1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main...

43
2 Outline MOSFET Basics Ideal MOSFET physics Main parameters : threshold, leakage and speed What MOSFET for what application ? Scaling theory and good design rules of CMOS Devices The Real World Threshold voltage control limitations Gate oxide leakage and capacitance scaling Technological Solution ? Gate alternative : High-K and Metal Gate Channel engineering : Strained-Si Alternative devices and substrates Basic logic functions

Transcript of 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main...

Page 1: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

2

Outline MOSFET Basics

– Ideal MOSFET physics– Main parameters : threshold, leakage and speed– What MOSFET for what application ?– Scaling theory and good design rules of CMOS Devices

The Real World– Threshold voltage control limitations– Gate oxide leakage and capacitance scaling

Technological Solution ?– Gate alternative : High-K and Metal Gate– Channel engineering : Strained-Si– Alternative devices and substrates– Basic logic functions

Page 2: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

3

MOSFET Basics

Page 3: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

6

Making a Switch with Metal, Oxide and Silicon

Energy Barrier

x

Carrier reservoirSource

Drain

E

Energy Barrier

x

Carrier reservoirSource

Drain

MetalOxide

Si (p)n+ n+

0

Vg

= S D

C

Silicon channel

NiSiNiSi

Source Drain

Gate

Silicon channel

NiSiNiSi

Source Drain

Gate

Vd

Page 4: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

7

What is an ideal MOS Transistor ?

VS=0V VD>0V

VG=0V

S D

G

+ + + + + +

- - - - - - - VS=0V VD>0V

VG>0V

S D

G

IDSCanal vide : courant nul Canal rempli : courant non nul

A BTMOS bloqué TMOS passant

OFF-STATE ON-STATE

A MOS capacitor is modulating the transport between two carrier reservoir

MOS capacitance : Field Effect MOSFET

Page 5: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

8

n-type & p-type MOSFETs

nMOSFETElectron conduction

pMOSFETHole conduction

MetalOxide

0

Vg<0

p+ p+Si (n)

Vd<0

MetalOxide

Si (p)n+ n+

0

Vg>0

Vd>0

Page 6: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

9

Si

MOSFET morphology

STI STI

W

Contact drainContact source

Contact grille

Zone Active de Si

DrainSource

Gate (Poly-Si)

Source Drain

Métal

Oxyde

Semi-conducteur

Page 7: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

10

Basic Physics of MOSFET

Vgate

Log(Idrain)Ideal switch

Threshold (Vth)

ON state Current

OFF state Current

MOSFET switch

OFF State Current (Thermal)

3 main parameters

1. Threshold Voltage2. Ion (=speed)3. Ioff (=stand-by power)

Page 8: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

11

MOSFET Physics

L

WS/CWD/C

source drain

grille

canal

BCN

P

d--- -- - N--- -- -

VG=0

VDVS

VB

LTox

« Off State»

N P N+ + + +--- ---

nMOSFET L

WS/CWD/C

source drain

gate

channel

BC

P

NVD

N -- --- - - - -

-- -

VG=VD

VDVS

VB

LTox

N P N--- - - ---

+ + + + +

Page 9: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

12

Threshold Voltage (Vth)

Fox

depFBth C

QVV 2

L

WS/CWD/C

source drain

gate

channel

BC

P

NVD

N -- --- - - - -

-- -

Gate Material

Oxide Thickness

Channel Doping

Page 10: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

13

On State Current (Ion)

Lgate

Source Drain

Gatet

QI inv

DS

DSDS

thGoxeDS VV

VVL

WCµI

2

L

Eµv eL

VE DS

DSeVµ

Lt

2

WLV

VVCWLQQQ DSthGox

Dinv

Sinvinv

22

1

Vg-Vth Vg-Vth-VDS

Page 11: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

14

Off – State Current (Ioff)

- - -- - -

VD>0

VG1<Vth

- - -- - -

VD>0

VG1<VG2<Vth

Ithermique Idiffusion Ithermique Idiffusion

kT

Vq

S

VII DSGT

thDS exp110lnexp

S

VII th

thoff )log()log(

Modulation of barrier heigth by Capacitive coupling1/S

Vth

Log Idrain

Vgate

+ dec Ioff

S should be as small as possible

Page 12: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

15

The Static Leakage Components

i) Gate leakage (oxide thickness dependance)

iii) Junction leakage (doping dependance)

ii) Channel Leakage (Vth and S dependant)

Ioff = IS + IG + IB

Page 13: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

17

CMOS Scaling

CMOS090

CMOS065

CMOS045

CMOS032

CMOS120

Page 14: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

18

Gordon Moore, a co-founder of Intel said in 1965:“Component count per unit area doubles every two years”

- Last 40 years : technological advances achieved mainly by reducingtransistors size

- However current trend of miniaturization causes undesired effects degrading the electrical parameters and transistor performance

Scaling Theory: Moore’s law

In reality:• µ decreases • Tox levels-off• Off current increases as transistor size is reduced

Page 15: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

19

Ideal MOSFET Basics summary

Source Drain

Gate Electrode

Source Drain

Gate Electrode

Source Drain

Gate Electrode

Source Drain

Gate Electrode On-State : MOS gate capacitance lowers channel barrier electrons(holes) flow from Source to Drain Ion current Carrier transit time is Cgate*Vgate / Ion the higher Ion the

faster the device

Off-State : MOS gate capacitance potential = 0 electrons(holes) flow from Source to Drain due to Thermionic

current Ioff current Static Power dissipation is Pstat = VDS * Ioff

Threshold Voltage : Determines the gate voltage transition Vth between Off-state and

On-state regimes Vth depends (at the 1st order) on the channel doping and gate

electrode material

Log(IDS)

VGS

Low Vth

High VthLog(IDS)

VGS

Low Vth

High Vth

Page 16: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

20

Part 2.

The Real World

Page 17: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

21

Vth Control : Short Channel Effects

Zone de charge d’espace ZCE

L

BC

SCE=Short Channel Effect

SCEDIBL

DIBL=Drain Induced Barrier Lowering

VDS

Vth

Log Idrain

Vgate

SCE

Vth1

DIBL

Vth2

Page 18: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

22

MOSFET Typical Lenghts and Ratios

Lgate,phys

draingate

Tdep

source

Lel

Xj

Tox

; ; 3

el

j3040

el

ox

L

T 3

el

dep

L

T

L

X 5

dd

th

V

V

jphysgateel XLL 8.0,

SBdB

Sidep V

qNT

2

Good design rules of MOSFET architecture :

Page 19: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

23

dsel

dep

el

ox

el

j

ox

Si VL

T

L

T

L

XDIBL

÷÷÷

ø

ö

ççç

è

æ+=

2

2

1e

e

biel

dep

el

ox

el

j

ox

SiV

L

T

L

T

L

XSCE

÷÷÷

ø

ö

ççç

è

æ+=

2

2

1ee

0.8

0.8

dsatgoxeffdsat V(VLel

WelCI =21 m -Vth)

T. Skotnicki et al. IEEE EDL, March’88 & IEDM’1994

Scaling rules (MASTAR Model)

VTH(short Mosfet)=VTH(long)-SCE-DIBL

Page 20: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

24

Why is it so difficult to get a « Good Scaling » ?

Lgate,phys

draingate

Tdep

source

Lel

Xj

3

1el

j

L

X

3

1el

j

L

X

3040

1el

ox

L

T

3040

1el

ox

L

T

3

1el

dep

L

T

3

1el

dep

L

T

5

1dd

th

V

V

5

1dd

th

V

V

Oxide Scaling Junction Scaling

Subthreshold controlDoping increase

Page 21: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

25

Tox/Lel ratio : Gate Oxide Scaling

Lgate,phys

drainPoly-Si

gate

Tdep

source

Lel

Xj

zz

zz

Tox

BC

BV

SiliciumSiliciumOxydeOxydePolyPoly--SiliciumSiliciumTox

BC

BV

SiliciumSiliciumOxydeOxydePolyPoly--SiliciumSiliciumTox

BC

BV

SiliciumSiliciumOxydeOxydePolyPoly--SiliciumSilicium

Page 22: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

26

The Gate-Poly Silicon Depletion

poly

pSipolydep qN

T2

2

2

242

FFBG

ppp VV

kk

ox

pSip C

Nqk

2

Ref.: E. Josse et al., IEDM’99

N+ P+

Tdeppoly = 0.4nm 0.6nm

02468

101214161820

0 10 20 30 40CMOS relevant Tox , A

NMOS ( Npoly =1e20cm-3)

Tp (EOT)@1.8V1.3V1.0V0.7V0.5V0.35V0.25V

EO

T o

f p

oly

de

ple

tio

n , A

02468

101214161820

0 10 20 30 40CMOS relevant Tox , A

NMOS ( Npoly =1e20cm-3)

Tp (EOT)@1.8V1.3V1.0V0.7V0.5V0.35V0.25V

Tp (EOT)@1.8V1.3V1.0V0.7V0.5V0.35V0.25V

EO

T o

f p

oly

de

ple

tio

n , A

Vdd scaledwith Tox

Page 23: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

29

The problem of Gate Leakage

Poly-Si

Si

EfEvEf

Ec

Gate N+SiO2

Substrate Si P

Ec

Ev

Wpd

2A reduction in Tox ~ 1 dec increase in gate leakage

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

0 1 2 3Gate bias, V

Gat

e cu

rren

t, A

/cm

2

1nm

1.5nm

2nm

.5nm

3nm

3.5nm

SiO2

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

0 1 2 3Gate bias, V

Gat

e cu

rren

t, A

/cm

2

1nm

1.5nm

2nm

.5nm

3nm

3.5nm

SiO2

2

Page 24: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

30

Impact of Gate Leakage on Circuits

In Static Mode, two gate leakages: IgOff & IgOn : increase of Ioff

If Tox , Ig , Power

0

10

0

Ioffcanal

Igoff

1

00

0

IgOn

Page 25: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

31

Vth/Vdd Ratio

5

1dd

th

V

V

5

1dd

th

V

V If Vdd drops, just decrease the Vth too keep a good Ion. But …

S degrades at smaller L !

VgsVth

Log(IDS )

Ioff

Page 26: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

32

What Did We Learn ?

Controlling Vth (Ioff)

Increasing Doping

Scaling Jonctions

Scaling Tox

Darkspace

Polydepletion

Junc. Leak.

Rs increase Ion (speed) reduction

Ioff (power) increase

Higher Ioff

Limited Scaling Ion reduction

Gate leakage

Reducing Vdd (power) Ion reduction

Page 27: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

33

Technological Boosters to recover a Healthy Scaling

Page 28: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

34

What can we do to retrieve a Healthy Scaling ?

Silicon channel

NiSiNiSi

Source Drain

Gate

3040

1el

ox

L

T

3040

1el

ox

L

T

Oxide Scaling Junction Scaling

Subthreshold control Vs Overdrive

Doping increase

3

1el

dep

L

T

3

1el

dep

L

T

Less Gate LekageNo Poly Depletion

DIBL-Free Architecture

Low RSD for lower Xj Better Contact Resistance

Better Ion at the same overdriveBetter Subthreshold Slope

5

1dd

th

V

V

5

1dd

th

V

V

3

1el

j

L

X

3

1el

j

L

X

Page 29: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

35

Mobility Enhancement

Page 30: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

36

Ion Enhancement by materials

DSDS

thGoxeDS VV

VVL

WCµI

2

Transistor ArchitectureMaterial Properties

Carrier velocity under electric field E in the linear regime: v = µ E

µEcritical

Efield

Velocity Velocity saturation regime

Page 31: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

37

Mobility In Silicon

E

carrier, mass m*

Shockwave from lattice vibration, or impurities, or

gate oxide rugosity every t seconds 1. Small m* : ligth

electrons or holes

*

2

m

Ev c=

2. High t (less possible collision)

*mqµ

t=

Effective mass of carrierLinked to valence/conduction bands

Page 32: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

50

Gate Capacitance Scaling : High-K dielectrics 

Page 33: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

51

Figthing against Gate Leakage

EfEvEf

Ec

Gate N+SiO2

Substrate Si P

Ec

Ev

Wpd

Reducing Tunneling…Increasing Tox !But without reduction of Cox !Increasing permitivity

HIGH K materials

ox

oxox T

εC

Leakage issue

Polydepletion issueReplacing Poly-Si by Metal

Page 34: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

52

52

Context

Down to 90nm gate length, N+ and P+ polysilicon gate was used for CMOS integration compatible with oxide or oxynitride gate dielectric.

Due to aggressive scaling of the gate dielectric, the gate leakage is becoming unacceptably high (>Ioff), requiring the use of high-k dielectric

Due to the incompatibility of polysilicon gate with high-k dielectric (Fermi pinning, large Vt, mobility degradation) and the need to boost performance (elimination of polydepletion, boron penetration,…), metal gate electrodes will likely be needed

For bulk technology, two metals with WFs close to the bandgap edges are needed (high channel doping required to control SCE).

For FDSOI or double gate devices, WFs within 250meV from midgap are preferred, requiring more complex integration

Two integration approaches are considered: gate first and gate last.

Figthing against Gate Leakage

Page 35: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

53

53

High-k dielectric

C. Fenouillet et al IEDM 2007

0,00001

0,0001

0,001

0,01

0,1

1

10

100

17 19 21 23 25 27

CET (A)

J g ON (

A/C

m²)

MG/HfO2

2 Dec

FD SOI nMOS, Vg = 1.1V

2 DecPoly-Si/SiON1 Dec

MG/Hf SiON

MG/SiON

MASTAR Exp data.

High-K At an equivalent CET of SiON dielectric, the gate leakage current is reduced by more than 2 decades

For EOTs below 20Å, gate leakage current

becomes higher than off-state leakage current.

High-k dielectric

High-k (HfO2, ZrO2, Hf-based or Zr-based,

LaO2, Al2O3,… ALCVD or MOCVD deposition

Pre-deposition clean and post deposition

anneals affect the quality of high-k

Large Vt: Fermi pinning at the poly-Si/

Metal oxide interface but occurs also metal gate electrodes

Compatibility of polysilicon gate with high-k is unlikely !

Page 36: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

54

54

High-k Dielectric : Issues Mobility degradation

- Many publications have reported mobility degradation using high-k dielectrics.

- Possible cause is coupling of soft optical phonons in high-k with inversion channel charge carrier

Vt instabilities and reliability and noise issues

Large k and large dielectric thickness result in fringing field (FIBL) and loss of control of the channel by the gate

B. Tavel et al, PhD Thesis 2002

Page 37: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

55

Gate Capacitance Scaling : Metal Gates 

Page 38: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

56

Choosing The « Good Metal »

Mid-gap Gate

Ec

Ev

nMOS Gatepoly-Si N+ Metal Gate « N+like »

1.1

2V

pMOS Gatepoly-Si P+

Metal Gate « P+like »

Fox

depFBth C

QVV 2

Page 39: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

57

57

The use of metal gate suppress:– the polysilicon depletion : a reduced CET of 3-5Å for performance

improvement– and suppress the boron penetration problem

Two approaches have been proposed: gate first or gate last

– Gate first approach requires to take care of FE contamination tool, metal etching and to the high temperature anneal

– Gate last approach (replacement gate): dummy gate removal and replacement, gate dielectric integrity has to be kept

But for some applications CMOS requires 2 different metal gates in order to separate WFs for NMOS and PMOS devices (Dual metal gate integration)

Metal gate integration

Page 40: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

58

Why is Metal Workfunction so important ?

Vg

Log Id

Id

Vg

Vth,nVth,p

Ion,n

Ion,p

VddVdd

Regular Poly-gate n+/p+

Vg

Id

Vg

Vth,nVth,p

Ion,nIon,p

VddVdd

Mid-gap Metal Gate

+0.5V+0.5V

Vg

Log Id

Id

Vg

Vth,nVth,p

Ion,nIon,p

VddVdd

Dual n+/p+ Metal Gate

Log Id

+25%Polydepreduction

Page 41: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

59

59

Why midgap metal gate ? Why high-k ?

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

N+ like gate

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, TBOX

= 145 nm,

TSi= 8 nm, Tox = 1.9 nm

P+ like gate

pFET Midgap gate

nFET Midgap gate

-0.2

0

0.2

0.4

0.6

0.8

1

1.E+16 1.E+17 1.E+18 1.E+19Channel doping (cm -3)

Vth

(V)

@ V

d=|0

.1V

|

Lg= 200 nm, T = 145 nm,

TSi

P+ like gate

Midgap electrode with undoped channel : symmetrical Vth for NMOS and PMOS for high Vth applications

With Band edge gate electrodes (as poly-Si), FDSOI requires very high channel doping > 8e18 at/cm3 for HVT -> Variability degradation

Metal gate interest for FDSOI

Page 42: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

60

Device Architecture

Page 43: 1 Introduction to CMOS Technology. 2 Outline p MOSFET Basics –Ideal MOSFET physics –Main parameters : threshold, leakage and speed –What MOSFET for what.

61

Bulk PD SOI

Scalability ? Scalability as BULK

Scalability much improved if GP

FD SOI

Scalability may be better or worse (GP,BOX)

FD SON

GP

Scalability very much improved

DG (Delta, FinFET, SON, Vertical,TriGate, Omega, etc., etc.

el

dep

el

ox

el

j

L

T

L

T

L

X

EI

2

2

1

1

el

dep

el

ox

el

j

L

T

L

T

L

Xx

EI

2

2

1

1

el

boxsi

el

ox

el

si

L

TT

L

T

L

T

EI

2

21

1

el

boxsi

el

ox

el

si

L

TT

L

T

L

T

EI

2

21

1

el

si

el

ox

el

si

L

T

L

T

L

T

EI

2/

4/1

5.0

2

2

XjTdep

dsd VEIDEISCE ox

si

ox

si 0.8IBL 64.0

REF.:T. Skotnicki, invited paper

ESSDERC 2000, pp. 19-33, edit. Frontier Group

Device Architecture