11. Logarithms
date post
02-Jun-2018Category
Documents
view
227download
0
Embed Size (px)
Transcript of 11. Logarithms
8/10/2019 11. Logarithms
1/59
8/10/2019 11. Logarithms
2/59
Session
Logarithms
8/10/2019 11. Logarithms
3/59
Session Objectives
8/10/2019 11. Logarithms
4/59
Session Objectives
1. Definition
2. Laws of logarithms
3. System of logarithms
4. Characteristic and mantissa
5. How to find log using log tables
6. How to find antilog
7. Applications
8/10/2019 11. Logarithms
5/59
Base:Any postive real number
other than one
Logarithms Definition
alog N x
Log of Nto the
base a is x
xa Nalog N x
2
2Example : log 4 2 2 4 Note: log of negatives andzero are not Defined in Reals
8/10/2019 11. Logarithms
6/59
Illustrative Example
The number log27 is
(a) Integer (b) Rational
(c) Irrational (d) Prime
Solution:
Log27 is an Irrational number
Why?
As there is norational number,
2 to the powerof which gives 7
8/10/2019 11. Logarithms
7/59
Fundamental laws of logarithms
b b b1) log xy log x log y
b bLet log x A, log y B
A Bb x , b y
A B A Bxy b b b
b b blog xy A B log x log y hence proved
b b bx2) log log x log yy
y
b b3) log x y log x
b b b bExtension log xyz log x log y log z
8/10/2019 11. Logarithms
8/59
Other laws of logarithms
0
b4) log 1 0 as b 1
1
b5) log b 1 as b b
ab
a
log x6) log x
log b
Changeof base
blog x7) b x
blog xLet b y blog x
b blog b log y
b b blog xlog b log y b blog x log y
y x
z
y
bb
y8) log x log x
z
Where a is any other base
8/10/2019 11. Logarithms
9/59
Illustrative Example
2
3
Simplify log 2 2
Solution:
2
3 2log 2 2 log 2 23
3
22
log 23
2 3
. log 2 log 23 2
8/10/2019 11. Logarithms
10/59
Illustrative Example
Solution :
log 7 log 33 7
3 7 True / False ?
log 73
log 7 log 73 33 3
1
log 73 log 733
1
log 7 log 33 7
7 7
Hence True
8/10/2019 11. Logarithms
11/59
Illustrative Example
Solution:
If ax= b, by= c, cz= a, then the
value of xyz is
a) 0 b) 1 c) 2 d) 3
xa b xloga logb
logbx
loga
logc logaSimilarly y , zlogb logc
Hence xyz 1
8/10/2019 11. Logarithms
12/59
Illustrative Example
Find log tan 0.25
Solution:
log tan 0.25 log tan4
log 1 0
8/10/2019 11. Logarithms
13/59
Illustrative Example
Solution:
1 1 1log ...2.5 2 33 3 3Pr ove that 0.16 4
1 1 1 1 / 3
log ... log2.5 2.52 33 1 1 / 33 30.16 0.16
1 / 3
log2.52 / 30.16 1
2log2.5 20.4 21
log2.5 20.4
21
log10 24
4
10
21
log10 24
10
4
2
1log 210 2
410 1
44 2
8/10/2019 11. Logarithms
14/59
Illustrative Example
Solution:
If log32, log3(2x-5) and log3(2
x-7/2)
are in arithmetic progression, thenfind the value of x
2log3(2x-5) = log32 + log3(2
x-7/2)
log3(2x-5)2= log32.(2
x-7/2)
(2x-5)2= 2.(2x-7/2)
22x -12.2x + 32 = 0, put 2x= y, we get
y2- 12y + 32 = 0 (y-4)(y-8) = 0 y = 4 or 8
2x=4 or 8 x = 2 or 3
Why
8/10/2019 11. Logarithms
15/59
Illustrative Example
Solution:
If a2+4b2= 12ab, then prove that
log(a+2b) is equal to
1
loga logb 4log22
a2+4b2= 12ab (a+2b)2 = 16ab
2log(a+2b) = log 16 + log a + log b
2log(a+2b) = 4log 2 + log a + log b
log(a+2b) = (4log 2 + log a + log b)
8/10/2019 11. Logarithms
16/59
System of logarithms
Common logarithm:Base = 10
Log10x, also known as Briggssystem
Note: if base is not given base is
taken as 10
Natural logarithm:Base = e
Logex, also denoted as lnx
Where e is an irrational number given by
1 1 1e 1 .... ....
1! 2! n!
8/10/2019 11. Logarithms
17/59
Illustrative Example
Solution:
lnln7e 7 True / False ?
Hence False
log blnln7 ae ln7 as a b
8/10/2019 11. Logarithms
18/59
Characteristic andMantissa
Standard form of decimal
pn m 10 where 1 m 10
3Example 1234.56 1.23456 10
3
0.001234 1.234 10
p pHence log n log m 10 log m log 10
log n log m plog 10 log m p
p is characteristicof n
log(m) is mantissaof n
log(n)=mantissa+characteristic
8/10/2019 11. Logarithms
19/59
How to find log(n) using logtables
1) Step1: Standard form of decimal
n = m x 10p, 1 m < 10
log n p log m
Note to find log(n) we have tofind the mantissa of n i.e. log(m)
2) Step2: Significant digits
Identify 4 digits from left, starting from first nonzero digit of m, inserting zeros at the end ifrequired, let it be abcd
8/10/2019 11. Logarithms
20/59
How to find log(n) using logtables
n Std. form
m x 10pp m abcd
1234.56 1.23456x103 3 1.2345 1234
0.000123 1.23x10-4 -4 1.23 1230
100 1x102 2 1 1000
0.10023 1.0023x10-1 -1 1.0023 1002
Example n = m x 10p
,
p: characteristic, log(m): mantissa
Log(n) = p + log(m)
8/10/2019 11. Logarithms
21/59
How to find log(n) using log tables
3) Step3: Select row ab
Select row ab from thelogarithmic table
4) Step4: Select column c
Locate number at column cfrom the row ab, let it be x
5) Step5: Select column of mean difference d
If d 0,Locate number at column dof mean difference from the rowab, let it be y
What if d = 0?Consider y = 0
8/10/2019 11. Logarithms
22/59
How to find log(n) using log tables
6) Step6: Finding mantissa hence
log(n)
Log(m) = .(x+y)
Log(n) = p + Log(m)
Summarize:
1) Std. Form n = m x 10p
2) Significant digits of m: abcd
3) Find number at (ab,c), say x, where ab: row, c: col
4) Find number at (ab,d), say y, where d: mean diff
5) log(n) = p + .(x+y)
Never neglect 0s
at end or front
8/10/2019 11. Logarithms
23/59
Illustrative Example
Find log(1234.56)
n Std. form
m x 10pp m abcd
1234.56
1.23456x103
3 1.2345 1234
1) Std. Form n = 1.23456 x 103
2) Significant digits of m: 1234
3) Number at (12,3) = 0899
4) Number at (12,4) = 14
5) log(n) = 3 + .(0899+14) = 3 + 0.0913 = 3.0913
Note this
8/10/2019 11. Logarithms
24/59
Illustrative Example
Find log(0.000123)
n Std. form
m x 10pp m abcd
0.0001
23
1.23x10-4 -4 1.23 1230
1) Std. Form n = 1.23 x 10-4
2) Significant digits of m: 1230
3) Number at (12,3) = 0899
4) As d = 0, y = 0 Note this
5) log(n) = -4 + .(0899+0) = -4 + 0.0899 = -3.9101
To avoidthe
calculations
4.0899
8/10/2019 11. Logarithms
25/59
Illustrative Example
Find log(100)
n Std. form
m x 10pp m abcd
100 1x102 2 1 1000
1) Std. Form n = 1 x 102
2) Significant digits of m: 1000
3) Number at (10,0) = 0000
4) As d = 0, y = 0
5) log(n) = 2 + .(0000+0) = 2 + 0.0000 = 2
8/10/2019 11. Logarithms
26/59
Illustrative Example
Find log(0.10023)
n Std. form
m x 10pp m abcd
0.10023
1.0023x10-1
-1 1.0023 1002
1) Std. Form n = 1.0023 x 10-1
2) Significant digits of m: 1002
3) Number at (10,0) = 0000
4) Number at (10,2) = 9
5) log(n) = -1 + .(0000+9) = -1 + 0.0009 = -0.9991
To avoidthe
calculations
1.0009
8/10/2019 11. Logarithms
27/59
How to find Antilog(n)
(1) Step1: Standard form of number
If n 0, say n = m.abcd
For bar notation subtract 1, add 1 we get
If n < 0, convert it into barnotation say n m.abcd
For eg. If n = -1.2718 = -1 0.2718
n = -1-0.2718=-2+1-0.2718
n = -2+0.7282
2.7282
Now n = m.abcd or n m.abcd
8/10/2019 11. Logarithms
28/59
How to find Antilog(n)
2) Step2: Select row ab
Select the row ab fromthe antilog table
Eg. n = -1.2718 2.7282
Select row 72 from table
3) Step3: Select column c of ab
Select the column c ofrow ab from the antilogtable, locate the number
there, let it be x
Eg. n 2.7282
Number at col 8 of row72 is 5346, x = 5346
8/10/2019 11. Logarithms
29/59
How to find Antilog(n)
4) Step4: Select col. d of mean diff.Select the col d of meandifference of the row abfrom the antilog table, letthe number there be y, Ifd = 0, take y as 0
Eg. n 2.7282
Number at col 2 of meandiff. of row 72 is 2, y = 2
8/10/2019 11. Logarithms
30/59
How to find Antilog(n)
5) Step5: Antilog(n)
If n = m.abcd i.e. n 0
Antilog(n) = .(x+y) x 10m+1
If i.e. n < 0
Antilog(n) = .(x+y) x 10-(m-1)
n m.abcd
Eg. n 2.7