

Session Objectives

• 8/10/2019 11. Logarithms

4/59

Session Objectives

1. Definition

2. Laws of logarithms

3. System of logarithms

4. Characteristic and mantissa

5. How to find log using log tables

6. How to find antilog

7. Applications

• 8/10/2019 11. Logarithms

5/59

Base:Any postive real number

other than one

Logarithms Definition

alog N x

Log of Nto the

base a is x

xa Nalog N x

2

2Example : log 4 2 2 4 Note: log of negatives andzero are not Defined in Reals

• 8/10/2019 11. Logarithms

6/59

Illustrative Example

The number log27 is

(a) Integer (b) Rational

(c) Irrational (d) Prime

Solution:

Log27 is an Irrational number

Why?

As there is norational number,

2 to the powerof which gives 7

• 8/10/2019 11. Logarithms

7/59

Fundamental laws of logarithms

b b b1) log xy log x log y

b bLet log x A, log y B

A Bb x , b y

A B A Bxy b b b

b b blog xy A B log x log y hence proved

b b bx2) log log x log yy

y

b b3) log x y log x

b b b bExtension log xyz log x log y log z

• 8/10/2019 11. Logarithms

8/59

Other laws of logarithms

0

b4) log 1 0 as b 1

1

b5) log b 1 as b b

ab

a

log x6) log x

log b

Changeof base

blog x7) b x

blog xLet b y blog x

b blog b log y

b b blog xlog b log y b blog x log y

y x

z

y

bb

y8) log x log x

z

Where a is any other base

• 8/10/2019 11. Logarithms

9/59

Illustrative Example

2

3

Simplify log 2 2

Solution:

2

3 2log 2 2 log 2 23

3

22

log 23

2 3

. log 2 log 23 2

• 8/10/2019 11. Logarithms

10/59

Illustrative Example

Solution :

log 7 log 33 7

3 7 True / False ?

log 73

log 7 log 73 33 3

1

log 73 log 733

1

log 7 log 33 7

7 7

Hence True

• 8/10/2019 11. Logarithms

11/59

Illustrative Example

Solution:

If ax= b, by= c, cz= a, then the

value of xyz is

a) 0 b) 1 c) 2 d) 3

xa b xloga logb

logbx

loga

logc logaSimilarly y , zlogb logc

Hence xyz 1

• 8/10/2019 11. Logarithms

12/59

Illustrative Example

Find log tan 0.25

Solution:

log tan 0.25 log tan4

log 1 0

• 8/10/2019 11. Logarithms

13/59

Illustrative Example

Solution:

1 1 1log ...2.5 2 33 3 3Pr ove that 0.16 4

1 1 1 1 / 3

log ... log2.5 2.52 33 1 1 / 33 30.16 0.16

1 / 3

log2.52 / 30.16 1

2log2.5 20.4 21

log2.5 20.4

21

log10 24

4

10

21

log10 24

10

4

2

1log 210 2

410 1

44 2

• 8/10/2019 11. Logarithms

14/59

Illustrative Example

Solution:

If log32, log3(2x-5) and log3(2

x-7/2)

are in arithmetic progression, thenfind the value of x

2log3(2x-5) = log32 + log3(2

x-7/2)

log3(2x-5)2= log32.(2

x-7/2)

(2x-5)2= 2.(2x-7/2)

22x -12.2x + 32 = 0, put 2x= y, we get

y2- 12y + 32 = 0 (y-4)(y-8) = 0 y = 4 or 8

2x=4 or 8 x = 2 or 3

Why

• 8/10/2019 11. Logarithms

15/59

Illustrative Example

Solution:

If a2+4b2= 12ab, then prove that

log(a+2b) is equal to

1

loga logb 4log22

a2+4b2= 12ab (a+2b)2 = 16ab

2log(a+2b) = log 16 + log a + log b

2log(a+2b) = 4log 2 + log a + log b

log(a+2b) = (4log 2 + log a + log b)

• 8/10/2019 11. Logarithms

16/59

System of logarithms

Common logarithm:Base = 10

Log10x, also known as Briggssystem

Note: if base is not given base is

taken as 10

Natural logarithm:Base = e

Logex, also denoted as lnx

Where e is an irrational number given by

1 1 1e 1 .... ....

1! 2! n!

• 8/10/2019 11. Logarithms

17/59

Illustrative Example

Solution:

lnln7e 7 True / False ?

Hence False

log blnln7 ae ln7 as a b

• 8/10/2019 11. Logarithms

18/59

Characteristic andMantissa

Standard form of decimal

pn m 10 where 1 m 10

3Example 1234.56 1.23456 10

3

0.001234 1.234 10

p pHence log n log m 10 log m log 10

log n log m plog 10 log m p

p is characteristicof n

log(m) is mantissaof n

log(n)=mantissa+characteristic

• 8/10/2019 11. Logarithms

19/59

How to find log(n) using logtables

1) Step1: Standard form of decimal

n = m x 10p, 1 m < 10

log n p log m

Note to find log(n) we have tofind the mantissa of n i.e. log(m)

2) Step2: Significant digits

Identify 4 digits from left, starting from first nonzero digit of m, inserting zeros at the end ifrequired, let it be abcd

• 8/10/2019 11. Logarithms

20/59

How to find log(n) using logtables

n Std. form

m x 10pp m abcd

1234.56 1.23456x103 3 1.2345 1234

0.000123 1.23x10-4 -4 1.23 1230

100 1x102 2 1 1000

0.10023 1.0023x10-1 -1 1.0023 1002

Example n = m x 10p

,

p: characteristic, log(m): mantissa

Log(n) = p + log(m)

• 8/10/2019 11. Logarithms

21/59

How to find log(n) using log tables

3) Step3: Select row ab

Select row ab from thelogarithmic table

4) Step4: Select column c

Locate number at column cfrom the row ab, let it be x

5) Step5: Select column of mean difference d

If d 0,Locate number at column dof mean difference from the rowab, let it be y

What if d = 0?Consider y = 0

• 8/10/2019 11. Logarithms

22/59

How to find log(n) using log tables

6) Step6: Finding mantissa hence

log(n)

Log(m) = .(x+y)

Log(n) = p + Log(m)

Summarize:

1) Std. Form n = m x 10p

2) Significant digits of m: abcd

3) Find number at (ab,c), say x, where ab: row, c: col

4) Find number at (ab,d), say y, where d: mean diff

5) log(n) = p + .(x+y)

Never neglect 0s

at end or front

• 8/10/2019 11. Logarithms

23/59

Illustrative Example

Find log(1234.56)

n Std. form

m x 10pp m abcd

1234.56

1.23456x103

3 1.2345 1234

1) Std. Form n = 1.23456 x 103

2) Significant digits of m: 1234

3) Number at (12,3) = 0899

4) Number at (12,4) = 14

5) log(n) = 3 + .(0899+14) = 3 + 0.0913 = 3.0913

Note this

• 8/10/2019 11. Logarithms

24/59

Illustrative Example

Find log(0.000123)

n Std. form

m x 10pp m abcd

0.0001

23

1.23x10-4 -4 1.23 1230

1) Std. Form n = 1.23 x 10-4

2) Significant digits of m: 1230

3) Number at (12,3) = 0899

4) As d = 0, y = 0 Note this

5) log(n) = -4 + .(0899+0) = -4 + 0.0899 = -3.9101

To avoidthe

calculations

4.0899

• 8/10/2019 11. Logarithms

25/59

Illustrative Example

Find log(100)

n Std. form

m x 10pp m abcd

100 1x102 2 1 1000

1) Std. Form n = 1 x 102

2) Significant digits of m: 1000

3) Number at (10,0) = 0000

4) As d = 0, y = 0

5) log(n) = 2 + .(0000+0) = 2 + 0.0000 = 2

• 8/10/2019 11. Logarithms

26/59

Illustrative Example

Find log(0.10023)

n Std. form

m x 10pp m abcd

0.10023

1.0023x10-1

-1 1.0023 1002

1) Std. Form n = 1.0023 x 10-1

2) Significant digits of m: 1002

3) Number at (10,0) = 0000

4) Number at (10,2) = 9

5) log(n) = -1 + .(0000+9) = -1 + 0.0009 = -0.9991

To avoidthe

calculations

1.0009

• 8/10/2019 11. Logarithms

27/59

How to find Antilog(n)

(1) Step1: Standard form of number

If n 0, say n = m.abcd

For bar notation subtract 1, add 1 we get

If n < 0, convert it into barnotation say n m.abcd

For eg. If n = -1.2718 = -1 0.2718

n = -1-0.2718=-2+1-0.2718

n = -2+0.7282

2.7282

Now n = m.abcd or n m.abcd

• 8/10/2019 11. Logarithms

28/59

How to find Antilog(n)

2) Step2: Select row ab

Select the row ab fromthe antilog table

Eg. n = -1.2718 2.7282

Select row 72 from table

3) Step3: Select column c of ab

Select the column c ofrow ab from the antilogtable, locate the number

there, let it be x

Eg. n 2.7282

Number at col 8 of row72 is 5346, x = 5346

• 8/10/2019 11. Logarithms

29/59

How to find Antilog(n)

4) Step4: Select col. d of mean diff.Select the col d of meandifference of the row abfrom the antilog table, letthe number there be y, Ifd = 0, take y as 0

Eg. n 2.7282

Number at col 2 of meandiff. of row 72 is 2, y = 2

• 8/10/2019 11. Logarithms

30/59

How to find Antilog(n)

5) Step5: Antilog(n)

If n = m.abcd i.e. n 0

Antilog(n) = .(x+y) x 10m+1

If i.e. n < 0

Antilog(n) = .(x+y) x 10-(m-1)

n m.abcd

Eg. n 2.7