10 Coupled Lines

download 10 Coupled Lines

of 16

Transcript of 10 Coupled Lines

  • 8/17/2019 10 Coupled Lines

    1/16

    Coupled transmission linesCoupled transmission lines

    When two transmission lines are placed close together, the

    propagation in each line is influenced on the other. We talk in this

    case of coupled-line propagation

    Also in this case every possible solution, represented by a propagatingem field, must be the combination of modes. Each mode define a

    configuration of E and H fields in the two lines, with specific

    propagation parameters (phase constant, attenuation, characteristic

    impedance)

  • 8/17/2019 10 Coupled Lines

    2/16

    Circuit model for two coupled linesCircuit model for two coupled lines

    V1(z) V2(z)

    I1(z)I2(z)

    Element dz  line 1 Element dz  line 2

    Electric coupling

    Magnetic coupling

    Ca1

    La1

    Ca2

    La2L

     

    11 11 11 12 22 22 12 11 22 22

    11 11 11 12 22 22 12 11 22 22

      ,

    ,

     L L L L L L

    C C L C C L

    V j L I j L I V j L I j L I  

     I j C V j C V I j C V j C V 

     

     

  • 8/17/2019 10 Coupled Lines

    3/16

    Propagation equations

    1 1 11 1 12 2

    2 2 22 2 12 1

    1 1 11 1 12 2

    2 2 22 2 12 1

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

      p

     I z dz I z j C dz V z j C V z dz

     I z dz I z j C dz V z j C V z dz

    V z dz V z j L dz I z j L I z dz

    V z dz V z j L dz I z j L I z dz

     

     

     

     

    1 211 1 12 2 12 1 22 2

    1 211 1 12 2 12 1 22 2

    er 0:dz

    dI dI   j C V j C V j C V j C V 

    dz dz

    dV dV   j L I j L I j L V j L V dz dz

     

     

    Ca1 Ca2

    La1 La2

    V1(z)

    I1(z)

    V1(z+dz)

    V2(z)

    I2(z)

    V2(z+dz)

    I1(z+dz) I2(z+dz)

  • 8/17/2019 10 Coupled Lines

    4/16

    Type of solution:

    1 1 12 2 2 12 1 2

    1 1 12 2 2 12 1 2

    V LI L I V L I LI  

     I CV C V I C V CV 

       

       

    There are only 4 possible solutions for :

    12 1212 12 1 1 L C 

     L L C C LC  L C 

        

    The first ± sign define the direction of propagation (- toward increasing z). The ± signs

    inside the square roots define two different propagation modes (called even and odd).For C12 /C=-L12 /L these modes have the same value of    (i.e. the same phase velocity).

    That happens when the two lines, taken separately, allow the propagation of a TEM

    mode .

    Solution for two equal lines (L11=L22, C11=C22)

    1,2 0( )  j z

    V z V e   

    If such a solution exists, the phase constant    must satisfy the following equations (with

    L=L11=L22, C=C11=C22):

    2

    12

    12 121 1 C C

    e o

    C v v LC L L

     

      

  • 8/17/2019 10 Coupled Lines

    5/16

    For the symmetries, it can be easily understood that the even mode is characterized by the

    voltages V 1

    (z) and V 2

    (z) equal and in phase, while for the odd mode these voltages are

    equal and out of phase:

    1 2 1 2,e e o oV V V V  

    As in the case of simple lines, the ratio of incident (or reflected) voltage and current

    voltages define the characteristic impedance of the each mode:

    12 121 1 1 1

    12 12

    ,ce e e co o o L L L L

     Z V I Z V I C C C C  

    Note that cannot never be  Z ce=Z

     co; this means that it is not possible to cancel the

    reflected waves of both modes at the same time.

    A generic solution in the two coupled lines is constituted by a linear combination of the

    even and odd modes. For instance, considering only the progressive wave, it has :

    1 1 0 1 0 2 2 0 2 0, p pd d 

     j z j z j z j z

    e o e oV z V e V e V z V e V e

          

  • 8/17/2019 10 Coupled Lines

    6/16

    We have seen that, in this case, C 12 /C=-L12 /L, so:

    Equal TEM lines (C11=C22=C)

    2

    12

    1 1

    1

    e ov v v

     LC  C C 

     

      

    12 12

    12 12

    1 1,

    1 1ce co

    C C C C   L L Z Z 

    C C C C C C  

    Zce e Zco can be expressed as function of the capacitance p.u.l. of the two

    modes:

    12

    12

    1

    ,

    1,

    cp even

    even

    cd odd  

    odd 

     Z C C C v C 

     Z C C C 

    v C 

  • 8/17/2019 10 Coupled Lines

    7/16

    Being the voltages equal and in phase for the even mode , there is along the symmetry axis

    a perfect magnetic wall. For the odd mode, the condition of voltages equal and out of

     phase implies the presence of perfect electric wall along the same axis.

    For computing the impedances  Z cpe Z cd  it is then possible to refer to the equivalent lines

    obtained imposing the presence of such walls:

    Magnetic

    WallEven mode

    Odd mode

    1co

    odd 

     Z v C 

    1ce

    even

     Z v C 

    Physical meaning of even and odd modes

    The phase velocity is the same for the two TEM lines. It depends on

    the medium filling the structure (dielectric constant r ):

    Electric

    WallSymmetryaxis

    2

    12

    1

    1   r 

    cv

     LC C C     

  • 8/17/2019 10 Coupled Lines

    8/16

    Circuit model of two coupled lines with finiteCircuit model of two coupled lines with finite

    lengthlength

    Zce, Zco

    L

    1 2

    3 4

    Goal: compute the 4-port Z matrix (or Y, or S).

    Hypothesis: equal lines (two symmetry axis)

    Evaluation method: matrix eigenvalues

  • 8/17/2019 10 Coupled Lines

    9/16

    Eigenvalues evaluationEigenvalues evaluation

    Symmetry axis 1

    Symmetry axis 2

    Exciting the network with an eigenvector, an electric or a

    magnetic wall is obtained alon the symmetry axis. Withreference to Z matrix, the exciting currents for eacheigenvector result:

    1 2

    3 4

    1

    2

    3

    4

    1, 1, 1, 1

    1, 1, 1, 1

    1, 1, 1, 1

    1, 1, 1, 1

     I 

     I 

     I 

     I 

     

     

     

     

    Axis 1: Magnetic, Axis 2: Magnetic

    Axis 1: Magnetic, Axis 2: Electric

    Axis 1:Electric, Axis 2: Magnetic

    Axis 1: Electric, Axis 2: Electric

  • 8/17/2019 10 Coupled Lines

    10/16

    Evaluation of the eigenvalues using theEvaluation of the eigenvalues using the eigenetworkeigenetwork

    EigenvalueEigenvalue Z1:

    Z1

    /2, Zcp OPEN   1 cot 2cp Z jZ    

    EigenvalueEigenvalue Z2:

    Z2

    /2, Zcp SHORT   2 tan 2cp Z jZ    

    EigenvalueEigenvalue Z3:

    Z3

    /2, Zcd  OPEN   3 cot 2cd  Z jZ    

    EigenvalueEigenvalue Z4:

    Z4

    /2, Zcd  SHORT   4 tan 2cd  Z jZ    

    OPEN

    OPEN

    SHORT

    SHORT

  • 8/17/2019 10 Coupled Lines

    11/16

    Evaluation of Z MatrixEvaluation of Z Matrix

    From the definition of Z, imposing each eigenvector as excitation,

    the four independent elements of Z are obtained:

    11 11 12 13 14

    0

    12 11 12 13 14

    0

    13 11 12 13 14

    0

    1

    4 11 12 13 14

    0

    V  Z Z Z Z Z  I 

    V  Z Z Z Z Z 

     I V 

     Z Z Z Z Z  I 

     Z Z Z Z Z  I 

     

     

     

     

    11 1 2 3 4

    12 1 2 3 4

    13 1 2 3 4

    14 1 2 3 4

    1

    4

    1

    41

    4

    1

    4

     Z Z Z Z Z 

     Z Z Z Z Z 

     Z Z Z Z Z 

     Z Z Z Z Z 

     

     

     

     

    Using Z  i, the eigenvalues of the other matrices (Y, S) can be

    obtained. The above formulas can be then used for computing the

    elements of also these matrices

  • 8/17/2019 10 Coupled Lines

    12/16

    Expression of Z matrix elementsExpression of Z matrix elements

    11

    12

    13

    cot tan cot tan4 2 2 2 2

    cot tan cot tan4 2 2 2 2

    cot tan cot t4 2 2 2

    cp cp cd cd  

    cp cp cd cd  

    cp cp cd cd  

     j Z Z Z Z Z 

     j Z Z Z Z Z 

     j Z Z Z Z Z 

    14

    an2

    cot tan cot tan

    4 2 2 2 2

    cp cp cd cd  

     j Z Z Z Z Z 

  • 8/17/2019 10 Coupled Lines

    13/16

    11

    12

    13

    14

    cot

    2

    1

    2 sin

    cot2

    12 sin

    cp cd  

    cp cd  

    cp cd  

    cp cd  

     Z Z  Z j

     Z Z  Z j

     Z Z  Z j

     Z Z  Z j

    Compact expressions of Z and Y elementsCompact expressions of Z and Y elements

    11

    12

    13

    14

    cot2

    1

    2 sin

    cot2

    1

    2 sin

    cp cd  

    cp cd  

    cp cd  

    cp cd  

    Y Y Y j

    Y Y Y j

    Y Y Y j

    Y Y 

    Y j

  • 8/17/2019 10 Coupled Lines

    14/16

    Terminating the ports in cc orTerminating the ports in cc or ococ

    1

    3

    2-port network 

    1 11 1 12 13 3 14 11 1 13 3

    3 31 1 32 33 3 34 31 1 33 3

    0 0

    0 0

     I Y V Y Y V Y Y V Y V 

     I Y V Y Y V Y Y V Y V 

    11 22 11

    12 13

    cot ,2

    cot2

    cp cd  

    cp cd  

    Y Y Y Y Y j

    Y Y Y Y j

     

    1

    4

    2-port network 

    1 11 1 12 13 14 4 11 1 14 4

    4 41 1 42 43 44 4 41 1 44 4

    0 0

    0 0

    V Z I Z Z Z I Z I Z I  

    V Z I Z Z Z I Z I Z I  

    11 22 11

    12 14

    cot ,2

    1

    2 sin

    cp cd  

    cp cd  

     Z Z  Z Z Z j

     Z Z 

     Z Z j

     

  • 8/17/2019 10 Coupled Lines

    15/16

    Special casesSpecial cases

        LL=180°

    The eigenvalues of Z are [0, ∞, 0, ∞], so those of S result:

    Si= [-1, 1, -1, 1]. The scattering matrix elements are then:

    11 12 13 140, 1, 0, 0S S S S   Note that line 2 is completely uncoupled from line 1 independently on Z0!

    Perfect matching at the four ports

    There is a value of the load Z0 for which the ports are all matched(S11=S22=S33=S44=0). Moreover this happens independently of L:

    0 , ,= Zc p c d   Z Z 

    Note that the matching at the ports does not imply the absence ofreflected waves along the two lines. Actually that happens only at the

    ports

  • 8/17/2019 10 Coupled Lines

    16/16

    Derivation of the matching conditionDerivation of the matching condition

    Eigenvalues of S

    1

    ii

    i

     jX S 

     jX 

      

     

    Parameter S11:

    11 1 2 3 41

    04

    S S S S S    

    1 0

    2 0

    3 0

    4 0

    cot 2

    tan 2

    cot 2

    tan 2

    cp

    cp

    cd 

    cd 

     jX jZ Z 

     jX jZ Z 

     jX jZ Z 

     jX jZ Z 

     

     

     

     

    Eigenvalues of Z

    There are only two cases where the above condition can be satisfied

    independently on   L, i.e.:

    1 2

    3 4

    0

    0

    S S 

    S S 

     

     

    1 2

    3 4

    1

    1

     X X 

     X X 

     

     

    2 2

    0

    2 20

    cp

    cd 

     Z Z 

     Z Z 

    NOT

    Admissible

    1 4

    2 3

    0

    0

    S S 

    S S 

     

     

    1 4

    3 2

    1

    1

     X X 

     X X 

     

     

    2

    0

    2

    0

    cp cd  

    cp cd  

     Z Z Z 

     Z Z Z 

    Admissible