0& #*/1+&$)-2.3-+& .+(/&!214*5& !6*+7& · Litopenaeus!vannamei! Pascualetal.2004Aquaculture...

63
!"#$% '()*+,"( ,-./0" #*/1+" $)-2.3-+ .+("/ !214*5" !6*+7" 8 9 : ;","4<"/ =>8?

Transcript of 0& #*/1+&$)-2.3-+& .+(/&!214*5& !6*+7& · Litopenaeus!vannamei! Pascualetal.2004Aquaculture...

!"#$%&'()*+,"(&,-./0"&

#*/1+"&$)-2.3-+&.+("/&!214*5"&

!6*+7"&

8&9&:&;","4<"/&=>8?&

EXPERIMENTAL EVOLUTION

Laboratory Selection Experiments and Field Validations

 

P CALOSI CeMEB Course 2014  

Charles  Darwin  

Is  evolu3on  slow?  

Laboratory Selection Experiments  Escherichia  coli  

end  1980’s-­‐1190’s  

Albert  F.  BenneI  

Richard  Lenski  

Benne.  et  al.  1990  Rapid  evolu3on  in  response  to  high-­‐temperature  selec3on.  Nature  346,  6279,  pp.79-­‐81.    <<Temperature  is  an  important  environmental  factor  affec9ng  all  organisms,  and  there  is  ample  evidence  from  compara3ve  physiology  that  species  and  even  conspecific  popula3ons  can  adapt  gene3cally  to  different  temperature  regimes.  But  the  effect  of  these  adapta9ons  on  fitness  and  the  rapidity  of  their  evolu9on  is  unknown,  as  is  the  extent  to  which  they  depend  on  pre-­‐exis3ng  gene3c  varia3on  rather  than  new  muta3ons.  We  have  begun  a  study  of  the  evolu9onary  adapta9on  of  Escherichia  coli  to  different  temperature  regimes,  taking  advantage  of  the  large  popula9on  sizes  and  short  genera9on  9mes  in  experiments  on  this  bacterial  species.  We  report  significant  improvement  in  temperature-­‐specific  fitness  of  lines  maintained  at  42  °C  for  200  genera3ons  (about  one  month).  These  changes  in  fitness  are  due  to  selec9on  on  de  novo  muta9ons  and  show  that  some  biological  systems  can  evolve  rapidly  in  response  to  changes  in  environmental  factors  such  as  temperature.>>  

Laboratory Selection Experiments  

Evolution of Evolution Evolution: Past, Present and Future

Scientific knowledge may permit humans to guide future evolution  

Richard  Lenski  <<Because  bacteria  reproduce  so  quickly,  we  use  them  in  experiments  to  test  evolu3onary  hypotheses.  For  over  20  years  and  45.000  bacterial  genera9ons,  my  students  and  I  have  maintained  twelve  popula3ons  of  E.  coli  in  small  flasks  of  sugar  water.  We  measure  the  process  that  Darwin  discovered  –  adapta9on  by  natural  selec9on  –  by  compe3ng  ‘modern’  bacteria  against  their  ancestors,  which  we  store  frozen  and  then  revive  for  the  tests.  Imagine  if  we  could  bring  Homo  erectus  back  to  life,  and  challenge  them  to  games  of  football  and  chess!  In  our  flasks,  the  modern  bacteria  outscore  their  ancestors  in  the  struggle  for  existence.>>.  

hIps://www.nsf.gov/news/special_reports/darwin/textonly/bio_essay1.jsp    hIp://www.nsf.gov/news/news_summ.jsp?cntn_id=125492    hIp://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=128414    

Evolution of Evolution  

&/'01$()+!2&+&$0*-&10&56"&1+5"+3-+*2&</""(1+7&-R&-/7*+1040&*,,-/(1+7&5-&0M",1T,&,6*/*,5"/103,&56*5&56"S&M-00"00O&*+(&A61,6&56"&"VM"/14"+5"/c</""("/&A106"0&5-&_M*00E&5-&56"&+"V5&7"+"/*3-+H&@5&10&*&0S+-+S4&-R&2&+&$34&!5'&&6(78H&

Artificial Selection !

Laboratory Selection The Ultimate Tool to Study Evolution?  

The  experimenter  can:    

-­‐  define  the  driver(s)  of  selec9on  (e.g.  temperature,  pH,  salinity,  oxygen),  -­‐  define  (to  a  very  fine  level)  the  direc9on  and  intensity  of  

selec9on  (i.e.  can  have  a  rigorous  control  of  the  experimental  condi3ons),  -­‐  define  the  traits  he/she  wants  to  select  for  (i.e.  produc3vity,  taste,  

coloura3on,  ac3vity  levels),  -­‐  set  the  level  of  replica9on  (i.e.  how  many  lines/families  are  employed),  -­‐  develop  protocols  (assays)  repeatable  by  other  laboratories,  -­‐  repeat  the  of  selec9on  exercise.  

Laboratory Selection  

Laboratory Selection Types of Selections  

Ar3ficial  Selec3on:    1)  Laboratory  Ar9ficial  Selec9on  experiments:  using    this  approach  the  

experimenter  select  individuals  with  specific  traits  (e.g.  running  or  swimming  or  flying  speed,  resistance  to  a  toxicant  or  a  parasite).  Also  synonym  of  Selec3ve  Breeding.  

 

2)  Culling  Selec9on  experiments:  the  process  of  Culling  is  the  systema3c  removal  of  individuals  (carrying  specific  undesired  traits)  from  a  breeding  popula3on.  In  experimental  terms  we  may  also  apply  a  stressful  condi3on  un3l  a  threshold  of  survival  is  reached  (e.g.  50%  of  our  breeding  popula3on  is  lek).  Probably  the  closest  to  what  happen  in  nature,  where  mortality  levels  are  oken  extremely  high.  Effec3vely  here  the  selec3on  is  based  on  a  bo;leneck.  

3)  Laboratory  Natural  Selec9on  (LNS)  experiments:  using    this  approach  the  experimenter  does  not  select  individuals  with  specific  traits    but  fix  the  environmental  driver(s)  causing  selec3on  an  observe  the  outcome  of  this  process:  i.e.  breeding  is  not  selec3ve  

Laboratory Selection  

Laboratory Selection Types of Selections  

Ar3ficial  Selec3on:    1)  Laboratory  Ar9ficial  Selec9on  experiments:  using    this  approach  the  

experimenter  select  individuals  with  specific  traits  (e.g.  running  or  swimming  or  flying  speed,  resistance  to  a  toxicant  or  a  parasite).  Also  synonym  of  Selec3ve  Breeding.  

 

2)  Culling  Selec9on  experiments:  the  process  of  Culling  is  the  systema3c  removal  of  individuals  (carrying  specific  undesired  traits)  from  a  breeding  popula3on.  In  experimental  terms  we  may  also  apply  a  stressful  condi3on  un3l  a  threshold  of  survival  is  reached  (e.g.  50%  of  our  breeding  popula3on  is  lek).  Probably  the  closest  to  what  happen  in  nature,  where  mortality  levels  are  oken  extremely  high.  Effec3vely  here  the  selec3on  is  based  on  a  bo;leneck.  

3)  Laboratory  Natural  Selec9on  (LNS)  experiments:  using    this  approach  the  experimenter  does  not  select  individuals  with  specific  traits    but  fix  the  environmental  driver(s)  causing  selec3on  an  observe  the  outcome  of  this  process:  i.e.  breeding  is  not  selec3ve  

Laboratory Selection  

2.  Ar3ficial  selec3on  

Breeder’s  equa3on:  R  =  S  x  h2  

h2  =  R  /  S  

from  Sam’s  lecture  #3-­‐4  

Laboratory Selection Types of Selections  

Ar3ficial  Selec3on:    1)  Laboratory  Ar9ficial  Selec9on  experiments:  using    this  approach  the  

experimenter  select  individuals  with  specific  traits  (e.g.  running  or  swimming  or  flying  speed,  resistance  to  a  toxicant  or  a  parasite).  Also  synonym  of  Selec3ve  Breeding.  

 

2)  Culling  Selec9on  experiments:  the  process  of  Culling  is  the  systema3c  removal  of  individuals  (carrying  specific  undesired  traits)  from  a  breeding  popula3on.  In  experimental  terms  we  may  also  apply  a  stressful  condi3on  un3l  a  threshold  of  survival  is  reached  (e.g.  50%  of  our  breeding  popula3on  is  lek).  Probably  the  closest  to  what  happen  in  nature,  where  mortality  levels  are  oken  extremely  high.  Effec3vely  here  the  selec3on  is  based  on  a  bo;leneck.  

3)  Laboratory  Natural  Selec9on  (LNS)  experiments:  using    this  approach  the  experimenter  does  not  select  individuals  with  specific  traits    but  fix  the  environmental  driver(s)  causing  selec3on  an  observe  the  outcome  of  this  process:  i.e.  breeding  is  not  selec3ve  

Laboratory Selection  

J"M/"0"+5*3-+&-R&*&D$@4%$24%=!S$23%$&!Q'&'794,!"VM"/14"+5&

i.+(*S&"5&*2H&=>8NF=>8?&=>""&&

Selec3on  is  something  we  have  used  for  millennia:      

•  domes9ca9on  of  animals  and  plants,  •  selec3on  of  plants’  cul0var  resistant  to  pests,  •  selec3on  of  animals’  breeds  able  to  convert  low  

energy  food  into  high  value  proteins,  •  selec3on  of  strains  of  fish  and  shellfish  be.er  

suited  for  farming.  

Is Selection something new?  

Illinois Corn Experiment (1886) to improve oil content  

The selection of corn  

Examples of Artificial Selection plants domestication and programmes of amelioration  

 

built in 1907 to improve the culture of citrus plants in California&

Citrus Experiment Station of Riverside &

Agricultural Experiment Station selection for resistance to pests and longer growing season&

!

modern  cows  aurochs  

modern  chickens  

red  jungle  fowl  

Examples of Artificial Selection animals domestication  

 

Holstein  Friesian  

1950’s  

Modern  ideal  

These  belong  to  the  same  species?  

Examples of Artificial Selection selection for “weird” forms in pets and breed amelioration

 

Darwin  used  ar9ficial  selec9on  as  an  analogy  for  natural  selec9on.  

Darwin’s Pigeons  

Rev.  Dr.  William  Henry  Dallinger  FRS  

W.  Dallinger  (1887)  The  President's  Address.  Jl.  R.  Microscp.  Soc.  184-­‐199.  

The first Laboratory Selection Experiment  

Major outcomes after over a century of selection experiments      1.  (Physiological)  Evolu9on  is  rela9vely  quick  under  

laboratory  condi9ons  

2.  Pa.erns  of  evolu9on  are  not  always  predictable  

3.  Physiology  and  behaviour  co-­‐evolve  and  interact  

Major outcomes after over a century of selection experiments    

Laboratory Selection Evolutionary Novelty (?)  

hIp://www.biology.ucr.edu/people/faculty/Garland/SelPubs.html  

Garland  et  al.  2002  Evolu3on  56,  6,pp.1267–1275    

Evolu3on  of  a  small-­‐muscle  polymorphism  in  lines  of  house  mice  selected  for  high  ac3vity  levels  

Laboratory Selection    

<<My  lab  also  uses  experimental  evolu9on  to  study  how  physiological  systems  func3on  and  evolve  under  stress.  A  current  project  involves  finding  genes  that  affect  obesity  in  starva3on-­‐resistant  fruit  flies.>>  

Allen  Gibbs  (University  of  Nevada  Las  Vegas)  

Laboratory Selection Medical Applications

 

'2<"/5&GH&%"++"I&#*/3+&G"("/&[6"-(-/"&q*/2*+(&p/H&'/S&h-U4*++&J*S&%H&h."S&J1,6*/(&K"+0L1&'22"+&q1<<0&

9)&7*'%):6(3#!&+&8)7#!

How relevant are these model organisms for our understanding of the evolution of marine organismal physiology?!

!

EVERYBODY KNOWS THAT SNAKE IS THE

WORD!!

K)11)'.#!$%&4'&.L(!i"V5-+&8C8N&!

HMN"O!BM>!=0"!0">P=Q5POP=R!!!!L!UWUQ!TXYZUS/P/X[S!M!!

i"V5-+O&l*24"/O&!2*/LO&h.V2"S&&

i")"/*2&&,)-.'&&M*M"/0&Y<"5A""+&8C=gF8CNgZ&

Marine Examples – heritability studies !

Litopenaeus  vannamei   Pascual  et  al.  2004  Aquaculture  230,  pp.405–416    

They  looked  a  the  effect  of  a  size-­‐based  selec3on  program  on  blood  metabolites  and  immune  response  of  juveniles  of  the  shrimp  Litopenaeus  vannamei  that  were  fed  different  dietary  carbohydrate  levels.    

Compared  physiological  responses  in  wild  and  cul9vated  juveniles  (7  genera3ons)  reared  with  a  high  (44%)  and  low  (3%)  carbohydrate    diet.    

In  wild  individuals  there  is  a  direct  rela9onship  between  the  type  of  carbohydrate    diet  and  levels  of  lactate,  protein  and  haemocyte.  They  used  carbohydrate  to  synthesis  proteins  via  transamina3on  pathways.    

In  cul9vated  individuals  metabolites  levels  were  propor9onal  inverse  to  dietary  carbohydrate  levels,  as    capacity  to  synthesize  protein  from  dietary  carbohydrate  was  repressed.  Hence,  size-­‐based  breeding  programs  caused  the  selec9on  for  individuals  unable  to  use  dietary  carbohydrate.    

Marine Examples - aquaculture  

Fleming  et  al.  2002.  Effects  of  domes3ca3on  on  growth  physiology  and  endocrinology  of  Atlan3c  salmon  (Salmo  salar)  Can.  J.  Fish.  Aquat.  Sci.  59,  8  ,  pp.1323-­‐1330    -­‐  selec9on  programs  for  fish  frequently  target  growth  rate  as  a  breeding  goal,  yet  

surprisingly  liIle  is  known  about  which  mechanisms  underlying  the  growth  process  are  being  targeted.    

-­‐  the  ar9ficial  selec9on  of  Atlan9c  salmon  (Salmo  salar)  has  resulted  in  higher  growth  rate    

-­‐  is  this  selec3on  process  resulted  in  changes  of  the  growth  hormone  (GH)  �  insulin-­‐like  growth  factor  I  (IGF-­‐I)  axis  of  endocrine  growth  regula3on.  

-­‐  tested  comparing  reared  seventh-­‐genera9on  farm  salmon  with  wild  salmon  .  

-­‐  the  domes9cated  fish  outgrew  their  wild  counterparts.    

-­‐  pituitary  GH  content  was  posi9vely  correlated  with  growth  rate  and  correspondingly  was  significantly  higher  in  the  faster  growing  domes9cated  fish  than  in  the  wild  fish.  Plasma  GH  levels  were  also  significantly  higher  in  the  domes3cated  fish,  whereas  IGF-­‐I  levels  did  not  differ.    

Marine Examples - aquaculture  

F&!-.M21+7&4-+15-/1+7&5-&-S05"/&6*5,6"/1"0&F&[*L"&*()*+5*7"&-R&0M*3*2&)*/1*<1215S&F&i"2",5&t,214*5"&M/--R&05/*1+0t&& u"H7H&l*/L"/&"5&*2Hv&

670*-!89!:+(;%5! =H&'(*M5*3-+0&&

R/-4&i*4E0&2",5./"&nNF?&

Sinead  Collins  (Edinburgh  University)  

hIp://www.smallbutmighty.bio.ed.ac.uk/research/evolu3onary-­‐responses-­‐to-­‐high-­‐co2.html    

Collins  and  Bell  2004.  Phenotypic  consequences  of  1000  genera3ons  of  selec3on  at  elevated  CO2  in  a  green  alga.  Nature  431:566-­‐569.  

Marine Examples – where did we start with OA?  

 

Published  empirical  evidence  for  the  actual  capacity  for  rapid  adapta9on  to  global  change  drivers  in  marine  systems  

exist  only  for  unicellular  organisms    

Ac

ce

pte

d A

rtic

le

This article is protected by copyright. All rights reserved.

T#&.6*$)+)7.#!)$.#I&#!

!

<')-#;&-&')0*-)+!&=&$5#!)++&.()5&!#&.&'&!>&$3-,(5?!+*##!,3'(-;!*$&)-!)$(,(1$)0*-!(-!)-!34(@3(5*3#!7+)-A5*-($!$*7&7*,!

!

U5+;',7'!46!$&&'5+$94,!46![P!'8'72(!$(!$!%'(3&2!46!2%$,(:','%$94,$&!'8'72(&

[6-/&x&;.M-+5&=>8?&K+*:)+!9%)78&!5(*+*8U!

Ac

ce

pte

d A

rtic

le

This article is protected by copyright. All rights reserved.

differences between transplant and original target populations are shown by vertical lines

with point ends.

#-("2b&!5"+-M6-/"&YH7&1(*I#(#!+&(6U(Z&x&0*21+15S&

J*5"&-R&,6*+7"&

;"017+b&

$*,6&7"+"/*3-+b&&F! q/-A56&F! G",.+(15S&F! ;m'&Y7"+-5SM1+7Z&

K*05&7"+"/*3-+b&&F! M"/R-/4*+,"&,./)"&

R/-4&i*4E0&2",5./"&nNF?&YG/110&#.22"/&"5&*2H&1+&M/"MZ&

Ophryotrocha  labronica  

TCUBU`TUCXZUS/PD!"[S)X/X[SQ!&[6"&&2*<-/*5-/S&05/*1+&.0"(&6*0&<""+&L"M5&1+&,.25./"&R-/&yNN&7"+"/*3-+0&.+("/&6176&!w=c&2-A&Mh&,-+(13-+0&M/"(1,5"(&5-&-,,./&R-/&56"&S"*/&=8>>&YaIaE!b!FIOcZO&

*+(&56.0&21L"2S&2-+7F5"/4&*,,214*5"(&-/&*(*M5"(&5-&0.,6&,-+(13-+0H&&&

J-(/z7."`FJ-4"/-&'HO&p*//-2(&#H;HO&#*00*4<*FmEi1*2*&qHO&iM1,"/&pH@HO&!*2-01&lH&&C$1+;!'54&394,$%=!$;$12$94,!24!7#$,:'(!+,!',5+%4,0',2$&!7"[E!+,!$!0$%+,'!14&=7#$'2'!+(!6$7+&+2$2';!@=!2%$,(B:','%$94,$&!1&$(97+2=I!!!!!!!!!!!!!!!!!!l/-,""(1+70&-R&56"&J-S*2&i-,1"5SO&.76&'!#.:1(##(*7H!

&&&&&&&&&i5.(S&0M",1"0F&MI%'U*-'*$%)!+):'*7($)!&

i"41F,-+3+.-.0&</""("/&

$*0S&5-&/*10"&1+&56"&2*<&

G*05&7"+"/*3-+&34"&&$*0S&5-&0"V&&

EXPERIMENT     1:   MULTIGENERATIONAL  EXPOSURE  We   carried   out   a   mul3-­‐genera3onal  experiment  (6  genera3ons)  to  determine  the   fitness   consequences   of   the   pre-­‐experimental   condi3ons   (on   F1)   and   the  effects   of   the   mul3-­‐genera3onal  exposure  to  low  pCO2  condi3ons  (F2-­‐F6).        E X P E R I M E N T   2 :   R E C I P R O C A L  TRANSPLANT    Reciprocal   transplants   were   performed  between   pCO2   treatments   with   F7  individuals   to   determine   if   an   adap3ve  response   to   low   pCO2   levels   had  occurred.    

Rodríguez-­‐Romero  A.,  Jarrold  M.D.,  Massamba-­‐N’Siala  G.,  Spicer  J.I.,  Calosi  P.    Rapid  evolu9onary  adapta9on  to  changes  in  environmental  pCO2  in  a  marine  polychaete  is  facilitated  by  trans-­‐genera9onal  plas9city.                                      Proceedings  of  the  Royal  Society,  under  submission.  

pCO2:  1000  μatm  (E)  

F1   F

2  F3   F

4   F5  

F6  

pCO2:  400  μatm  (L)  

F1   F

2  F3   F

4   F5  

F6  

F7  

EE   EL   LE   LL  

F7  

EE   EL   LE   LL  

/CPSQBYUSUCP/X[SPD!TDPQ/X"X/W!',$@&'(!24!0$K+0+('!6%40!_E!<2,'((!!$,;!6%40!_R!\35',+&'(!:%4*2#!3,;'%!&4*!7"[E!74,;+94,(I!!

G8&R"4*2"0E&R",.+(15S&A*0&017+1T,*+52S&2-A"/&1+&56"&2-A&I!w=&5/"*54"+5O&&0.77"03+7&56*5&56"&M/"F"VM"/14"+5*2&,-+(13-+0&6*(&/"0.25"(&1+&

*(*M5*3-+&5-&"2")*5"(&I!w=&,-+(13-+0H&&

GP&1+(1)1(.*20&5/*+0M2*+5"(&5-&"2")*5"(&I!w=&,-+(13-+0O&*+(&A6-0"&M*/"+50&6*(&<""+&/"*/"(&*5&2-A&I!w=&,-+(13-+0&R-/&:&7"+"/*3-+0O&06-A"(&*&017+1T,*+5&/"(.,3-+&1+&R",.+(15SH&i.77"03+7&56"S&6*(&Y/"Z*(*M5"(&5-&2-A&I!w=&,-+(13-+0H&

?'!1%45+;'!2#'!L_XCQ/fM!'5+;',7'!2#$2!L(40'M!0$%+,'!0'2$A4$,(!0$=!#$5'!2#'!7$1$7+2=!24!%$1+;&=!043,2!$,!

'54&394,$%=!%'(14,('!24!7#$,:'(!+,!7"[E!$F$& $FK& KFK& KF$&

Conclusions      

Our  results  suggest  that  some  marine  metazoans  ….  •  possess  sufficient  plas9city  to  cope  with  rapid  changes  in  

pCO2  over  one  genera9on    

•  may  have  the  capacity  to  rapidly  adapt  to  changes  in  pCO2  

•  Is  plas9city  the  mechanism  for  rapid  adapta9on  to  occur?      

 

 

   

H(<&!V)''*+6& Q')$&+(!>*6'(8.&WX>*1&'*&

K+*'()!H)##)1:)X,G2()+)&

/#$,>(!64%!74&&$@4%$94,(!$,;!;+(73((+4,(d!!

e,+2';!h+,:;40d!p-6+&iM1,"/&YR-/&5--&4*+S&561+70&5-&<"&*<2"&5-&2105&56"4&6"/"&1+,2.(1+7&M*/50&-R&5610&M/"0"+5*3-+aZ&!

X2$&=d!#*/1*F!/103+*&q*4<1&Yi}m&@0,61*Z~&!61*/*&K-4<*/(1&Y$m$'&K"/1,1Z&!

_4%!/'7#,+7$&!P((+(2$,7'd&#*/1"&h*AL1+0O&J-7"/&h*02*4O&56"&5"*4&-R&56"&%"+561,&$,-2-7S&*5&s122*&;-6/+&Y@0,61*Z&1+&M*/3,.2*/&!*M5*1+&s1+,"+`-&J*+(-H&!&

9)1&'*7!0('6&Q')$&+(!>*6'(8.&WX>*1&'*&

K+*'()!H)##)1:)X,G2()+)&

9)1&'*7!0('6&

!!&OM!S'';!24!;'2'%0+,'!2#'!7$1$7+2=!64%!'54&394,$%=!$;$12$94,!+,!$!@%4$;'%!%$,:'!46!0$%+,'!0'2$A4$,(!$,;!03&91&'!%$1+;!:&4@$&!7#$,:'!;%+5'%(!*/"&/"].1/"(&5-&.+("/05*+(&4*/1+"&<1-(1)"/015S&R.5./"&/"0M-+0"0&&

EM!S'';!24!;'2'%0+,'!2#'!'74(=(2'0B&'5'&!74,('V3',7'(!Y1H"H&",-0S05"40&R.+,3-+0BZ&46!%$1+;!$;$12$94,!24!2#'!:&4@$&!7#$,:'B&

S'*!)+%'794,(!

D'2i(!#41'!*'!7$,!2#$,>!(44,!!jI&

Laboratory Selection Experiments and Experimental Evolution can help selecting for organisms resilient to ongoing Global

Climatic Change Drivers, and thus prevent potential local and global extinction.

So why do not we use it all the time?  

Disadvantage  and  Limita3ons:    

-­‐  require  species  with  rela3ve  short  genera3on  3mes,  -­‐  require  laboratory  hardy  species  (non  necessarily  representa3ve  of  extant  biodiversity)  -­‐  you  must  guarantee  a  rigorous  controls  of  experimental  condi3ons,  -­‐  you  must  maintain  healthy  popula3ons  for  mul3ple  genera3ons,  -­‐  you  must  maintain  an  unselected  line  (i.e.  control  popula3ons),  -­‐  you  must  start  from  very  large  founding  popula3ons  (to  avoid  gene3c  boIlenecks),  -­‐  simple  experiments  can  give  rise  to  complicated  paIerns:  example  laboratory  

selec3on  exp.  on  the  desicca3on-­‐tolerant  of  Drosophila  seems  rela3vely  straight-­‐forward.  However,  we  can  have  developmental-­‐stage-­‐specific,  gender-­‐specific  differences  in  the  heritability  of  traits,  which  complicate  this  ‘simple  picture’.  

 

Are Laboratory Selection experiments really the ultimate tool to study physiological evolution?

 

Huey  and  Rosenzweig    (2009)  chapter  22  Experimental  Evolu3on  by  Garland  and  Rose  

Experimenters  have  to  eventually:    -­‐  verify  that  the  pa.erns  observed  

under  laboratory  condi3ons  do  actually  occur  in  nature,  

 

-­‐    provide  evidence  that  individuals  selected  are  s9ll  ‘compe99ve’  in  their  natural  environment/communi3es.    

Laboratory Evolution Meets Catch-22  

Field Validations

What?

Where?

How?  

Field Validations  

Field Validations

What do you need ?

“natural analogies”  

Field Validations  

Field Validations

Where do you find “natural analogies”?

wherever there is an environmental gradient  

Field Validations  

Field Validations

How do you go about working along this gradients?

Characterising phenotypes (genetic, biochemical, physiological, life history, behavioural) along/at the

extreme of a gradient  

Field Validations  

Q23;+'(!$&4,:!,$23%$&!1^!:%$;+',2(!%'5'$&!$;$12$94,!!24![7'$,!P7+;+<7$94,!74,;+94,(!+(!14((+@&'&

Validations using Natural Systems  

!*+&4*/1+"&-/7*+1040&*,,214*3`"c*(*M5&M6S01-2-71,*22S&5-&"2")*5"(&I!w=&,-+(13-+0B&

!*2-01&lHO&J*05/1,L&iHO&K-4<*/(1&!HO&q*4<1&#H!H&

•! Presence/absence are relativelly well known

•! We could identify 7 species of non-calcifying worms which can be divided into ‘tolerant’ and ‘sensitive’

!

T4&=7#$'2'(!P(('0@&$:'!&

Transplant stations N&05*3-+0&Y*MM/-VH&g>&4&*&M*/5Z&R-/&<-56&*,1(1T"(&*+(&+-5F*,1(1T"(&,-+(13-+0&1+&,-4M*/*<2"&,-+(13-+0&&&&

!8O&!=O&!N&&f&,-+5/-2&015"0&Yi*+&l1"5/-Z&&

'8O&'=O&'N&f&&*,1(1T"(&015"0&Y!*05"22-Z&

"4,2%4&!(+2'd!T3,2$!Q$,!T+'2%4!

P7+;+<';!(+2'd!"$(2'&&4!

"O!"E!

"R!

PO!

PE!

PR!

R!24&'%$,2!(1'7+'(!,-22",5"(&1+&2-A&I!w=&&

4-)"(&5-&*,1(1T"(&Y5-2"/*+5&!F'Z&

05*S&1+&2-A&I!w=&Y5-2"/*+5&!F!Z&

R!(',(+95'!(1'7+'(!,-22",5"(&1+&2-A&I!w=&& 05*S&1+&2-A&I!w=&Y0"+013)"&!F!Z&

4-)"(&5-&*,1(1T"(&Y0"+013)"&!F'Z&4-)"(&5-&*,1(1T"(&Y0"+013)"&!F'Z&

05*S&1+&

R!24&'%$,2!(1'7+'(!,-22",5"(&1+&*,1(1T"(&*/"*0&

05*S&1+&*,1(1T"(&Y5-2"/*+5&'F'Z&

4-)"(&5-&2-A&I!w=&Y5-2"/*+5&'F!Z&

05*S&1+&*,1(1T"(&Y5-2"/*+5&'F'Z&

/%$,(1&$,2&C'7+1%47$&!/%$,(1&$,2&

!

UK1'%+0',2$&!)'(+:,!&

/%$,(1&$,2

!

"!

#!

$!

%!

&!!

&"!

&#!

&$!

!"#$

%&'(")&"*

+,

-.(#)(/

'(' '()

!"#$%&'()*"(+%,(--*)(* 012

.'*,/)(-(%01+2"(-%'%%1012

.3'/3#$,*'"20#%4,201012

5*6(''*0#*''*)7*)%%10-2

8/0%+%4(43''*-%010-2

8/0%+%4()%)(,,*10-2

* **

!

/4&'%$,2!(1'7+'(!$%'!@'.'%!$@&'!24!0$+,2$+,!2#'+%!0'2$@4&+7!&'5'&!64&&4*+,:!$732'!'K14(3%'!24!'&'5$2';!7"[E!

!

/%$,(1&$,2&Q',(+95'!(11&

/4&'%$,2!(11&

-.(#)(/-.(#)(/

!

"!

#!

$!

%!

&!!

&"!

&#!

&$!!"#$

%&'(")&"*

+,

-.(#)(/

'(' '()

Platynereis dumerilii

Amphiglenamediterranea

Syllis prolifera

* **

Mutual Transplant Tolerant spp

Q'74,/%$,(1&$,2&

Amphiglena   mediterranea   showed   marked  physiological  plas9city  to  elevated  pCO2.    Platynereis   dumerilii   was   able   to   adapt   to  elevated   pCO2,   the   vent   popula3on   being  physiologically   and   gene9cally   different   from  those  outside  the  vent.  

 

Both  acclima9za9on  and  adapta9on    enable  persistance  of  worm  species  in  CO2  vents  

 

Transplant  

!

-42#!$77&+0$9A$94,!$,;!$;$12$94,!!',$@&'!1'%(+(2$,7'!46!*4%0!(1'7+'(!+,!"[E!5',2(!

&

Acclimatisation or adaptation?

!"!

!"#

$"!

$"#

%"!

!"#$%&'()*+"(,%-(..*)(* /'*-0)(.(%1+,2"(.%'%%

!"# $

%&'

"!(

)'#*

$+*

$,-.

,/01203

&'& &'( ('( ('&

))

)

) ))) *)*

!*2-01&&-!)+/&1+&M/"MH!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

42.13 46.20 48.73 55.73 63.45 69.62

O2 u

ptak

e (µ

mol

O2 g

¯¹ t.w

. h¯¹)

A

A, B A, B B C C

a

a   b   b   b  c  

c

***  

***  

 **   *  

Latitude (ºN)

a b b c

                           380  µatm                                                    1000  µatm      

Calosi  et  al.  in  prep.  

Laboratory Evolution Meets Catch-22  

CONCLUSION  Although  we  have  focused  on  problems  that  can  plague  LNS  experiments  as  emula9ons  of  natural  selec9on  in  the  wild,  we  do  not  mean  to  imply  that  LNS  experiments  are  without  u3lity.  Quite  the  contrary.  There  are  many  ways  to  study  evolu9on,  some  descrip9ve,  some  experimental.  As  has  been  noted  repeatedly  (Huey  et  al.  1991;  Huey  and  Kingsolver  1993;  Rose  et  al.  1996;  Gibbs  1999;  Garland  2003;  Swallow  and  Garland  2005;  Futuyma  and  BenneI  this  volume;  Rose  and  Garland  this  volume),  each  method  has  its  advantages,  and  each  has  its  limita9ons.  Moreover,  an  awareness  of  limita9ons  can  open  opportuni9es  for  novel  studies  (e.g.,  chronic  vs.  nonchronic  selec3on).  In  any  case,  a  complete  understanding  of  evolu9on  will  require  the  applica9on  of  mul9ple  integrated  approaches.  We  see  LNS  as  an  essen3al  tool  for  tes3ng  field-­‐derived  hypotheses,  but  one  that  must  be  handled  though�ully,  used  along  with  other  tools,  and  interpreted  with  care.  No  ma.er  how  hard  we  work,  no  experiment  or  study  will  ever  be  perfect.  We  need  to  do  away  with  the  “Myth  of  Defini9ve  Results”  (Underwood  1998)  and  recognize  that  our  view  of  evolu9on  is  deeper  if  we  look  at  it  through  different  and  complementary  glasses,  not  just  though  LNS  ones.  And  we  should  try  to  improve  the  validity  of  each  approach,  learning  as  we  go.  As  Underwood  (1998,  345)  noted,  “The  hallmark  of  progressive  ideas  is  that  they  progress.  Given  that  there  is  a  good  chance  we  are  wrong  quite  oken,  we  should  be  prepared  to  discover  how  wrong  as  fast  as  possible.”  

Huey  and  Rosenzweig    (2009)  chapter  22  Experimental  Evolu3on  by  Garland  and  Rose  

KKKKKKKKKKKKKKKKKKKKKKK!

“Toxicity” from System of a Down!S4*]!*#$2!;4!=43!4*,!2#'!*4%&;f!

h-A&(-&S-.&-A+&(10-/("/O&(10-/("/&

m-A&0-4"A6"/"&<"5A""+&56"&0*,/"(&012"+,"O&0*,/"(&012"+,"&*+(&02""M&

i-4"A6"/"&<"5A""+&56"&0*,/"(&012"+,"&*+(&02""M&

)+(4%;'%]!;+(4%;'%]!;+(4%;'%!jII!!