10 CE225 MDOF Seismic Inertial Forces

download 10 CE225 MDOF Seismic Inertial Forces

of 42

Transcript of 10 CE225 MDOF Seismic Inertial Forces

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    1/42

    MDOF Seismic Inertial Forces

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    2/42

    Multi-Degree-of-Freedom Systems

    Degree-of-Freedom is two or more

    Degree-of-Freedom is the number of independent

    displacement coordinates necessary to describe the

    motion of the system.

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    3/42

    Shear Building (Assumptions)

    Beams and floor systems are rigid (infinitely stiff)

    in flexure

    Axial deformations of beams and columns are

    neglected Effect of axial force on stiffness of the columns

    are neglected

    Mass is concentrated at the floor levels Linear viscous damping is associated with

    deformational motions of each story

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    4/42

    Two-Story Shear Building

    (Loading Applied on Mass)

    p1(t)

    p2(t)

    m1

    m2

    u1

    u2

    c1

    c2

    k1

    k2

    u2

    u1

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    5/42

    Equation of Motion of Two-Story Shear

    Building

    m1 0

    0 m2

    u1

    u2

    +

    c1+c2 -c2

    - c2 c2

    u1

    u2

    +

    k1+k2 -k2

    - k2 k2

    u1

    u2

    =

    p1(t)

    p2(t )

    m u + c u +k u = p(t)

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    6/42

    General Form of the Equation of Motion

    m11 m12

    m21 m22

    u1

    u2

    +

    u1

    u2

    +

    u1

    u2

    =

    p1(t)

    p2(t )

    Physical meaning of each element of the matrices mij, cij, kijis the force at the i

    thmass due to a unit

    acceleration, velocity or displacement at the jthmass,

    respectively, with all other accelerations, velocities

    and displacements equal to zero.

    c11 c12

    c21 c22

    k11 k12

    k21 k22

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    7/42

    Equation of Motion of a Two-

    Degree-of-Freedom System

    (Base Excitation, Undamped)

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    8/42

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    9/42

    2-DOF System Two-storey building with

    rigid girder (Influence of Support Excitation)

    = + v1

    disp of mass1 rel to

    moving support/base

    total disp of mass1 rel

    to fixed reference axis

    vgv1T

    disp of frame support

    rel to fixed reference

    axis

    fixedr

    eferencea

    xis

    vg

    v1T

    v1

    m1

    k

    2

    k

    2

    m2

    k

    2

    k

    2

    v2T

    v2

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    10/42

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    11/42

    fixedr

    ef

    erencea

    xis

    v

    m1 v1T

    k1v1

    v1

    v2

    v1)-k2(v2

    m2 v2T v1)-k2(v2+ = 0

    v1)-k2(v2

    m1 v1T+ k1v1 - v1)-k2(v2 = 0

    m2 v2T

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    12/42

    vgdisplacement of support/ground from a fixed reference axis

    v1displacement of mass1 relative to the base

    v2displacement of mass2 relative to the base

    m2v2T v1)-k2(v2+ = 0

    m1v1T + k1v1 - v1)-k2 (v2 = 0

    = + v1vgv1T

    = +vgv2T v2

    v1 = + v1vgv1T

    = +vgv2T v2

    v1

    m2v2 k 2v2+k2v1- =

    m1v1 + (k1+ k2) v1 - k2 v2 = - m1vg

    - m2vg

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    13/42

    m2v2 k 2v2+k2v1- =

    m1v1 + (k1+ k2) v1 - k2 v2 = -m1vg

    - m2vg

    m1

    0

    0

    m2

    +

    v1

    v2

    k1+k2

    - k2

    - k2

    k2

    v1

    v2= -

    m1

    0

    0

    m2

    1

    1

    vg

    M v + K v = - M 1 vg

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    14/42

    If damping is considered:

    + = -

    m1

    0

    0

    m2

    1

    1

    vg

    = - 1 vg

    Equation of Motion (Ground Acceleration)

    m1 0

    0 m2

    u1

    u2

    c1+c2 -c2

    - c2 c2

    +

    k1+k2 -k2

    - k2 k2

    u1

    u2

    u1

    u2

    m u + c u +k u m

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    15/42

    Equation of Motion (Loading on Mass)

    m1 0

    0 m2

    u1

    u2+

    c1+c2 -c2

    - c2 c2

    u1

    u2

    +

    k1+k2 -k2

    - k2 k2

    u1

    u2

    =

    p1(t)

    p2(t )

    m u + c u +k u = p(t)

    + = -

    m1

    0

    0

    m2

    1

    1

    vg

    = - 1 vg

    Equation of Motion (Ground Acceleration)

    m1 0

    0 m2

    u1

    u2

    c1+c2 -c2

    - c2 c2

    +

    k1+k2 -k2

    - k2 k2

    u1

    u2

    u1

    u2

    m u + c u +k u m

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    16/42

    Equivalence:

    m1

    m2

    vg

    m1

    m2

    ==== -m1vg

    -m2vg

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    17/42

    Disregard damping; solve eigenvalues and

    eigenvectors. Uncouple the equation of motion:

    + = -

    m1

    0

    0

    m2

    1

    1

    vg

    = - 1 vg

    Equation of Motion (Ground Acceleration)

    m1 0

    0 m2

    u1

    u2

    c1+c2 -c2

    - c2 c2

    +

    k1+k2 -k2

    - k2 k2

    u1

    u2

    u1

    u2

    m u + c u +k u m

    1

    T m 1 +

    z1

    1

    T c 1

    +z1 1

    T k 1

    z1

    = 1

    T m- 1 vg

    2

    T m 2

    +z2

    2

    T c 2

    +z2

    2

    T k 2

    z2

    = 2

    T m- 1 vg

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    18/42

    1

    T m 1

    +z1

    1

    T c 1

    +z1

    1

    T k 1

    z1

    = 1

    T m- 1 vg

    2

    T m 2

    +z2

    2

    T c 2

    +z2

    2

    T k 2

    z2

    = 2

    T m- 1 vg

    The above equations can be combined as:

    T

    m +z T

    c +z T

    k z = T

    m- 1 vg

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    19/42

    1

    T m 1

    +z1

    1

    T c 1

    +z1

    1

    T k 1

    z1

    = 1

    T m- 1 vg

    2

    T m 2

    +z2

    2

    T c 2

    +z2

    2

    T k 2

    z2

    = 2

    T m- 1 vg

    m1* c 1* k 1* p 1*

    m1*

    +z1

    c 1*

    z1

    + k 1* z

    1= - p 1

    *vg

    m2* c 2*

    k 2*

    p 2*

    m2*

    +z2

    c 2*

    z2

    + k 2* z

    2= - p 2

    *vg

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    20/42

    m1*

    +z1

    c 1*

    z1

    + k 1* z

    1= - p 1

    *vg

    m2

    *

    +z2 c 2*

    z2 + k 2* z

    2 = - p 2*

    vg

    The general form of the above equations is:

    mi*

    +zi

    c i*

    zi

    + k i* z

    i= - p i

    *vg

    These are equations of motion of single-

    degree-of-freedom systems, vibrating under

    each mode.

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    21/42

    Divide each term by :

    mi*

    +zi

    c i*

    zi

    + k i* z

    i= - p i

    *vg

    mi*

    +zi i

    vg2 i zi + i z

    2

    i= -

    p i*

    mi*

    =p

    i

    *

    mi*i =

    iT m 1

    iT m i

    i is called mode participation factor (for mode i)

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    22/42

    Since vgis a function of time, we can express it as

    maxgv

    +zi i

    2 i zi + i z

    2i

    =

    =

    gv f(t)

    gv= kcg

    maxgv

    t

    gv = f(t)kcg

    f(t)kcgi-

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    23/42

    The general form for the acceleration response is:

    +zi i

    2 i zi + i z

    2i = f(t)kcgi-

    +

    zi

    i2 i zi + i z

    2

    i

    = f(t)kcgi- + i (t, , )

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    24/42

    Quiz

    m1

    0

    0

    m2

    +

    v1

    v2

    k1+k2

    - k2

    - k2

    k2

    v1

    v2= -

    m1

    0

    0

    m2

    1

    1

    vg

    MULTIPLY THE MATRICES

    2 x 2 2 x 1 2 x 2 2 x 1 2 x 2 2 x 1

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    25/42

    Quiz

    m1

    0

    0

    m2

    +

    v1

    v2

    k1+k2

    - k2

    - k2

    k2

    v1

    v2= -

    m1

    0

    0

    m2

    1

    1

    vg

    MULTIPLY THE MATRICES

    ANSWER

    m1v1

    0 v1

    + 0 v2

    m2+ v2

    +( k1+k2 )v1 - k2v2

    - k2v1 + k2v2

    =

    - m1 vg

    - m2 vg

    2 x 1 2 x 1 2 x 1

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    26/42

    QuizADD THE MATRICES

    m1v1

    0 v1

    + 0 v2

    m2+ v2

    +( k1+k2 )v1 - k2v2

    - k2v1 + k2v2

    =

    - m1 vg

    - m2 vg

    2 x 1 2 x 1 2 x 1

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    27/42

    QuizADD THE MATRICES

    ANSWER

    m1v1

    0 v1

    + 0 v2

    m2+ v2

    +( k1+k2 )v1 - k2v2

    - k2v1 + k2v2

    =

    - m1 vg

    - m2 vg

    2 x 1 2 x 1 2 x 1

    m1v1+ 0 v2( k1+k2 )v1 - k2v2+

    0 v1 m2+ v2 - k2 + k2v2

    2 x 1

    =

    - m1 vg

    - m2 vg

    2 x 1

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    28/42

    QuizWHAT ARE THE RESULTING TWO EQUATIONS?

    m1v1+ 0 v2( k1+k2 )v1 - k2v2+

    0 v1m2+ v2 - k2 + k2v2

    2 x 1

    =

    - m1vg

    - m2vg

    2 x 1

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    29/42

    QuizWHAT ARE THE RESULTING TWO EQUATIONS?

    ANSWER

    m1v1+ 0 v2( k1+k2 )v1 - k2v2+

    0 v1m2+ v2 - k2 + k2v2

    2 x 1

    =

    - m1vg

    - m2vg

    2 x 1

    m1v1+ 0 v2( k1+k2 )v1 - k2v2+ = - m1vg

    0 v1 m2+ v2 - k2 + k2v2 - m2vg=

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    30/42

    QuizCOMBINE THE TWO EQUATIONS INTO ONE MATRIX EQUATION

    m1v1( k1+k2 )v1 - k2v2+ = - m1vg

    m2v2 - k2 + k2v2 - m2vg=

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    31/42

    QuizCOMBINE THE TWO EQUATIONS INTO ONE MATRIX EQUATION

    m1v1( k1+k2 )v1 - k2v2+ = - m1vg

    m2v2 - k2 + k2v2 - m2vg=

    ANSWER

    m1

    0

    0

    m2+

    v1

    v2

    k1+k2

    - k2

    - k2

    k2

    v1

    v2= -

    m1

    0

    0

    m2

    1

    1vg

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    32/42

    k4= 1600 kN/mk4= 1600 kN/m

    k3= 1200 kN/mk3= 1200 kN/m

    m4= 4500 kg

    k2= 800 kN/mk2= 800 kN/m

    m3= 3000 kg

    m2= 3000 kg

    k1= 400 kN/mk1= 400 kN/m

    m1= 1500 kg

    x1

    x2

    x3

    x4

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    33/42

    k4= 1600 kN/mk4= 1600 kN/m

    k3= 1200 kN/mk3= 1200 kN/m

    m4= 4500 kg

    k2= 800 kN/mk2= 800 kN/m

    m3= 3000 kg

    m2= 3000 kg

    k1= 400 kN/mk1= 400 kN/m

    m1= 1500 kg x1

    x2

    x3

    x4

    x1=1

    x2=0

    x3=0

    x4=0

    800 kN

    800 kN

    800 kN

    - 800 kN

    0

    0

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    34/42

    k4= 1600 kN/mk4= 1600 kN/m

    k3= 1200 kN/mk3= 1200 kN/mm4= 4500 kg

    k2= 800 kN/mk2= 800 kN/m

    m3= 3000 kg

    m2= 3000 kg

    k1= 400 kN/mk1= 400 kN/m

    m1= 1500 kgx1

    x2

    x3

    x4

    x1=0

    x2=1

    x3=0

    x4=0

    800 kN

    800 kN

    1600 kN

    1600 kN

    - 800 kN

    2400 kN

    - 1600

    0

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    35/42

    k4= 1600 kN/mk4= 1600 kN/m

    k3= 1200 kN/mk3= 1200 kN/m

    m4= 4500 kg

    k2= 800 kN/mk2= 800 kN/m

    m3= 3000 kg

    m2= 3000 kg

    k1= 400 kN/mk1= 400 kN/m

    m1= 1500 kg

    x1

    x2

    x3

    x4

    x1=0

    x3=1

    x2=0

    x4=0

    1600 kN

    1600 kN

    2400 kN

    2400 kN

    0

    - 1600 kN

    4000 kN

    -2400 kN

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    36/42

    k4= 1600 kN/mk4= 1600 kN/m

    k3= 1200 kN/mk3= 1200 kN/m

    m4= 4500 kg

    k2= 800 kN/mk2= 800 kN/m

    m3= 3000 kg

    m2= 3000 kg

    k1= 400 kN/mk1= 400 kN/m

    m1= 1500 kg

    x1

    x2

    x3

    x4

    x1=0

    x4=1

    x2=0

    x3=0

    2400 kN

    2400 kN

    3200 kN

    3200 kN

    0

    0

    -2400 kN

    5600 kN

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    37/42

    800

    - 800

    0

    0

    - 800

    2400

    - 1600

    0

    0

    - 1600

    4000

    -2400

    0

    0

    -2400

    5600

    F1

    F2

    F3

    F4

    =

    x1

    x2

    x3

    x4

    1 2 3 4

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    38/42

    1500

    0

    0

    0

    0

    3000

    0

    0

    0

    0

    3000

    0

    0

    0

    0

    4500

    F1

    F2

    F3

    F4

    =

    x1

    x2

    x3

    x4

    1 2 3 4

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    39/42

    0

    0

    x4

    1500

    0

    0

    0

    0

    3000

    0

    0

    0

    0

    3000

    0

    0

    0

    0

    4500

    x1

    x2

    x3

    x4

    1 2 3 4

    +

    800

    - 800

    0

    0

    - 800

    2400

    - 1600

    0

    0

    - 1600

    4000

    -2400

    0

    0

    -2400

    5600

    x1

    x2

    x3

    1 2 3 4

    =0

    0

    M x + K x = 0

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    40/42

    M x + K x = 0

    Equation of motion:

    Let x = a sin ( t )

    x = a sin ( t )- 2

    (a)

    (b)

    Substitute (b) to (a) results in

    K - 2 Ma = 0

    =12

    .

    .

    n

    a1 =a11a21

    .

    .

    an1

    a2 =a12a22

    .

    .

    an2

    etc.

    Mode1 Mode2

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    41/42

  • 8/11/2019 10 CE225 MDOF Seismic Inertial Forces

    42/42

    END