04_GSAmemoir_streepey

20
Geological Society of America Memoir 197 2004 Exhumation of a collisional orogen: A perspective from the North American Grenville Province Margaret M. Streepey* Department of Geological Sciences, Florida State University, Tallahassee, Florida 32306-4100, USA Carolina Lithgow-Bertelloni Ben A. van der Pluijm Eric J. Essene Department of Geological Science, University of Michigan, Ann Arbor, Michigan 48109-1063, USA Jerry F. Magloughlin Department of Earth Resources, Colorado State University, Fort Collins, Colorado 80523-1482, USA ABSTRACT Combined structural and geochronologic research in the southernmost portion of the contiguous Grenville Province of North America (Ontario and New York State) show protracted periods of extension after the last episode of contraction. The Grenville Province in this area is characterized by synorogenic extension at ca. 1040 Ma, supported by U-Pb data on titanites and 40 Ar- 39 Ar data on hornblendes, followed by regional extension occurring along crustal-scale shear zones between 945 and 780 Ma, as recorded by 40 Ar- 39 Ar analysis of hornblende, biotite, and K-feldspar. By ca. 780 Ma the southern portion of the Grenville Province, from Ontario to the Adiron- dack Highlands, underwent uplift as a uniform block. Tectonic hypotheses have invoked various driving mechanisms to explain the transition from compression to extension; however, such explanations are thus far geodynamically unconstrained. Numerical models indicate that mechanisms such as gravitational collapse and man- tle delamination act over timescales that cannot explain a protracted 300 m.y. exten- sional history that is contemporaneous with ongoing uplift of the Grenville Province. Rather, the presence of a plume upwelling underneath the Laurentian margin, com- bined with changes in regional stress directions, permitted the observed uplift and extension in the Grenville Province during this time. The uplift history, while on a slightly different timescale from those of most plume models, is similar to that seen in models of uplift and extension caused by the interaction of a plume with the base of the lithosphere. Some of the protracted extension likely reflects the contribution of far- field effects, possibly caused by tectonic activity in other cratons within the Rodinian supercontinent, effectively changing the stress distributions in the Grenville Province of northeastern North America. Keywords: Grenville, Rodinia, extension 391 *E-mail: [email protected]. Streepey, M.M., Lithgow-Bertelloni, C., van der Pluijm, B.A., Essene, E.J., and Magloughlin, J.F., 2004, Exhumation of a collisional orogen: A perspective from the North American Grenville Province, in Tollo, R.P., Corriveau, L., McLelland, J., and Bartholomew, M.J., eds., Proterozoic tectonic evolution of the Grenville orogen in North America: Boulder, Colorado, Geological Society of America Memoir 197, p. 391–410. For permission to copy, contact [email protected]. © 2004 Geological Society of America.

description

04_GSAmemoir_streepey

Transcript of 04_GSAmemoir_streepey

  • Geological Society of AmericaMemoir 197

    2004

    Exhumation of a collisional orogen: A perspective from the North American Grenville Province

    Margaret M. Streepey*Department of Geological Sciences, Florida State University, Tallahassee, Florida 32306-4100, USA

    Carolina Lithgow-BertelloniBen A. van der Pluijm

    Eric J. EsseneDepartment of Geological Science, University of Michigan, Ann Arbor, Michigan 48109-1063, USA

    Jerry F. MagloughlinDepartment of Earth Resources, Colorado State University, Fort Collins, Colorado 80523-1482, USA

    ABSTRACTCombined structural and geochronologic research in the southernmost portion of

    the contiguous Grenville Province of North America (Ontario and New York State)show protracted periods of extension after the last episode of contraction. TheGrenville Province in this area is characterized by synorogenic extension at ca. 1040Ma, supported by U-Pb data on titanites and 40Ar-39Ar data on hornblendes, followedby regional extension occurring along crustal-scale shear zones between 945 and 780Ma, as recorded by 40Ar-39Ar analysis of hornblende, biotite, and K-feldspar. By ca.780 Ma the southern portion of the Grenville Province, from Ontario to the Adiron-dack Highlands, underwent uplift as a uniform block. Tectonic hypotheses haveinvoked various driving mechanisms to explain the transition from compression toextension; however, such explanations are thus far geodynamically unconstrained.Numerical models indicate that mechanisms such as gravitational collapse and man-tle delamination act over timescales that cannot explain a protracted 300 m.y. exten-sional history that is contemporaneous with ongoing uplift of the Grenville Province.Rather, the presence of a plume upwelling underneath the Laurentian margin, com-bined with changes in regional stress directions, permitted the observed uplift andextension in the Grenville Province during this time. The uplift history, while on aslightly different timescale from those of most plume models, is similar to that seen inmodels of uplift and extension caused by the interaction of a plume with the base ofthe lithosphere. Some of the protracted extension likely reflects the contribution of far-field effects, possibly caused by tectonic activity in other cratons within the Rodiniansupercontinent, effectively changing the stress distributions in the Grenville Provinceof northeastern North America.

    Keywords: Grenville, Rodinia, extension

    391

    *E-mail: [email protected].

    Streepey, M.M., Lithgow-Bertelloni, C., van der Pluijm, B.A., Essene, E.J., and Magloughlin, J.F., 2004, Exhumation of a collisional orogen: A perspective fromthe North American Grenville Province, in Tollo, R.P., Corriveau, L., McLelland, J., and Bartholomew, M.J., eds., Proterozoic tectonic evolution of the Grenvilleorogen in North America: Boulder, Colorado, Geological Society of America Memoir 197, p. 391410. For permission to copy, contact [email protected]. 2004 Geological Society of America.

  • INTRODUCTION

    Central to many questions in structural geology and tecton-ics regarding the evolution of orogens is how crust overthick-ened by continental collisions is modified and stabilized after anorogenic event. To understand how the crust evolves after oro-genesis, it is necessary to study ancient mountain belts, the deepcores of which are exposed at the surface today in high-grademetamorphic terranes. Because results of studies of the tempo-ral evolution of such areas give insight into the time and ratesinvolved in crustal stabilization, these results can be used bothto study the general problem of crustal stabilization and to pre-dict the deep behavior of young orogenic belts.

    The Grenville Province in northeastern North America isan outstanding, well-studied example of an exposed, deeplyeroded, ancient mountain system. The province is affected by aca. 1.0- to 1.3 billion-year-old set of orogenic events, seen incratonic blocks worldwide, and culminating in the formation ofthe supercontinent Rodinia (Hoffman, 1991; Dalziel, 1997).One of the best continuous exposures of Grenville-aged rocksis in northeastern North America between Labrador, Canada,and New York state, where Grenville deformation is thought tohave occurred in an arc-continent collision at ca. 1.31.2 Gaand a continent-continent collision at ca. 1.11.05 Ga (Mooreand Thompson, 1980; Easton, 1992; Rivers, 1997; Davidson,1998; Carr et al., 2000; McLelland et al., 2001). The terrane ischaracterized by slices of crust that are separated by ductileshear zones in which more of the deformation is concentrated,some of which record normal motion overprinting an earliercontractional history. The colliding craton causing continent-continent collision in this segment of Rodinia is not known, asthe proposed collision with Amazonia has recently been ques-tioned by paleomagnetic evidence (Tohver et al., 2002). Earlyrifting attempts are recorded in some of the blocks of Rodinia(Li et al., 1999; Karlstrom et al., 2000; Dalziel and Soper, 2001;Tack et al., 2001; Timmins et al., 2001). Most major riftingevents involving the eastern Laurentian margin (present-daycoordinates) appear to have occurred in the late Neoprotero-zoic. Rifting in this region resulted in the opening of the Iape-tus Ocean, which has been dated in the north at ca. 600 Ma(Torsvik et al., 1996; Svenningsen, 2001) and in the south at570550 Ma (Torsvik et al., 1996). However, with documentedpulses of rifting having occurred in Baltica, Congo, China, andthe southwestern United States from ca. 900 Ma to ca. 700 Ma,any extensional activity in the eastern Laurentian block, pres-ent-day northeastern North America, during this period mayreflect initial stages of Rodinias breakup (Li et al., 1999; Tan-ner and Bluck, 1999; Streepey et al., 2000; Dalziel and Soper,2001; Timmins et al., 2001). Well-exposed Grenville structuresin North America provide strong constraints on the nature ofextensional activity in the area and also, when compared toextensional activity in other Rodinian blocks that occurred dur-ing roughly the same period, on the processes that control thebreakup of supercontinents. The driving mechanism(s) for

    extension in the Laurentian part of the Grenville orogen is theprimary focus of this contribution.

    Geologic Setting

    One of the continuous exposures of rocks that showsGrenville-aged deformation occurs in North America. The east-ern edge of the belt abuts the edge of the Appalachian thrust frontand is bounded to the west by the Archean Superior Province andother Archean and Proterozoic provinces. Because of the later-ally continuous nature of this belt, it offers an excellent opportu-nity to study lithotectonic relationships in the orogen.

    The Grenville Province is composed of lithotectonicallydistinct blocks representing the autochthonous terrains of theLaurentian craton as well as allochthonous blocks accreted tothe Laurentian margin during Grenville orogenesis (Easton,1992; Rivers, 1997; Davidson, 1998; Hanmer et al., 2000; Fig.1, inset). These blocks are separated by major crustal-scale shearzones and contain distinct, smaller domains that are also sepa-rated by major ductile shear zones (e.g., Davidson, 1984; Eas-ton, 1992). A significant amount of strain recorded by theserocks is concentrated into these zones of deformation, whichprovide the key to unraveling the tectonic history of the region.In many cases, these shear zones appear to be multiply active,with the latest episode of deformation recording extension, orappearing to record extensional activity, synchronous toGrenville-aged contractional pulses (Mezger et al., 1991b; Cul-shaw et al., 1994; Busch et al., 1997; Martignole and Reynolds,1997; Ketchum et al., 1998; Streepey et al., 2001). The currentstructural expression of the region is of an extensional terrain,and the challenge then lies in determining both the magnitude,timing, and origin of extension as well as the earlier, contrac-tional history of the area.

    In this paper, we focus on the eastern Metasedimentary Beltof the Grenville Province and its boundary with the adjacentGranulite Terrane (Fig. 1). This area spans southeastern Ontarioand northwestern New York state. The Metasedimentary Belt isone of three major crustal slices that comprise the GrenvilleProvince in this region (Fig. 1). It lies between the Gneiss Beltand the Granulite Terrane and contains variably metamorphosed(greenschist to granulite-facies) metasediments, metagranitoids,and metavolcanic rocks (Easton, 1992).

    The Metasedimentary Belt contains several small shearzones that juxtapose lithologically and geochronologically dis-tinct domains. These shear zones within the MetasedimentaryBelt dip to the southeast, and the two major boundaries, the Ban-croft shear zone and the Robertson Lake shear zone, show lateextensional motion. The Carthage-Colton shear zone is locatedat the eastern edge of the Metasedimentary Belt, and separatesit from the Granulite Terrane of the Adirondack Highlands. Thisshear zone also shows a late extensional history, but dips shal-lowly to the northwest, creating a grabenlike geometry betweenthe Robertson Lake shear zone and the Carthage-Colton shearzone (Fig. 1).

    392 M.M. Streepey et al.

  • Studies of the deformation histories of these shear zonesrequire a multidisciplinary approach, with emphasis placed onthe field relationships, peak metamorphic pressures and tem-peratures, and the corresponding geochronologic data that con-strain the cooling and exhumation history. Because most of therocks have experienced more than one phase of deformation andmetamorphism, structural relationships in the field can be com-plex, and field analysis alone is not enough to completely con-strain the significance of these boundaries.

    This study presents a synthesis of geochronologic informa-tion combined with structural analysis and thermobarometricdata to describe the kinematics of the uplift or exhumation his-tory of a segment of the Grenville Province in northeasternNorth America. A summary of ages is given, adding to regionalcompilations (Cosca et al., 1991, 1992, 1995; Mezger et al.,1991a, 1992, 1993; van der Pluijm et al., 1994). In addition, new40Ar-39Ar ages from amphiboles in the Adirondack Lowlandsand the Adirondack Highlands are presented and further con-strain the geologic history of the area.

    Whereas the combination of structural, petrologic, andgeochronologic information is critical to constructing a kine-matic model of the evolution of the region, it does not give a geo-dynamic picture of the development of the late stages ofmodification and stabilization of overthickened crust. Thisinformation allows us to develop reasonable geologic hypothe-ses about timing of late, postorogenic extension and the natureof motion between blocks of crust, but it does not explain thephysical processes behind the evolution. In addition, geochrono-logic data are restricted to lithologies and assemblages that con-tain minerals with the appropriate elements for radiogenicdating. In areas where the appropriate assemblages are not avail-

    able, the geochronologic results are limited or incomplete andcannot provide a full, detailed cooling history of the rocks.

    In order to develop a more geodynamically complete pic-ture of the exhumation history of the Grenville Province, wehave developed a two-dimensional numerical model of a slice ofcrust representing this region. The structures assigned to themodel are taken directly from field studies in the region, and therheologies are assigned based on existing literature (Ranalli,1995). The numerical models explore possible driving mecha-nisms for the observed phenomenon of extension in this oro-genic belt. From geochronologic and structural information, thetimescales involved in the transition from compression to exten-sion have been evaluated and have placed constraints on theamount of displacement across shear zones. Although how thisorogenic belt extends following collision is known, why itextends is less evident. It remains uncertain whether extensioncan be attributed to a single mechanism, such as gravitationalcollapse, or whether it requires a combination of mechanisms,such as mantle delamination in addition to changes in far-fieldstresses. Whereas numerical models cannot provide constraintsthat uniquely solve this problem, they give insights as to whetheror not proposed mechanisms can act in a way that fits fieldobservations over the period of time dictated by geochronologicconstraints.

    GEOCHRONOLOGIC SUMMARY

    In studies of ancient metamorphic terranes, motion alongductile shear zones can often be delineated with a combinationof ages that yield information on the timing of latest metamor-phism and ages that record the cooling or exhumation history of

    Exhumation of a collisional orogen 393

    Figure 1. Generalized map of the Meta-sedimentary Belt (MB) of the GrenvilleProvince (Ontario and New York). Themap shows the Metasedimentary Belt inbetween the Gneiss Belt (GB) and theGranulite Terrane (GT). The Bancroftshear zone (BSZ), Robertson Lake shearzone (RLSZ), and Carthage-Coltonshear zone (CCSZ) are shown in theirmost current expression as normalfaults. Other shear zones shown are theMetasedimentary Belt Boundary Zone(MBBZ) and the Sharbot Lake shearzone. The inset map shows the GrenvilleProvince of northeastern North Americawith the Grenville Front tectonic zone(GFTZ) as it abuts the Archean SuperiorProvince. Other abbreviations: MTMorin terrane; LSZLabelle shearzone. After Streepey et al. (2001).

  • the terrane (e.g., van der Pluijm et al., 1994). In such studies itis critical to constrain the pressure-temperature (P-T) conditionsof metamorphism in order to determine whether geochronologicages are ages of cooling from a peak metamorphic event orgrowth ages. Minerals yield cooling ages if the peak conditionsof metamorphism are higher than the closure temperatures of theminerals and growth ages if the minerals can be shown to havegrown during metamorphism but at conditions below their clo-sure temperatures. Therefore, in order to best interpret geo-chronologic data in the eastern portion of the MetasedimentaryBelt, it was necessary to initially assess the metamorphic con-ditions of the terrane.

    Figure 2, A and B, shows temperature and pressure maps ofthe Metasedimentary Belt from Streepey et al. (1997; thermo-barometric data from references therein). Metamorphism in thearea reached upper-amphibolite to granulite-facies metamor-phism. Maximum temperatures in the study area from just westof the Robertson Lake shear zone to just east of the Carthage-Colton shear zone ranged from 600 to 650 C in and around theRobertson Lake shear zone and increased to the east to 700750C in and around the Carthage-Colton shear zone. Pressureswere 600 to 800 MPa over the region.

    In order to best interpret radiometric ages from polymeta-morphic terranes, it is essential not only to have quantitative

    394 M.M. Streepey et al.

    Pressures (MPa)

    < 600

    600-700

    700-800

    > 800

    0 30 km

    .

    Temperatures (C)

    >750

    700-750

    650-700

    600-650

    550-600

    500-550

  • Exhumation of a collisional orogen 395

    assessments of P-T conditions but also to have accurate closuretemperatures for minerals used in analysis and some constraintson the diffusion mechanisms active in isotopic resetting. For thisstudy we consider volume diffusion in grains to be the primarymechanism of isotopic resetting. In addition, published andwidely used closure temperatures for the minerals titanite, horn-blende, biotite, and K-feldspar are considered appropriate for thisstudy of a slowly cooled, regionally metamorphosed terrane(titanite: 600700 C, Mezger et al., 1991a, Scott and St-Onge,1995; hornblende: 480500 C, McDougall and Harrison, 1999;biotite: 300 C, McDougall and Harrison, 1999; K-feldspar: 150to 300 C, Zeitler, 1987, McDougall and Harrison, 1999, Loveraet al., 1991). Because peak temperatures of regional metamor-phism are close to or generally exceed the closure temperature oftitanite in the U-Pb system, the U-Pb ages of titanite constraineither the timing of latest metamorphism or cooling ages veryclose to the timing of peak metamorphism in this area. The 40Ar-39Ar ages of hornblende, biotite, and K-feldspar, which havelower closure temperatures than titanite, constrain most of thecooling history of the study area and are considered to have closedto the K-Ar system at some time after peak metamorphism.

    The U-Pb ages from zircon, garnet, monazite, and titanitehave been determined for the Metasedimentary Belt in numer-ous studies (Mezger et al., 1993; Corfu and Easton, 1995, 1997;Perhsson et al., 1996; Wasteneys et al., 1999; Corriveau and vanBreemen, 2000; McLelland et al., 2001). We provide a briefsummary of the metamorphic ages of the Metasedimentary Belt;the reader is referred to reviews by Rivers (1997), Carr et al.(2000), Hanmer et al. (2000), and McLelland et al. (2001) fordetailed descriptions of the early metamorphic history of theMetasedimentary Belt. The Metasedimentary Belt yields infor-mation on two major periods of Grenville-aged orogenesis thatrepresent an arc accretion event from ca. 13001190 Ma (theElzevirian orogeny), culminating in a continent-continent colli-sion at ca. 10801020 Ma (the Ottawan orogeny). These eventsrepresent two episodes of contraction, possibly separated byextensional events, which are recorded by magmatic activity andemplacement of large anorthosite complexes during these peri-ods (McLelland et al., 1988; Davidson, 1995). The RobertsonLake shear zone and the Carthage-Colton shear zone separaterocks showing a marked discontinuity in metamorphic age, andso are fundamental boundaries separating blocks with distinctmetamorphic histories. From the Metasedimentary Belt bound-ary thrust zone east to the Robertson Lake shear zone (encom-passing the Bancroft and Elzevir terranes), metamorphicminerals record geochronological evidence of metamorphismduring the latest contractional event during the Ottawan orogeny.

    The Frontenac terrane (including the Adirondack Low-lands) from east of the Robertson Lake shear zone to theCarthage-Colton shear zone shows evidence of metamorphismrelated to the earlier Elzevirian orogeny. It does not, however,appear to record metamorphic ages related to the Ottawanorogeny, indicating that this terrane was either laterally sepa-rated from the Elzevir terrane during this period or was at shal-

    low crustal levels (Mezger et al., 1993; Streepey et al., 2000,2001). However, some investigators have proposed that at leastportions of the Adirondack Lowlands may have been deformedduring the Ottawan orogeny (Wasteneys et al., 1999), and moredetailed isotopic work may be useful in resolving the extent andnature of Ottawan deformation in the Lowlands. East of theCarthage-Colton shear zone, peak metamorphism in the Adiron-dack Highlands occurred during the Ottawan orogeny, althoughthere is some evidence that this terrane was also deformed dur-ing the Elzevirian orogeny (McLelland et al., 1988; McLellandand Chiarenzelli, 1989; Kusky and Lowring, 2001). In this scenario, the Frontenac terrane, bounded by the east-dippingRobertson Lake shear zone and the west-dipping Carthage-Colton shear zone, is a block of crust that has been largely protected from the Ottawan pulse of orogenesis, while theAdirondack Highlands and the Elzevir terrane recorded meta-morphic ages during this period.

    The cooling history of the terranes immediately adjacent tothese two shear zones is discussed in order to evaluate their sig-nificance as postorogenic extensional structures. The ages com-piled in this study include ages determined from regional U-Pband 40Ar-39Ar geochronologic data (Busch and van der Pluijm,1996; Busch et al., 1996b, 1997; Streepey et al., 2000, 2001,2002, and new results) to provide a complete cooling history forthe eastern half of the Metasedimentary Belt. Sample locationsand their corresponding ages are given in Table 1. The U-Pb agesof titanite give the timing of early deformation, thought to havesome transpressive component along both the east-dippingRobertson Lake shear zone and the west-dipping Carthage-Colton shear zone. The 40Ar-39Ar ages of hornblendes, biotites,and K-feldspars, combined with structural analysis of shearzones, record the timing of later extensional motion along bothshear zones. New 40Ar-39Ar ages of hornblendes further detailthe cooling history of the crust adjacent to the Carthage-Coltonshear zone in northwest New York state.

    Robertson Lake Shear Zone

    The Robertson Lake shear zone is a multiply active, east-dipping shear zone separating the eastern Elzevir terrane (Maz-inaw domain) and the western Frontenac terrane (Sharbot Lakedomain) within the Metasedimentary Belt (Fig. 1; Easton,1988). The latest episode of motion recorded along this zone isdown-to-the-east, as shown by shear-sense indicators includingS-C, CC fabrics, with these crystal plastic structures crosscutby brittle fabrics delineating an uplift history during deforma-tion (Busch and van der Pluijm, 1996). Its early history recordsa transpressive event at ca. 1030 Ma, indicating imbrication viasinistral transpression of the Mazinaw and the Sharbot Lakedomains (Busch et al., 1997). 40Ar-39Ar cooling ages of horn-blendes and micas in the Robertson Lake shear zone show amarked difference across the zone. Combined with the structuralinformation and the nature of the offset, extensional motion hadto have occurred to juxtapose the crustal blocks on either side of

  • TAB

    LE 1

    .SAM

    PLE

    LOCA

    TIO

    NSH

    ornbl

    ende

    Biot

    iteSa

    mpl

    eage

    age

    Dom

    ain

    Loca

    tion

    UTM

    Coo

    rdin

    ates

    UTM

    Coo

    rdin

    ates

    From

    Bus

    ch e

    t al.(

    1996

    )N

    orth

    ing

    East

    ing

    RVL1

    18A

    1011

    Ma

    n.d

    .Sh

    arbo

    t Lak

    e49

    7122

    537

    2600

    RVL2

    0A12

    05 M

    an.d

    .Sh

    arbo

    t Lak

    e49

    7305

    036

    7025

    CDN5

    894

    7 M

    an.d

    .El

    zevi

    r/Maz

    inaw

    4968

    970

    3560

    50M

    TG72

    952

    Ma

    n.d

    .El

    zevi

    r/Maz

    inaw

    4957

    060

    3553

    00

    From

    Bus

    ch a

    nd v

    an d

    er P

    luijm

    (199

    6)N

    orth

    ing

    East

    ing

    RVL1

    18B

    n.d

    .96

    9 M

    aSh

    arbo

    t Lak

    e49

    7122

    537

    2600

    LVT1

    30B

    n.d

    .90

    1 M

    aEl

    zevi

    r/Maz

    inaw

    4990

    750

    3619

    20

    From

    Stre

    epey

    et a

    l.(20

    00) a

    nd un

    publi

    shed

    dat

    aA1

    0299

    0 M

    an.d

    .Lo

    wla

    nds

    Popp

    le H

    ill Fo

    rmatio

    n, n

    ear R

    usse

    ll.A1

    1210

    55 M

    a94

    0 M

    aLo

    wla

    nds

    Nea

    r Gou

    vern

    eur,

    H

    wy

    58/8

    12, N

    Jct

    .of P

    opl

    ar H

    ill Rd

    .A1

    1499

    0 M

    an.d

    .Lo

    wla

    nds

    Alon

    g G

    rass

    Rive

    r, H

    wy

    17, W

    sid

    e of

    road

    , 1.5

    km

    NW

    of R

    usse

    ll.A1

    1796

    7 M

    an.d

    .H

    ighl

    ands

    0.5

    mi.E

    of R

    t.27

    and

    Bro

    user

    s Co

    rner.

    A124

    1043

    Ma

    n.d

    .Lo

    wla

    nds

    Emor

    yville

    Rd.

    , ca.

    0.5

    mi.N

    W o

    f pow

    er

    plan

    t, ca

    0.2

    5 m

    i.W o

    f tur

    noff

    to Ta

    lcvi

    lle.

    A125

    1066

    Ma

    n.d

    .Lo

    wla

    nds

    Emor

    yville

    Rd.

    , E o

    f Hai

    lsbor

    o, sm

    all

    outc

    rop

    north

    of r

    oad,

    NW

    of h

    ouse

    , 1.

    8 m

    i.E o

    f brid

    ge, 2.

    1 m

    i.fro

    m Is

    land

    Bra

    nch

    Rd.

    A128

    1020

    Ma

    964

    Ma

    Low

    land

    sTr

    out L

    ake R

    d., N

    of E

    dward

    s, alo

    ng W

    sid

    e of

    Trout L

    ake,

    S

    side,

    W o

    f 2 is

    land

    s, W

    sid

    e of

    road

    .Cut

    abo

    ut 4

    0 m

    long

    .A1

    2910

    79 M

    a92

    4 M

    aLo

    wla

    nds

    S.of T

    rout L

    ake,

    R

    t.19

    to E

    dward

    s, ca

    .due

    W o

    f west

    ernm

    ost

    ext

    rem

    e of

    Ced

    ar L

    ake.

    A133

    975

    Ma

    n.d

    .H

    ighl

    ands

    Cres

    t of W

    hite

    s H

    ill, W

    hite

    Hill

    Rd.

    , SE

    of P

    aris

    hville

    abo

    ut 3

    mi.a

    t aba

    ndon

    ed lo

    okout.

    150

    on s

    mall

    trail

    to th

    e W

    .

    A134

    972

    Ma

    n.d

    .H

    ighl

    ands

    Very

    lo

    w o

    utc

    rops

    alo

    ng b

    oth

    sides

    of t

    he h

    ighw

    ay.S

    side

    of W

    hite

    Hill,

    abo

    ut 1

    mi.S

    of l

    ooko

    ut.

    Out

    crop

    on W

    hite

    Hill

    Rd.

    , w

    ithin

    am

    phib

    olite

    .

    A135

    1165

    Ma

    n.d

    .H

    ighl

    ands

    Just

    N o

    f Ste

    rling

    Rd.

    , nea

    r pow

    er

    line,

    abo

    ut 1

    50fro

    m ju

    nctio

    n with

    Joe I

    ndian

    Rd.

    A136

    943

    Ma

    937

    Ma

    Hig

    hlan

    dsSm

    all o

    utcr

    op o

    n Jo

    e In

    dian

    Rd.

    at t

    he c

    rest

    of a

    sm

    all h

    ill.Lo

    cate

    d at

    the

    N70

    W, 60

    N s

    ymbo

    l on

    Leon

    ard

    and

    Budd

    ingt

    ons

    map.

    A137

    1005

    Ma

    n.d

    .H

    ighl

    ands

    Rt.

    56, a

    bout

    3 m

    i.S o

    f Sta

    rk.W

    sid

    e of

    hwy

    , ro

    adc

    ut o

    f am

    phib

    olite

    mig

    mat

    ites.

    A138

    983

    Ma

    n.d

    .H

    ighl

    ands

    Smal

    l out

    crop

    on

    E sid

    e of

    Hwy

    56,

    abo

    ut 1

    mi.S

    of 1

    37, a

    bout

    4 m

    i.S o

    f Sta

    rk.

    A140

    947

    Ma

    n.d

    .H

    ighl

    ands

    Hw

    y 3,

    just

    E of

    Pitca

    irn.E

    xpos

    ures

    on

    emba

    nkm

    ent N

    of t

    he ro

    ad, a

    t cre

    st o

    f hill.

    A142

    953

    Ma

    919

    Ma

    Hig

    hlan

    dsSm

    all o

    utcr

    op o

    n th

    e E

    side

    of M

    ud L

    ake R

    d.at t

    he ju

    nctio

    n of M

    ud La

    ke a

    nd

    Brig

    gs R

    d.(S

    E co

    rner

    of i

    nters

    ect

    ion).

    A145

    935

    Ma

    n.d

    .H

    ighl

    ands

    Abou

    t 2 m

    i.E o

    f Tex

    as

    on T

    exas

    Rd.

    , 6 m

    i.fro

    m H

    wy 8

    12.

    HM

    95n.d

    .91

    5 M

    aLo

    wla

    nds

    NW

    of R

    usse

    ll on

    Rt.1

    7 in

    Dev

    ils E

    lbow

    , 2

    mi.S

    of H

    erm

    on.S

    ampl

    e fro

    m E

    sid

    e of

    out

    crop

    .

    SE59

    6-49

    n.d

    .89

    5 M

    aH

    ighl

    ands

    On

    Rt.8

    7, N

    of D

    ana

    Hill R

    d., 1

    .9 m

    i.S o

    f Whi

    ppor

    will C

    orners

    .O

    utcr

    op o

    n NW

    sid

    e of

    road

    .LB

    596-

    31b

    n.d

    .92

    5 M

    aLo

    wla

    nds

    4.5

    mi.f

    rom

    inte

    rsec

    tion

    of H

    wy 3

    and

    Hwy

    812

    , on

    812

    S of

    Bal

    mat

    .Sam

    ple

    from

    E s

    ide

    of o

    utcr

    op.

    LB93

    n.d

    .90

    4 M

    aLo

    wla

    nds

    Out

    crop

    just

    N of

    LB59

    6-31b

    .

    CN59

    6-56

    n.d

    .92

    4 M

    aH

    ighl

    ands

    0.2

    mi.S

    of ju

    nctio

    n of H

    anso

    n Rd.

    and

    Ore

    bed

    Rd.o

    n O

    rebe

    d Rd

    ., ne

    ar C

    olto

    n.O

    utcr

    op o

    n W

    sid

    e of

    road

    .

    PP59

    6-60

    n.d

    .89

    9 M

    aLo

    wla

    nds

    1 m

    i.SW

    of P

    ierre

    pont

    on

    Rt.2

    .Out

    crop

    on

    E sid

    e of

    road

    .

    From

    Stre

    epey

    et a

    l.(20

    01)

    Latit

    ude

    Long

    itude

    RWS-

    110

    00 M

    an.d

    .W

    ithin

    CCS

    ZN

    orth

    44

    deg.

    , 22

    min

    .W

    est

    75

    deg.

    , 10

    min

    .RW

    S-3c

    999

    Ma

    n.d

    .W

    ithin

    CCS

    ZN

    orth

    44

    deg.

    , 22

    min

    .W

    est

    75

    deg.

    , 10

    min

    .EA

    198

    1 M

    an.d

    .W

    ithin

    CCS

    ZN

    orth

    44

    deg.

    , 22

    min

    .W

    est

    75

    deg.

    , 10

    min

    .D

    H98

    -199

    8 M

    an.d

    .W

    ithin

    CCS

    ZN

    orth

    44

    deg.

    , 22

    min

    .W

    est

    75

    deg.

    , 10

    min

    .RW

    H-1

    973

    Ma

    n.d

    .W

    ithin

    CCS

    ZN

    orth

    44

    deg.

    , 22

    min

    .W

    est

    75

    deg.

    , 10

    min

    .CR

    7-DH

    198

    9 M

    an.d

    .W

    ithin

    CCS

    ZD

    ana

    Hill

    outc

    rop:

    On

    N sid

    e of

    Dan

    a Hi

    ll Rd.

    CR1-

    DH1

    980

    Ma

    n.d

    .W

    ithin

    CCS

    ZD

    ana

    Hill

    outc

    rop:

    On

    N sid

    e of

    Dan

    a Hi

    ll Rd.

    CR3-

    8794

    1 M

    an.d

    .W

    ithin

    CCS

    Z1.

    8 km

    N o

    f int

    erse

    ctio

    n be

    tween D

    ana

    Hill

    Rd.

    and

    Rt.8

    7, o

    n Rt

    .87.

    CR2-

    A294

    8 M

    an.d

    .W

    ithin

    CCS

    ZD

    irect

    ly ac

    ross

    Rt.

    87 fr

    om C

    R3-8

    7.D

    H2-

    810

    12 M

    an.d

    .W

    ithin

    CCS

    ZD

    irect

    ly ac

    ross

    Rt.

    87 fr

    om C

    R3-8

    7.CR

    6-A4

    1005

    Ma

    n.d

    .W

    ithin

    CCS

    ZD

    irect

    ly ac

    ross

    Rt.

    87 fr

    om C

    R3-8

    7.CR

    12-A

    499

    8 M

    an.d

    .W

    ithin

    CCS

    ZD

    irect

    ly ac

    ross

    Rt.

    87 fr

    om C

    R3-8

    7.CR

    9-A4

    944

    Ma

    n.d

    .W

    ithin

    CCS

    ZD

    irect

    ly ac

    ross

    Rt.

    87 fr

    om C

    R3-8

    7.H

    87-5

    b10

    19 M

    an.d

    .W

    ithin

    CCS

    ZD

    irect

    ly ac

    ross

    Rt.

    87 fr

    om C

    R3-8

    7.n.d

    .no

    dat

    a;CC

    SZ

    Carth

    age-

    Colto

    n sh

    ear z

    one;U

    TM

    Unive

    rsal T

    ransv

    ers

    e M

    erca

    tor.

  • the shear zone (Busch et al., 1996b; Fig. 3). The timing of thetransition from compression to extension can be somewhat con-strained by the age of the latest transpressive event in the regionat ca. 1030 Ma (Busch et al., 1997), but cannot be directly deter-mined. The termination of extension across the Robertson Lakeshear zone cannot be constrained from 40Ar-39Ar analyses ofhornblende and biotite, as both show differences of ca. 70100Ma across the zone. Results from the analysis of K-feldspar inthe region suggest that the entire block was uplifting uniformlyby 780 Ma, suggesting termination of extension between 900and 780 Ma (Streepey et al., 2002).

    Ages taken from Busch and van der Pluijm (1996), Buschet al. (1996b, 1997), and Streepey et al. (2002) are compiled inFigure 3. These data constrain the cooling history of the terranefrom immediately after orogenesis in the Robertson Lake shearzone area to the time at which the terrane was uplifting as a uni-form block. In addition, the geometry of normal fault motionand the amount of displacement along the shear zone are evident(Busch et al., 1996a). The U-Pb ages from titanites documentthe difference in metamorphic ages between the Mazinaw andthe Sharbot Lake domains. As the closure temperature of titan-ite is ca. 600700 C (Mezger et al., 1991a; Scott and St-Onge,1995), titanite ages give the timing of metamorphism or a cool-ing age that is very close to the age of metamorphism in theamphibolite to granulite-facies rocks of the Elzevir and theFrontenac terranes. Metamorphism in the Sharbot Lake domain(the hangingwall block of the Robertson Lake shear zone)occurred at ca. 1140 to 1170 Ma (Mezger et al., 1993; Corfu andEaston, 1995; Busch et al., 1997). These ages are generally sim-ilar to those across the entire width of the Frontenac terrane(Mezger et al., 1993). However, the youngest metamorphic agesin the Mazinaw domain (the footwall block of the RobertsonLake shear zone) range from ca. 1010 Ma to 1050 Ma (Mezgeret al., 1993; Busch et al., 1997), showing a ca. 100-m.y. differ-ence in the timing of the latest metamorphic event across thisboundary. Transpressional activity is interpreted to have causedjuxtaposition through imbrication of the two terranes at ca. 1030Ma (Busch et al., 1997).

    The 40Ar-39Ar cooling ages of hornblendes, micas, and K-feldspars constrain the post-titanite cooling and unroofing his-tory of the blocks of crust adjacent to the Robertson Lake shearzone and constrain the timing and nature of postorogenic exten-sion along this zone. Hornblende ages for rocks in the vicinityof the Robertson Lake shear zone are shown in Figure 3. Theoffset in ages shown by the titanite U-Pb geochronology is alsoshown by the cooling ages of hornblende, with hornblende agesof ca. 1010 Ma in the Sharbot Lake domain (hangingwall),which are at least 60 m.y. older than rocks immediately acrossthe Robertson Lake shear zone in the Mazinaw domain, wherehornblende ages are ca. 950 Ma (Busch and van der Pluijm,1996; Busch et al., 1996a). Biotite, which closes to the K-Ar sys-tem at ca. 300 C, continues to show an offset across the Robert-son Lake shear zone, with biotites in the Sharbot Lake domainrecording ages of 970 Ma that are at least 70 m.y. older than the

    900 Ma biotite ages in the Mazinaw domain (Busch and van derPluijm, 1996). At the time of biotite closure, rocks were at fairlyshallow crustal depths of 10 to 12 km assuming an averagegeothermal gradient. Because of the offsets in cooling ages ofthe rocks that are presently exposed at the surface crustal level,it is clear that extensional activity did not terminate across theRobertson Lake shear zone until sometime after 900 Ma.

    The 40Ar-39Ar ages of K-feldspars give some informationon the termination of extension along the Robertson Lake shearzone, but do not completely constrain it. Unlike hornblendes ormicas, which are considered to have one diffusion domain andtherefore a single closure temperature, K-feldspars are thoughtto have multiple diffusion domains and therefore multiple clo-sure temperatures (Lovera et al., 1991). Analysis of K-feldsparsgives, instead of a single age, a temperature-time path for thegrain. Thermal modeling of K-feldspar spectra from the Mazi-naw and the Sharbot Lake domains show that the two domainswere juxtaposed by at least 780 Ma, meaning that the termina-tion of extension across the Robertson Lake shear zone musthave occurred between 900 Ma and 780 Ma (Streepey et al.,2002). Thus, postorogenic extension across the Robertson Lakeshear zone terminated between 140 and 260 m.y. after the finalexpression of contractional tectonics in the area at ca. 1040 Ma.

    CARTHAGE-COLTON SHEAR ZONE

    The Carthage-Colton shear zone separates the eastern Fron-tenac terrane (Adirondack Lowlands) from the Granulite Ter-rane (Adirondack Highlands; Fig. 1). It is 150 km east of the Robertson Lake shear zone and dips to the west, toward theRobertson Lake shear zone. With this geometry, the Frontenacterrane is a grabenlike block bounded by two shear zones dip-ping toward one another. Upper amphibolite-facies marbles and other metasediments dominate the Adirondack Lowlandslithologies, whereas the Adirondack Highlands are comprisedpredominantly of granulite-facies metaigneous assemblages.The Carthage-Colton shear zone crops out as a zone of intensedeformation between the two terranes, although the exact loca-tion of the boundary has been debated (Geraghty et al., 1981).

    The Carthage-Colton shear zone had a long history of activ-ity over the duration of the Grenville orogenic cycle. TheAdirondack Lowlands and Highlands both appear to have beenaffected by the ca. 1190 Ma arc-continent collision at the end ofthe Elzevirian orogeny (Mezger et al., 1991a, 1992; Wasteneyset al., 1999; Kusky and Lowring, 2001). However, only theAdirondack Highlands appear to have been pervasively meta-morphosed by the granulite-facies Ottawan orogeny, which hasbeen dated at 10901040 Ma (McLelland et al., 1996). Theentire Frontenac terrane, from east of the Robertson Lake shearzone to just west of the Carthage-Colton shear zone, appears tohave escaped widespread thermal metamorphism and resettingof isotopic ages from this pervasive deformational event, eitherby being at shallower crustal levels during that period or bybeing laterally separated.

    Exhumation of a collisional orogen 397

  • Figu

    re 3

    . M

    aps

    show

    ing

    horn

    blen

    de,

    biot

    ite,

    and

    K-

    feld

    spar

    40A

    r-39 A

    r age

    s acr

    oss t

    he R

    ober

    tson

    Lake

    she

    arzo

    ne

    (RLS

    Z) a

    nd t

    he C

    artha

    ge-C

    olton

    she

    ar zo

    ne(C

    CSZ)

    . Acr

    oss t

    he R

    LSZ,

    the a

    ges a

    re fr

    om B

    usch

    et al

    .(19

    96),

    Busch

    and v

    an d

    er P

    luijm

    (199

    6), an

    d Stre

    epey

    et a

    l. (20

    02). H

    ornble

    nde a

    ges a

    re ita

    licize

    d. A

    cros

    s the

    CCSZ

    , age

    s are

    from

    Stre

    epey

    et a

    l. (20

    00, 2

    001,

    2002

    )an

    d ne

    w r

    esults

    . Pai

    rs s

    epar

    ated

    by

    a co

    mm

    a in

    dica

    teho

    rnbl

    ende

    and

    bio

    tite

    ages

    from

    the

    sam

    e sa

    mpl

    e. T

    heag

    e dist

    ributio

    ns ac

    ross

    the R

    LSZ

    indi

    cate

    mot

    ion

    alon

    gth

    e sh

    ear z

    one

    afte

    r ca.

    900

    Ma

    and

    befo

    re c

    a. 78

    0 M

    a.Th

    e ag

    e di

    strib

    utio

    ns a

    cros

    s th

    e CC

    SZ in

    dica

    te d

    efor

    -m

    atio

    n be

    twee

    n ca

    . 950

    and

    930

    Ma,

    mos

    t lik

    ely

    at c

    a.94

    5 M

    a. D

    H-1

    fie

    ld o

    utcr

    op n

    ame;

    GB

    Gne

    iss B

    elt;

    GFT

    ZG

    renv

    ille

    Fron

    t tec

    toni

    c zo

    ne; G

    TG

    ranu

    lite

    Terr

    ane;

    MB

    M

    etas

    edim

    enta

    ry B

    elt;

    MBB

    ZM

    eta-

    sedi

    men

    tary

    Bel

    t Bou

    ndar

    y Zon

    e; M

    SZ

    Moo

    rton s

    hear

    zone;

    MT

    Mor

    in t

    erra

    ne;

    RW

    field

    out

    crop

    nam

    e;SL

    SZ

    Shar

    bot L

    ake

    shea

    r zon

    e.

  • Exhumation of a collisional orogen 399

    McLelland et al. (1996) proposed that the Carthage-Coltonshear zone was the locus for extensional collapse of the Ottawanorogen at ca. 1050 Ma, which resulted in exhumation of thehigh-grade core of the Adirondack Highlands, presumably whilethe orogen was still under a contractional stress field and as adirect result of the orogenic event, either through gravitationalcollapse or through mantle delamination beneath the orogen.Streepey et al. (2001) suggested that the Carthage-Colton shearzone was involved in transpressive deformation similar to thatdocumented across the Robertson Lake shear zone at ca. 1040Ma. It is clear that the Carthage-Colton shear zone was activeduring or immediately after the latest episode of Grenville con-traction. In addition, cooling ages from hornblendes and biotitesshow that the Carthage-Colton shear zone was reactivated in anextensional regime similar to that observed along the RobertsonLake shear zone.

    We present sixteen new 40Ar-39Ar hornblende analysesfrom the University of Michigan Radiogenic Isotope Laboratorycombined with published 40Ar-39Ar hornblende and biotite agesnear and along the Carthage-Colton shear zone (Streepey et al.,2000, 2001). Standard operating procedures for the collection ofhornblende and biotite analyses in this laboratory are describedin detail in Streepey et al. (2000). Our results are shown in Fig-ure 3, and isotopic data are presented in Table 2.1 Plateaus weredefined as occurring where 50% or more of the total 39Ar wasreleased in three or more consecutive steps and where the agesof the steps overlapped at the 2 level of error.

    The hornblende ages in the Adirondack Lowlands of theFrontenac terrane show that these locations within this slice ofcrust reached 500 C at ca. 1036 Ma (Fig. 3; Table 2). Horn-blende ages across the Carthage-Colton shear zone are 947983Ma. The offset in ages indicates active movement along theCarthage-Colton shear zone after hornblendes closed to the K-Ar system, or after 950 Ma. The nature of the offset, combinedwith the regional fabrics, indicates that this motion must havebeen extensional (Heyn, 1990; Streepey et al., 2000). Somehornblendes in the Dana Hill metagabbro tightly cluster at 945Ma. Though there is some textural complexity in these samples,with young ages coming from a variety of veins and other tex-tures, these ages fit well within the regional framework of exten-sion (bracketed by regional hornblende and biotite 40Ar-39Arages) and indicate that this was likely a time of deformationalong the Carthage-Colton shear zone (Streepey et al., 2001).Biotite 40Ar-39Ar ages are ca. 900930 Ma on both sides of theshear zone, indicating that this block of crust was uniformlyuplifting by this time (Streepey et al., 2000). K-feldspar ages aresimilar to those found in the Robertson Lake shear zone area,further supporting the idea that the entire Metasedimentary Belt

    was uplifting as a uniform block by ca. 780 Ma (Heizler andHarrison, 1998; Streepey et al., 2002).

    NUMERICAL MODELING

    Geochronology paired with structural geology shows thatextensional motion took place along a large segment of theMetasedimentary Belt well after the Grenville contractionalorogeny, during a period that was considered to be relatively qui-escent. Application of 40Ar-39Ar and U-Pb geochronologydetails the kinematics and timing of this transition and theamount and nature of extensional deformation that occurredafter it, but gives few constraints on the mechanisms that pro-duced a regional extensional event during this period.

    Extension occurred at least 100 m.y. after the latest con-tractional event in the Grenville Province of New York andsoutheastern Ontario. Given this timescale, it is difficult to makea causal link between orogenesis and extension. Whereas sev-eral attempts have been made to create a Himalayan analog tothe Grenville Province (e.g., Windley, 1986), a component ofmajor extension in the latter is clearly postorogenic, so thetimescales for the two are different. In Tibet, for example, grav-itational potential energy due to the elevated topography of theplateau played a major role in driving collapse (e.g., Shen et al.,2001). However, in the Grenville Province the duration and ter-mination of this extensional event were so much later than com-pression that gravitational collapse became an ineffectivedriving mechanism. Earlier synorogenic extensional events (asproposed by McLelland et al., 2001, and references therein) atca. 1050 Ma were different in nature and almost certainly can beascribed to processes such as gravitational collapse, mantledelamination, or some combination of these driving mecha-nisms. The exhumation of the Grenville orogen was not solelythe result of erosional and isostatic processes, but was due atleast in part to active extension along shear zones, which led touplift of the region. Geochronologic data have allowed con-struction of a kinematic model of denudation and unroofing ofmidcrustal levels of the orogenic belt. When uplift is discussedin the context of this paper, we refer to the exhumation of thecore of the Grenville Province and do not constrain a measureof the paleotopographic surface.

    A model investigation has been made of the evolution of ablock of overthickened crust, with three common driving mech-anisms proposed to explain postorogenic extension. We haveevaluated the driving forces necessary to generate uplift andextension that match the kinematics of deformation in theGrenville Province as documented through field and laboratorystudies. Two critical field observations in this area that must beexplained are the continuous regional uplift during the time ofextension and the time lag in termination of extensional motionalong the Robertson Lake shear zone versus the Carthage-Colton shear zone detailed in the geochronology (see earlier andFig. 3).

    1GSA Data Repository item 2004059, Appendix, hornblende spectra, is avail-able on request from Documents Secretary, GSA, P.O. Box 9140, Boulder, CO80301-9140, USA, [email protected], or at www.geosociety.org/pubs/ft2004.htm.

  • TAB

    LE 2

    .HO

    RNBL

    ENDE

    ARG

    ON

    DATA

    Pow

    er

    39Ar

    frac

    39Ar

    mol

    40Ar

    /39Ar

    37Ar

    /39Ar

    36Ar

    /39Ar

    40Ar

    */39 A

    r K%

    40Ar

    atm

    osCa

    /KAg

    e (M

    a)1

    err

    or

    (Ma)

    A112

    -140

    00.

    1797

    71.

    33E-

    1582

    .671

    663.

    6246

    90.

    0103

    479

    .615

    13.

    6972

    36.

    6508

    110

    442

    401

    0.12

    911

    9.53

    E-16

    82.1

    3706

    3.89

    560.

    0005

    081

    .989

    30.

    1799

    07.

    1478

    910

    682

    402

    0.04

    571

    3.37

    E-16

    80.9

    9802

    3.88

    507

    0.

    0002

    581

    .070

    60.

    0896

    17.

    1285

    710

    593

    420

    0.12

    908

    9.52

    E-16

    80.8

    0290

    3.97

    513

    0.

    0001

    080

    .831

    80.

    0357

    67.

    2938

    210

    562

    440

    0.04

    952

    3.65

    E-16

    79.8

    0750

    3.82

    902

    0.

    0005

    079

    .956

    40.

    1865

    77.

    0257

    210

    483

    460

    0.06

    496

    4.79

    E-16

    80.3

    2021

    3.94

    636

    0.

    0006

    980

    .524

    70.

    2545

    97.

    2410

    310

    533

    480

    0.01

    616

    1.19

    E-16

    77.8

    2671

    3.64

    937

    0.

    0024

    778

    .557

    60.

    9391

    36.

    6960

    910

    349

    560

    0.08

    421

    6.21

    E-16

    79.8

    6897

    3.63

    473

    0.00

    025

    79.7

    954

    0.09

    212

    6.66

    923

    1046

    364

    00.

    1007

    67.

    43E-

    1680

    .251

    004.

    0008

    10.

    0000

    480

    .238

    70.

    0153

    27.

    3409

    410

    503

    720

    0.03

    772

    2.78

    E-16

    79.2

    4898

    3.52

    251

    0.00

    293

    78.3

    825

    1.09

    337

    6.46

    332

    1032

    680

    00.

    0386

    32.

    85E-

    1681

    .537

    494.

    1369

    10.

    0009

    381

    .261

    50.

    3384

    97.

    5906

    610

    615

    880

    0.01

    055

    7.78

    E-17

    80.5

    4386

    4.17

    951

    0.00

    409

    79.3

    344

    1.50

    162

    7.66

    883

    1041

    1410

    000.

    0642

    74.

    74E-

    1680

    .992

    303.

    9166

    20.

    0007

    480

    .772

    70.

    2711

    47.

    1864

    610

    563

    1040

    0.02

    004

    1.48

    E-16

    78.7

    2645

    3.90

    584

    0.

    0017

    379

    .236

    80.

    6482

    67.

    1666

    810

    408

    4800

    0.02

    954

    2.18

    E-16

    80.0

    8239

    3.91

    963

    0.

    0017

    380

    .594

    40.

    6393

    57.

    1919

    810

    546

    J va

    lue

    9.84

    667E

    -03

    1.

    3818

    1E-0

    5To

    tal 3

    9 K v

    ol =

    2.12

    529E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =10

    51.9

    7

    1.39

    196

    Ma

    A114

    -236

    00.

    0087

    16.

    42E-

    1743

    7.13

    157

    4.65

    082

    1.19

    085

    85.2

    341

    80.5

    015

    8.53

    361

    1091

    5640

    00.

    0035

    72.

    63E-

    1784

    .831

    182.

    6434

    10.

    0696

    764

    .245

    224

    .267

    04.

    8502

    987

    771

    440

    0.01

    623

    1.20

    E-16

    78.7

    9309

    2.49

    256

    0.05

    687

    61.9

    881

    21.3

    280

    4.57

    350

    853

    1748

    00.

    0342

    22.

    53E-

    1675

    .257

    002.

    5539

    30.

    0073

    973

    .072

    22.

    9031

    24.

    6861

    197

    08

    520

    0.07

    799

    5.75

    E-16

    76.4

    3780

    2.69

    612

    0.00

    273

    75.6

    316

    1.05

    471

    4.94

    701

    996

    456

    00.

    1064

    27.

    85E-

    1676

    .703

    642.

    7159

    80.

    0010

    276

    .403

    20.

    3916

    94.

    9834

    510

    043

    600

    0.19

    840

    1.46

    E-15

    76.4

    4511

    2.70

    967

    0.00

    100

    76.1

    492

    0.38

    709

    4.97

    187

    1001

    264

    00.

    0650

    44.

    80E-

    1675

    .725

    332.

    7073

    30.

    0001

    775

    .675

    50.

    0658

    04.

    9675

    899

    74

    680

    0.05

    337

    3.94

    E-16

    74.3

    6980

    2.69

    303

    0.00

    144

    73.9

    429

    0.57

    402

    4.94

    134

    979

    472

    00.

    1441

    91.

    06E-

    1575

    .233

    562.

    7618

    20.

    0004

    575

    .101

    80.

    1751

    35.

    0675

    699

    13

    760

    0.00

    258

    1.90

    E-17

    74.3

    0312

    2.82

    691

    0.00

    236

    73.6

    062

    0.93

    794

    5.18

    699

    976

    5784

    00.

    2090

    91.

    54E-

    1575

    .251

    752.

    7319

    80.

    0007

    275

    .037

    70.

    2844

    55.

    0128

    199

    02

    880

    0.04

    428

    3.27

    E-16

    75.1

    3989

    2.76

    550.

    0000

    575

    .123

    80.

    0214

    25.

    0743

    199

    16

    2000

    0.03

    130

    2.31

    E-16

    77.0

    6652

    3.00

    146

    0.00

    076

    76.8

    428

    0.29

    030

    5.50

    727

    1008

    650

    000.

    0046

    23.

    41E-

    1780

    .452

    623.

    7787

    40.

    0309

    371

    .312

    811

    .360

    56.

    9334

    795

    240

    J va

    lue

    9.74

    593E

    -03

    1.

    6958

    8E-0

    5To

    tal 3

    9 K v

    ol =

    1.50

    293E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =99

    2.40

    3

    1.77

    968

    Ma

    A117

    -1R

    400

    0.06

    297

    4.65

    E-16

    113.

    3235

    55.

    0468

    90.

    0467

    599

    .509

    312

    .190

    19.

    2603

    512

    263

    440

    0.13

    070

    9.64

    E-16

    74.1

    2110

    4.74

    351

    0.00

    057

    73.9

    514

    0.22

    895

    8.70

    369

    982

    348

    00.

    1721

    21.

    27E-

    1574

    .658

    904.

    7491

    30.

    0006

    074

    .480

    70.

    2386

    98.

    7140

    987

    252

    00.

    1083

    47.

    99E-

    1673

    .440

    854.

    7365

    10.

    0015

    572

    .981

    60.

    6253

    48.

    6908

    497

    23

    560

    0.08

    989

    6.63

    E-16

    71.9

    3891

    4.77

    110.

    0019

    771

    .356

    30.

    8098

    78.

    7543

    195

    54

    600

    0.05

    587

    4.12

    E-16

    71.2

    9738

    4.84

    565

    0.00

    070

    71.0

    905

    0.29

    017

    8.89

    110

    952

    564

    00.

    0470

    13.

    47E-

    1670

    .750

    444.

    8344

    80.

    0025

    969

    .985

    21.

    0816

    18.

    8706

    194

    14

  • 680

    0.02

    548

    1.88

    E-16

    70.3

    0706

    4.75

    113

    0.00

    502

    68.8

    222

    2.11

    197

    8.71

    767

    929

    476

    00.

    0808

    65.

    97E-

    1674

    .379

    644.

    8044

    40.

    0020

    573

    .775

    20.

    8126

    58.

    8154

    998

    03

    880

    0.04

    753

    3.51

    E-16

    72.8

    9371

    4.88

    858

    0.00

    407

    71.6

    920

    1.64

    858

    8.96

    987

    959

    610

    000.

    1361

    51.

    00E-

    1573

    .203

    745.

    3166

    30.

    0002

    573

    .130

    00.

    1007

    49.

    7552

    897

    32

    2000

    0.04

    257

    3.14

    E-16

    73.6

    1771

    5.22

    413

    0.00

    348

    72.5

    902

    1.39

    574

    9.58

    556

    968

    448

    000.

    0005

    33.

    93E-

    1898

    .697

    215.

    9871

    10.

    0895

    072

    .250

    526

    .795

    810

    .985

    5296

    439

    0J

    valu

    e9.

    7801

    9E-0

    3

    1.65

    238E

    -05

    Tota

    l 39 K

    vol =

    1.44

    533E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =98

    7.86

    9

    1.61

    561

    Ma

    A124

    -1R

    360

    0.03

    019

    2.23

    E-16

    125.

    3363

    64.

    2134

    60.

    0474

    311

    1.32

    2011

    .181

    47.

    7311

    213

    385

    400

    0.17

    033

    1.26

    E-15

    80.5

    0973

    3.98

    635

    0.00

    127

    80.1

    340

    0.46

    669

    7.31

    440

    1051

    240

    10.

    1096

    88.

    09E-

    1680

    .733

    033.

    8988

    20.

    0014

    880

    .296

    00.

    5413

    37.

    1538

    010

    533

    402

    0.04

    250

    3.14

    E-16

    81.2

    5107

    3.85

    999

    0.00

    243

    80.5

    319

    0.88

    512

    7.08

    255

    1055

    542

    00.

    0126

    39.

    32E-

    1779

    .317

    043.

    9584

    50.

    0144

    275

    .055

    85.

    3724

    17.

    2632

    110

    0014

    460

    0.21

    815

    1.61

    E-15

    81.2

    0917

    3.91

    409

    0.00

    086

    80.9

    539

    0.31

    434

    7.18

    182

    1060

    246

    10.

    0809

    95.

    98E-

    1681

    .154

    363.

    8917

    30.

    0017

    680

    .635

    70.

    6391

    17.

    1407

    910

    563

    480

    0.10

    678

    7.88

    E-16

    81.5

    2008

    3.83

    570.

    0004

    181

    .398

    60.

    1490

    27.

    0379

    810

    642

    520

    0.04

    500

    3.32

    E-16

    80.2

    3726

    3.91

    163

    0.00

    240

    79.5

    267

    0.88

    558

    7.17

    730

    1045

    456

    00.

    0218

    31.

    61E-

    1679

    .204

    674.

    0385

    80.

    0024

    978

    .468

    10.

    9299

    57.

    4102

    410

    358

    600

    0.00

    773

    5.70

    E-17

    77.3

    9229

    4.28

    706

    0.00

    899

    74.7

    364

    3.43

    173

    7.86

    617

    997

    2264

    00.

    0116

    38.

    58E-

    1778

    .559

    424.

    5639

    70.

    0019

    277

    .991

    60.

    7227

    98.

    3742

    610

    3014

    720

    0.03

    076

    2.27

    E-16

    79.9

    5281

    4.34

    586

    0.

    0001

    079

    .981

    70.

    0361

    47.

    9740

    610

    506

    800

    0.02

    660

    1.96

    E-16

    80.7

    8376

    4.17

    887

    0.00

    348

    79.7

    551

    1.27

    335

    7.66

    765

    1048

    812

    000.

    0568

    54.

    19E-

    1681

    .004

    874.

    0396

    0.00

    053

    80.8

    471

    0.19

    477

    7.41

    211

    1058

    440

    000.

    0283

    72.

    09E-

    1681

    .852

    684.

    0990

    70.

    0008

    582

    .104

    80.

    3080

    27.

    5212

    310

    716

    J va

    lue

    9.87

    089E

    -03

    1.

    2059

    4E-0

    5To

    tal 3

    9 K v

    ol =

    2.58

    136E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =10

    63.4

    3

    1.33

    794

    Ma

    A125

    -140

    00.

    2539

    01.

    87E-

    1584

    .451

    713.

    9048

    50.

    0064

    782

    .540

    22.

    2634

    37.

    1648

    610

    562

    401

    0.07

    938

    5.86

    E-16

    84.0

    4833

    3.75

    689

    0.00

    251

    83.3

    075

    0.88

    143

    6.89

    338

    1063

    444

    00.

    1303

    89.

    62E-

    1683

    .997

    653.

    7257

    50.

    0013

    683

    .594

    60.

    4798

    36.

    8362

    410

    663

    480

    0.10

    856

    8.01

    E-16

    83.7

    6073

    3.70

    631

    0.00

    069

    83.5

    557

    0.24

    478

    6.80

    057

    1065

    352

    00.

    2233

    21.

    65E-

    1584

    .004

    993.

    8024

    0.00

    102

    83.7

    027

    0.35

    984

    6.97

    688

    1067

    256

    00.

    0858

    36.

    33E-

    1685

    .409

    033.

    8426

    20.

    0009

    885

    .119

    20.

    3393

    57.

    0506

    810

    804

    600

    0.00

    564

    4.16

    E-17

    77.5

    5969

    4.87

    365

    0.00

    266

    76.7

    725

    1.01

    495

    8.94

    248

    999

    3468

    00.

    0078

    35.

    77E-

    1784

    .759

    364.

    4357

    30.

    0130

    388

    .609

    74.

    5426

    78.

    1389

    511

    1329

    820

    0.01

    984

    1.46

    E-16

    83.3

    0916

    4.05

    837

    0.

    0082

    585

    .746

    82.

    9260

    27.

    4465

    510

    8614

    1000

    0.01

    869

    1.38

    E-16

    83.4

    4706

    4.02

    577

    0.

    0084

    085

    .929

    52.

    9748

    77.

    3867

    310

    8814

    4800

    0.06

    665

    4.92

    E-16

    83.6

    6405

    4.09

    005

    0.00

    077

    83.4

    373

    0.27

    103

    7.50

    468

    1064

    4J

    valu

    e9.

    6330

    2E-0

    3

    1.87

    146E

    -05

    Tota

    l 39 K

    vol=

    1.26

    569E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =10

    65.0

    8

    1.92

    921

    Ma

    A128

    -136

    00.

    0200

    31.

    48E-

    1610

    3.37

    114

    0.86

    044

    0.05

    595

    86.8

    393

    15.9

    927

    1.57

    879

    1114

    538

    00.

    0097

    67.

    20E-

    1745

    .937

    180.

    5593

    70.

    0011

    845

    .587

    20.

    7618

    61.

    0263

    666

    814

    420

    0.00

    899

    6.63

    E-17

    85.6

    7338

    1.20

    975

    0.00

    381

    84.5

    478

    1.31

    382.

    2197

    210

    9213

    (conti

    nued

    )

  • TAB

    LE 2

    .Co

    ntin

    ued

    Pow

    er

    39Ar

    frac

    39Ar

    mol

    40Ar

    /39Ar

    37Ar

    /39Ar

    36Ar

    /39Ar

    40Ar

    */39 A

    r K%

    40Ar

    atm

    osCa

    /KAg

    e (M

    a)1

    err

    or

    (Ma)

    460

    0.01

    472

    1.09

    E-16

    95.1

    5639

    2.10

    311

    0.00

    229

    94.4

    805

    0.71

    029

    3.85

    892

    1186

    1150

    00.

    0614

    54.

    53E-

    1683

    .472

    604.

    6535

    10.

    0006

    783

    .275

    50.

    2361

    38.

    5385

    510

    802

    520

    0.16

    436

    1.21

    E-15

    78.3

    9011

    4.93

    948

    0.00

    060

    78.2

    127

    0.22

    632

    9.06

    327

    1029

    153

    00.

    0604

    04.

    46E-

    1678

    .093

    544.

    6488

    90.

    0006

    277

    .910

    10.

    2349

    08.

    5300

    710

    262

    540

    0.02

    521

    1.86

    E-16

    71.3

    4198

    3.67

    143

    0.00

    056

    71.1

    764

    0.23

    209

    6.73

    657

    957

    556

    00.

    0405

    92.

    99E-

    1675

    .791

    474.

    5035

    10.

    0000

    275

    .786

    10.

    0070

    98.

    2633

    210

    053

    620

    0.10

    396

    7.67

    E-16

    76.9

    1635

    4.80

    667

    0.00

    048

    76.7

    755

    0.18

    312

    8.81

    958

    1015

    266

    00.

    1161

    18.

    57E-

    1678

    .493

    214.

    9517

    40.

    0005

    578

    .329

    70.

    2083

    19.

    0857

    610

    312

    720

    0.11

    533

    8.51

    E-16

    79.9

    5906

    5.11

    697

    0.00

    065

    79.7

    680

    0.23

    895

    9.38

    894

    1045

    278

    00.

    0867

    66.

    40E-

    1680

    .744

    144.

    8914

    40.

    0006

    580

    .551

    10.

    2390

    88.

    9751

    210

    532

    1000

    0.06

    995

    5.16

    E-16

    80.5

    6078

    4.96

    834

    0.00

    099

    80.2

    677

    0.36

    380

    9.11

    622

    1050

    240

    000.

    1023

    97.

    55E-

    1666

    .014

    293.

    4490

    60.

    0013

    465

    .619

    60.

    5978

    86.

    3285

    589

    91

    J va

    lue

    9.83

    709E

    -03

    1.

    4414

    8E-0

    5To

    tal 3

    9 K v

    ol =

    2.63

    518E

    -10

    CCNT

    P/G

    Ttot

    al g

    as a

    ge =

    1022

    .11

    1.

    2886

    7 M

    a

    A129

    -136

    00.

    0233

    61.

    72E-

    1697

    .701

    206.

    7107

    0.05

    614

    81.1

    131

    16.9

    784

    12.3

    1321

    1044

    1150

    00.

    5648

    54.

    17E-

    1584

    .981

    446.

    6316

    10.

    0005

    384

    .823

    80.

    1855

    012

    .168

    0910

    792

    540

    0.09

    031

    6.66

    E-16

    84.3

    7694

    6.50

    400.

    0012

    084

    .731

    70.

    4204

    511

    .933

    9410

    794

    580

    0.10

    879

    8.03

    E-16

    85.2

    8425

    6.53

    173

    0.00

    166

    84.7

    932

    0.57

    578

    11.9

    8483

    1079

    362

    00.

    0209

    31.

    54E-

    1685

    .023

    556.

    4932

    30.

    0009

    184

    .755

    50.

    3152

    711

    .914

    1810

    7913

    1000

    0.12

    513

    9.23

    E-16

    82.4

    3000

    6.78

    991

    0.00

    165

    81.9

    417

    0.59

    238

    12.4

    5855

    1052

    320

    000.

    0635

    14.

    69E-

    1684

    .959

    447.

    4724

    80.

    0002

    984

    .872

    30.

    1025

    713

    .710

    9710

    804

    4800

    0.00

    313

    2.31

    E-17

    79.7

    7944

    6.68

    513

    0.

    0074

    581

    .981

    12.

    7596

    812

    .266

    2910

    5288

    J va

    lue

    9.65

    675E

    -03

    1.

    7966

    5E-0

    5To

    tal 3

    9 K V

    ol=

    1.17

    160E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =10

    75.0

    1

    2.10

    352

    Ma

    A133

    -140

    00.

    1046

    67.

    72E-

    1678

    .384

    833.

    1879

    30.

    0064

    176

    .490

    92.

    4161

    95.

    8494

    110

    012

    440

    0.28

    683

    2.12

    E-15

    73.0

    6987

    3.12

    962

    0.00

    103

    72.7

    641

    0.41

    847

    5.74

    242

    963

    144

    10.

    0877

    26.

    47E-

    1673

    .686

    013.

    1416

    70.

    0012

    773

    .310

    90.

    5090

    75.

    7645

    396

    83

    460

    0.02

    532

    1.87

    E-16

    73.4

    5835

    3.18

    647

    0.00

    229

    72.7

    827

    0.91

    977

    5.84

    673

    963

    850

    00.

    0496

    33.

    66E-

    1674

    .458

    303.

    2227

    60.

    0010

    274

    .156

    10.

    4058

    65.

    9133

    297

    76

    540

    0.11

    704

    8.64

    E-16

    74.8

    1581

    3.20

    948

    0.00

    134

    74.4

    197

    0.52

    945

    5.88

    895

    980

    358

    00.

    0497

    13.

    67E-

    1674

    .777

    193.

    1368

    40.

    0023

    474

    .085

    50.

    9250

    5.75

    567

    976

    562

    00.

    0113

    08.

    34E-

    1771

    .758

    093.

    1344

    80.

    0105

    168

    .653

    24.

    3268

    85.

    7513

    492

    018

    700

    0.12

    656

    9.34

    E-16

    73.3

    8544

    3.21

    055

    0.00

    100

    73.0

    899

    0.40

    273

    5.89

    092

    966

    278

    00.

    0451

    33.

    33E-

    1674

    .219

    913.

    2652

    70.

    0003

    974

    .105

    20.

    1545

    65.

    9913

    297

    64

    880

    0.04

    618

    3.41

    E-16

    74.4

    9200

    3.20

    771

    0.00

    037

    74.3

    841

    0.14

    485

    5.88

    571

    979

    410

    000.

    0364

    52.

    69E-

    1673

    .883

    803.

    8105

    70.

    0025

    474

    .635

    71.

    0176

    86.

    9918

    798

    26

    1200

    0.00

    925

    6.83

    E-17

    74.9

    2031

    3.98

    344

    0.00

    117

    74.5

    737

    0.46

    264

    7.30

    906

    981

    2950

    000.

    0042

    33.

    12E-

    1774

    .502

    663.

    6995

    40.

    0114

    977

    .897

    54.

    5566

    76.

    7881

    510

    1533

    J va

    lue

    9.69

    066E

    -03

    1.

    7372

    2E-0

    5To

    tal 3

    9 K v

    ol =

    1.89

    216E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =97

    2.99

    5

    1.63

    359

    Ma

  • A134

    -136

    00.

    0580

    64.

    28E-

    1688

    .659

    323.

    1155

    30.

    0243

    481

    .468

    28.

    1109

    65.

    7165

    710

    613

    380

    0.08

    990

    6.63

    E-16

    74.6

    7086

    2.89

    451

    0.00

    067

    74.4

    739

    0.26

    378

    5.31

    103

    991

    240

    00.

    1350

    69.

    97E-

    1672

    .878

    022.

    9391

    10.

    0003

    672

    .771

    60.

    1460

    25.

    3928

    697

    32

    420

    0.13

    788

    1.02

    E-15

    72.0

    7033

    2.91

    703

    0.

    0000

    272

    .076

    60.

    0087

    15.

    3523

    596

    62

    430

    0.07

    872

    5.81

    E-16

    72.9

    9311

    2.94

    646

    0.00

    062

    72.8

    086

    0.25

    278

    5.40

    635

    973

    244

    00.

    0658

    74.

    86E-

    1672

    .615

    722.

    9357

    60.

    0007

    572

    .393

    40.

    3061

    75.

    3867

    296

    93

    460

    0.08

    062

    5.95

    E-16

    72.7

    2679

    2.93

    459

    0.00

    137

    72.3

    216

    0.55

    714

    5.38

    457

    968

    248

    00.

    0572

    84.

    23E-

    1672

    .604

    682.

    9346

    90.

    0019

    172

    .040

    80.

    7766

    45.

    3847

    596

    64

    500

    0.06

    910

    5.10

    E-16

    73.4

    6718

    2.96

    128

    0.00

    186

    72.9

    177

    0.74

    792

    5.43

    354

    975

    252

    00.

    0362

    32.

    67E-

    1672

    .741

    532.

    8976

    30.

    0025

    172

    .000

    91.

    0181

    65.

    3167

    596

    54

    560

    0.02

    905

    2.14

    E-16

    72.4

    6758

    2.99

    739

    0.00

    192

    71.8

    994

    0.78

    405

    5.49

    980

    964

    560

    00.

    0191

    01.

    41E-

    1670

    .952

    023.

    0573

    50.

    0021

    070

    .331

    00.

    8752

    75.

    6098

    294

    86

    680

    0.03

    939

    2.91

    E-16

    72.0

    1860

    3.25

    967

    0.00

    347

    70.9

    928

    1.42

    436

    5.98

    105

    955

    376

    00.

    0351

    42.

    59E-

    1671

    .750

    963.

    2029

    80.

    0018

    571

    .204

    80.

    7611

    85.

    8770

    395

    74

    840

    0.01

    835

    1.35

    E-16

    72.6

    9965

    3.60

    576

    0.00

    535

    71.1

    194

    2.17

    367

    6.61

    607

    956

    640

    000.

    0502

    63.

    71E-

    1672

    .237

    524.

    2873

    20.

    0024

    271

    .522

    50.

    9898

    27.

    8666

    496

    04

    J va

    lue

    9.82

    456E

    -03

    1.

    5083

    7E-0

    5To

    tal 3

    9 K v

    ol =

    3.12

    587E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =97

    4.68

    0

    1.34

    455

    Ma

    A135

    -136

    00.

    0048

    03.

    54E-

    1718

    9.06

    855

    3.53

    975

    0.38

    769

    74.5

    070

    60.5

    926

    6.49

    495

    996

    2942

    00.

    0321

    52.

    37E-

    1697

    .219

    902.

    8304

    70.

    0082

    294

    .792

    02.

    4973

    35.

    1935

    211

    936

    460

    0.10

    836

    8.00

    E-16

    94.1

    6484

    2.76

    105

    0.00

    110

    93.8

    398

    0.34

    519

    5.06

    615

    1184

    252

    00.

    2854

    92.

    11E-

    1592

    .272

    922.

    8059

    90.

    0009

    691

    .988

    50.

    3082

    45.

    1486

    111

    671

    540

    0.17

    551

    1.30

    E-15

    91.5

    9555

    2.83

    532

    0.00

    085

    91.3

    458

    0.27

    267

    5.20

    242

    1161

    256

    00.

    0738

    25.

    45E-

    1693

    .826

    662.

    8451

    20.

    0023

    193

    .143

    40.

    7282

    15.

    2204

    011

    783

    620

    0.14

    952

    1.10

    E-15

    91.6

    0731

    2.84

    698

    0.00

    091

    91.3

    373

    0.29

    475

    5.22

    382

    1161

    266

    00.

    0696

    25.

    14E-

    1691

    .920

    432.

    8621

    70.

    0007

    692

    .144

    90.

    2442

    05.

    2516

    911

    683

    720

    0.03

    631

    2.68

    E-16

    91.5

    3615

    2.89

    577

    0.

    0005

    991

    .710

    50.

    1904

    75.

    3133

    411

    646

    840

    0.04

    446

    3.28

    E-16

    92.4

    5542

    2.94

    274

    0.00

    034

    92.3

    555

    0.10

    808

    5.39

    952

    1170

    540

    000.

    0199

    61.

    47E-

    1692

    .069

    613.

    0966

    80.

    0057

    890

    .363

    01.

    8536

    15.

    6819

    811

    529

    J va

    lue

    9.88

    469E

    -03

    1.

    1115

    2E-0

    5To

    tal 3

    9 K v

    ol=

    1.54

    303E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =11

    67.3

    6

    1.24

    451

    Ma

    A136

    -136

    00.

    0290

    2.14

    E-16

    107.

    5147

    33.

    1368

    40.

    0598

    089

    .843

    516

    .436

    15.

    7556

    711

    498

    400

    0.08

    390

    6.19

    E-16

    70.2

    5276

    3.13

    401

    0.00

    122

    69.8

    912

    0.51

    466

    5.75

    048

    950

    442

    00.

    1658

    91.

    22E-

    1569

    .971

    593.

    0752

    50.

    0003

    669

    .866

    60.

    1500

    55.

    6426

    695

    02

    440

    0.23

    971.

    77E-

    1569

    .016

    903.

    1408

    10.

    0003

    368

    .918

    50.

    1425

    85.

    7629

    593

    91

    450

    0.07

    365

    5.43

    E-16

    68.4

    6276

    3.10

    302

    0.00

    155

    68.0

    044

    0.66

    950

    5.69

    361

    930

    548

    00.

    0462

    63.

    41E-

    1668

    .160

    773.

    1885

    30.

    0012

    267

    .800

    90.

    5279

    85.

    8505

    192

    85

    520

    0.08

    498

    6.27

    E-16

    67.3

    9505

    3.13

    191

    0.00

    063

    67.2

    088

    0.27

    636

    5.74

    662

    921

    256

    00.

    0204

    41.

    51E-

    1667

    .855

    533.

    2227

    0.01

    155

    64.4

    438

    5.02

    793

    5.91

    321

    891

    2058

    00.

    0132

    39.

    76E-

    1767

    .226

    983.

    0830

    40.

    0031

    368

    .153

    11.

    3776

    5.65

    695

    931

    1564

    00.

    0340

    62.

    51E-

    1670

    .514

    163.

    1958

    0.00

    225

    69.8

    502

    0.94

    159

    5.86

    385

    949

    780

    00.

    1283

    79.

    47E-

    1668

    .488

    293.

    1414

    50.

    0009

    168

    .220

    00.

    3917

    45.

    7641

    393

    22

    880

    0.02

    252

    1.66

    E-16

    67.3

    3619

    3.24

    219

    0.00

    315

    66.4

    059

    1.38

    156

    5.94

    897

    913

    9

    (conti

    nued

    )

  • TAB

    LE 2

    .Co

    ntin

    ued

    Pow

    er

    39Ar

    frac

    39Ar

    mol

    40Ar

    /39Ar

    37Ar

    /39Ar

    36Ar

    /39Ar

    40Ar

    */39 A

    r K%

    40Ar

    atm

    osCa

    /KAg

    e (M

    a)1

    err

    or

    (Ma)

    4000

    0.05

    804.

    28E-

    1669

    .015

    213.

    2216

    70.

    0006

    168

    .834

    60.

    2617

    5.91

    132

    939

    4J

    valu

    e9.

    9144

    5E-0

    3

    1.20

    341E

    -05

    Tota

    l 39 K

    vol =

    2.21

    028E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =94

    3.29

    9

    1.37

    251

    Ma

    A137

    -236

    00.

    0743

    45.

    49E-

    1679

    .545

    282.

    6555

    0.00

    766

    77.2

    828

    2.84

    427

    4.87

    248

    1010

    338

    00.

    1824

    21.

    35E-

    1576

    .643

    712.

    5629

    30.

    0005

    476

    .485

    50.

    2064

    24.

    7026

    210

    022

    400

    0.29

    765

    2.20

    E-15

    77.5

    8981

    2.57

    025

    0.00

    031

    77.4

    988

    0.11

    730

    4.71

    606

    1012

    640

    10.

    0246

    21.

    82E-

    1676

    .839

    482.

    4938

    10.

    0041

    975

    .601

    21.

    6115

    14.

    5758

    099

    37

    440

    0.15

    378

    1.13

    E-15

    76.7

    6473

    2.56

    553

    0.00

    078

    76.5

    340

    0.30

    057

    4.70

    739

    1002

    146

    00.

    1135

    68.

    38E-

    1676

    .796

    232.

    5509

    70.

    0011

    776

    .451

    60.

    4487

    64.

    6806

    810

    023

    480

    0.03

    633

    2.68

    E-16

    77.3

    7406

    2.59

    891

    0.00

    191

    76.8

    109

    0.72

    784

    4.76

    864

    1005

    350

    00.

    0162

    81.

    20E-

    1676

    .301

    152.

    4661

    0.00

    684

    74.2

    795

    2.64

    957

    4.52

    495

    980

    956

    00.

    0283

    62.

    09E-

    1676

    .613

    912.

    5863

    90.

    0049

    375

    .157

    11.

    9014

    94.

    7456

    798

    96

    800

    0.05

    065

    3.74

    E-16

    76.8

    3979

    2.70

    719

    0.00

    161

    76.3

    642

    0.61

    893

    4.96

    732

    1001

    440

    000.

    0220

    31.

    63E-

    1677

    .064

    613.

    4832

    20.

    0060

    375

    .281

    82.

    3134

    6.39

    123

    990

    7J

    valu

    e9.

    7086

    2E-0

    3

    1.72

    082E

    -05

    Tota

    l 39 K

    vol =

    2.77

    185E

    -10

    CCNT

    P/G

    Tota

    l gas

    age=

    1004

    .41

    2.

    3128

    3 M

    a

    A138

    -136

    00.

    0034

    12.

    51E-

    1780

    .221

    033.

    8620

    10.

    0742

    758

    .272

    827

    .359

    77.

    0862

    681

    238

    400

    0.01

    336

    9.86

    E-17

    75.3

    8258

    2.98

    881

    0.00

    238

    74.6

    796

    0.93

    255

    5.48

    406

    987

    1142

    00.

    1304

    29.

    62E-

    1674

    .158

    962.

    9600

    10.

    0004

    574

    .026

    70.

    1783

    55.

    4312

    198

    02

    440

    0.10

    992

    8.11

    E-16

    74.4

    5032

    2.96

    696

    0.00

    062

    74.2

    657

    0.24

    798

    5.44

    396

    983

    246

    00.

    1022

    67.

    55E-

    1674

    .445

    562.

    9893

    30.

    0003

    974

    .561

    20.

    1553

    45.

    4850

    198

    62

    480

    0.08

    788

    6.48

    E-16

    74.5

    8835

    3.00

    933

    0.00

    059

    74.4

    137

    0.23

    416

    5.52

    171

    984

    350

    00.

    1166

    48.

    61E-

    1674

    .504

    272.

    9973

    10.

    0009

    274

    .233

    10.

    3639

    75.

    4996

    598

    32

    520

    0.07

    957

    5.87

    E-16

    74.4

    4747

    2.97

    613

    0.

    0000

    374

    .455

    60.

    0109

    35.

    4607

    998

    53

    560

    0.20

    707

    1.53

    E-15

    74.3

    3688

    3.00

    375

    0.00

    039

    74.2

    214

    0.15

    535

    5.51

    147

    982

    158

    00.

    0200

    11.

    48E-

    1673

    .735

    132.

    9842

    70.

    0000

    773

    .756

    20.

    0285

    85.

    4757

    297

    87

    640

    0.08

    036

    5.93

    E-16

    74.6

    8295

    2.98

    614

    0.00

    071

    74.4

    746

    0.27

    898

    5.47

    916

    985

    140

    000.

    0491

    03.

    62E-

    1674

    .240

    163.

    0346

    0.00

    125

    73.8

    720

    0.49

    591

    5.56

    807

    979

    4J

    valu

    e9.

    7523

    8E-0

    3

    1.69

    034E

    -05

    Tota

    l 39 K

    vol =

    2.45

    945E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =98

    2.38

    0

    1.49

    725

    Ma

    A140

    -136

    00.

    0481

    13.

    55E-

    1664

    .058

    671.

    5539

    10.

    0082

    661

    .617

    83.

    8103

    72.

    8512

    185

    64

    400

    0.15

    487

    1.14

    E-15

    70.5

    3351

    2.27

    729

    0.00

    118

    70.1

    852

    0.49

    382

    4.17

    851

    949

    142

    00.

    0720

    35.

    31E-

    1670

    .739

    172.

    2903

    40.

    0004

    070

    .619

    70.

    1688

    94.

    2024

    695

    32

    440

    0.12

    733

    9.40

    E-16

    70.6

    7584

    2.34

    235

    0.00

    044

    70.5

    457

    0.18

    414

    4.29

    789

    952

    346

    00.

    0507

    63.

    75E-

    1670

    .538

    672.

    2823

    10.

    0000

    170

    .541

    80.

    0044

    44.

    1877

    295

    23

    500

    0.03

    876

    2.86

    E-16

    70.6

    7347

    2.29

    519

    0.00

    156

    70.2

    130

    0.65

    155

    4.21

    136

    949

    6

  • 540

    0.10

    871

    8.02

    E-16

    72.4

    5699

    2.38

    892

    0.00

    278

    71.6

    342

    1.13

    555

    4.38

    334

    964

    260

    00.

    1307

    29.

    65E-

    1671

    .079

    792.

    3918

    80.

    0005

    170

    .928

    50.

    2128

    54.

    3887

    795

    63

    640

    0.09

    072

    6.69

    E-16

    71.1

    0540

    2.37

    214

    0.00

    069

    70.9

    027

    0.28

    507

    4.35

    255

    956

    372

    00.

    0792

    05.

    84E-

    1670

    .815

    592.

    3225

    0.00

    092

    70.5

    424

    0.38

    577

    4.26

    147

    952

    310

    000.

    0668

    84.

    93E-

    1668

    .269

    672.

    1322

    10.

    0004

    368

    .143

    20.

    1852

    53.

    9123

    192

    73

    4000

    0.03

    192

    2.35

    E-16

    66.5

    2505

    1.88

    886

    0.00

    066

    66.3

    294

    0.29

    411

    3.46

    580

    908

    6J

    valu

    e9.

    8580

    6E-0

    3

    1.30

    213E

    -05

    Tota

    l 39 K

    vol =

    2.00

    423E

    -10

    CCNT

    P/G

    Tota

    l gas

    age

    =94

    6.27

    5

    1.27

    061

    Ma

    A142

    -134

    00.

    1064

    57.

    85E-

    1686

    .984

    282.

    6341

    90.

    0301

    278

    .084

    410

    .231

    64.

    8333

    810

    232

    360

    0.00

    028

    2.07

    E-18

    83.8

    7368

    1.

    9578

    90.

    2916

    32.

    3040

    110

    2.74

    703.

    5924

    641

    717

    440

    0.00

    059

    4.38

    E-18

    87.4

    3051

    3.62

    755

    0.

    0908

    211

    4.26

    8030

    .695

    86.

    6560

    613

    5215

    846

    00.

    0018

    31.

    35E-

    1780

    .862

    333.

    1329

    20.

    0345

    770

    .646

    112

    .634

    15.

    7484

    894

    765

    500

    0.00

    211

    1.55

    E-17

    76.3

    35