« INVERSION-BASED CONTROL€¦ · • Inversion-based control methodology 2. Inversion of EMR...

39
EMR’18 Hanoi June 2018 « I NVERSION - B ASED C ONTROL DEDUCED FROM EMR » based on the course of Master “Electrical Engineering for Sustainable Development” Université Lille1 Prof. Alain BOUSCAYROL L2EP, University of Lille, France Prof. Pierre SICARD GRÉI, Université du Québec à Trois Rivières, Canada Prof. João P. T ROVÃO e-TESC, Université de Sherbrooke, Canada Joint Summer School EMR’18 “Energetic Macroscopic Representation”

Transcript of « INVERSION-BASED CONTROL€¦ · • Inversion-based control methodology 2. Inversion of EMR...

EMR’18

Hanoi

June 2018

« INVERSION-BASED CONTROL

DEDUCED FROM EMR »

based on the course of Master

“Electrical Engineering for Sustainable Development”

Université Lille1

Prof. Alain BOUSCAYROL

L2EP, University of Lille, France

Prof. Pierre SICARD

GRÉI, Université du Québec à Trois Rivières, Canada

Prof. João P. TROVÃO

e-TESC, Université de Sherbrooke, Canada

Joint Summer School EMR’18

“Energetic Macroscopic Representation”

2

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Objective: example of HEV control -

BAT

ICE

VSI EM

FuelParallel HEV Trans.

fast subsystem

controls

EM

control

ICE

control

Trans

control

Energy management

(supervision/strategy)

driver request

slow system

supervision

3

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Objective: example of HEV control -

BAT

ICE

VSI1 EM1

FuelParallel HEV Trans.

fast subsystem

controls

EM1

control

ICE

control

Trans

control

Energy management

(supervision/strategy)

driver request

slow system

supervision

EMR

How to define control

scheme of complex systems?

(Structure? sensors?)

4

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Outline -

1. Principle of model-based control

• Open-loop and closed-loop controls

• Inversion-based control methodology

2. Inversion of EMR elements

• Inversion of accumulation elements

• Inversion of conversion elements

• Inversion of coupling elements

3. Inversion-based methodology structuring control

• Maximum control scheme

• Practical control schemes

4. Example of a paper processing system

EMR’18

Hanoi

June 2018

1. « Principle of

model-based control »

Prof. P. Sicard

(Université du Québec à Trois-Rivières, Canada)

6

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

Systeminput output

u(t) y(t)System-1(.)

wished

output

- Open-loop control and inversion -

Controlling a system for output tracking

can be interpreted as inverting the system

[Sicard 09]

yref(t)

control

… if we can implement a good approximation

of the system’s inverse.

7

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

Systeminput output

u(t) y(t)controller

wished

output

- Principle of closed-loop control -

Closed-loop control is required when:

• the model is not invertible,

• the model is ill known or too complex,

• and for robustness purpose.

[Sicard 09]

yref(t)

control

Controller objectives:

• tracking of reference changes

• rejection of disturbances and uncertainties

8

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

Systemcause effect

- Principle of Inversion-based methodology -

desired effect

Control

right cause

measurements?

control = inversion of the causal path

1. Which structure? (how many controllers)

2. Which variables to measure?

3. How to tune controllers?

4. How to implement the control?

Inversion-based methodology

automatic control

industrial electronics

input output

[Hautier 96]

9

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- EMR and Inversion-based methodology -

desired effectright cause

measure?

SS1

causeeffect

inputoutputSS2 SSn

C1 C2 Cn

measure?measure?

EMR = system decomposition in basic energetic subsystems (SSs)

Remember,

divide and conquer! Inversion-based control: systematic inversion

of each subsystem using

open-loop or closed-loop control

EMR’18

Hanoi

June 2018

2. « Inversion of

EMR elements »

11

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

?

Example:

- Inversion 1: single-input time-independant relationship -

output depends on a single input

without delay

Ku(t) y(t)

)( )( tuKty =

yref(t)uref (t)

1/K

direct

inversion

)(1

)( tyK

tu refref =

1. no measurement

2. no controller

(open-loop control) Assumption: K well-known and constant

Example: Resistance

1/R

R

vt) i(t)

)( 1

)( tvR

ti =

direct

inversion

)( )( tiRtv ref=

iref(t)v(t)

12

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

Manipulate u1

y2

u2

Objective: to control y2

y2-refu1-reg

u1

y1

y2 = f(u1 )

Ex : wheel

Wref = Vref / rwh

V= rwhW

T= rwh F

VrefWref

1rwh

- Inversion of a conversion element (1) -

13

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

?

Example:

- Inversion 2: multiple-input time-independant relationship -

Output depends on several inputs

without delay

u1(t) y(t)

)()( )( 21 tututy +=

yref(t)u1ref (t)

u2(t)+

+

1. measurement of the disturbance input

2. no controller

(open-loop control)

direct

inversion

)()()( 21 tutytu measrefref −=

+-

u1 is chosen to act on the output y

u2 becomes a disturbance input

Assumption: u2 can be measured

14

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

Manipulate u21 u1 is a disturbance

u1 y2

u2

Objective: to control y2

y2-refu1-meas

uHb= mHb VDC

iHb= mHb idcm

Ex : H-bridge chopper

mHb = uHb_ref / VDC_meas

uHb_ref∕ ×

mHbVDC_meas

y1 u21

y2 = f(u1, u21 )

- Inversion of a conversion element (2) -

Basic rule: as a first step, compensate all disturbances

assuming measurement is available.

15

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

?

Example:

- Inversion 3: single-input causal relationship -

output depends on a single input

and time (delay)

u(t) y(t)

dt )()( = tuty

yref(t)uref (t)

causality principle

direct

inversion

)()( tydt

dtu refref =

not possible

in real-time

dt

1. measurement of output

2. a controller is required

(closed-loop control)

indirect

inversion

)()()()( tytytCtu measrefref −=

closed loop controller

C(t)+-

16

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Example: PM-DC machine -

i

u

Lm rm

u i e

ireudt

diL mm −−=

multi-input causal relationship

irudt

diL mm −=

decomposition

euu −=

U(s)

E(s)-

+K

1+ts

U(s) I(s)

+

Uref (s)

+

direct

inversion

Iref(s)Uref(s)C(s)

+-

closed-loop

control

17

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

Manipulate u1 u2 is a disturbance

Objective: to control y2

u2

y2

y1

u1 y2=f(u1, u2 )

f is in integral form

Direct inversion is

in derivative form

Approximate inversion

by closed loop control

Ex : rotating shaft

loadT

emTf

dt

dJ −=W+W

+

Wref

C(t)Tem_ref

Wmeas

+-

Tload_meas

+

measloadT

measreftC

refemT

_

))((_

+

W−W=

- Inversion of an accumulation element -

u1-ref y2-ref

u2-meas

y2-meas

18

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

u1m

u11

- Inversion of coupling elements -

y2

u2

y2-ref

kD1…kD(m-1)

no measurement

no controller

(m - 1) distribution

variables

−=

=

=

−−

refDim

refmDm

refD

yku

yku

yku

21

2)1()1(1

2111

)1(

...

y11

u11

y1m

u1m

Fbog4

Fbog2

Fbog3

vtrain

vtrain

vtrain

vtrain

Example: chassis of a train

Fbog1

vtrain

Ftot

Ftot-ref

Fbog1ref

Fbog4ref

Fbog2ref

Fbog3ref

kD1 kD3

kD2

19

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Inversion of EMR elements -

coupling element distribution criteria

conversion elementdirect inversion +

disturbance rejection

accumulation element

controller +

disturbance rejection

Legend

Control = light blue

Parallelograms

with dark blue

contour

direct

inversion

indirect

inversion

sensor

mandatory link

facultative link

EMR’18

Hanoi

June 2018

3. « Inversion-based methodology

structuring control »

21

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

y3 y4 y5 y6y1

S1y2 y7

z23 z56

S2

x1 x2 x3 x4 x5 x6 x7

1. EMR of the system

- Maximum control scheme -

EMR depends on:

- the study objective (limits between system and sources)

- the physical laws of subsystems (physical causality)

- the association of subsystems (systemic approach)

22

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

delay delay

2. Tuning path

y3 y4 y5 y6y1

S1y2 y7

z23 z56

S2

x1 x2 x3 x4 x5 x6 x7

1. EMR of the system

- Maximum control scheme -

The tuning path is:

- dependant on the technical requirements (chosen tuning input / output to control)

- independent of the power flow direction

23

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

2. Tuning path

y3 y4 y5 y6y1

S1y2 y7

z23 z56

S2

x1 x2 x3 x4 x5 x6 x7

1. EMR of the system

- Maximum control scheme -

x7-refx6-refx5-refx4-refx3-ref

3. Inversion step-by-step Strong assumption: all variables can be measured!

Maximal Control Structure (or scheme):

- maximum of sensors

- maximum of operations

Example:

- 4 sensors

- 2 closed-loop controllers

24

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

2. Tuning path

y3 y4 y5 y6y1

S1y2 y7

z23 z56

S2

x1 x2 x3 x4 x5 x6 x7

1. EMR of the system

- Practical control schemes -

x7-refx4-refx3-ref

3. Inversion step-by-step Strong assumption: all variables can be measured!

4. Simplification of control

Simplifications:

- non-consideration of disturbances

- merging control blocks…

impact on the tuning and on

the performances

25

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

2. Tuning path

y3 y4 y5 y6y1

S1y2 y7

z23 z56

S2

x1 x2 x3 x4 x5 x6 x7

1. EMR of the system

- Practical control schemes -

x7-refx4-refx3-ref

3. Inversion step-by-step Strong assumption: all variables can be measured!

4. Simplification of control

5. Estimation of non-measured variables

y4-est

x7-est

from measured variables

26

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

2. Tuning path

y3 y4 y5 y6y1

S1y2 y7

z23 z56

S2

x1 x2 x3 x4 x5 x6 x7

1. EMR of the system

- Practical control schemes -

x7-refx4-refx3-ref

3. Inversion step-by-step Strong assumption: all variables can be measured!

4. Simplification of control

5. Estimation of non-measured variables

6. Tuning of controllers

y4-est

x7-est

PI / PID / fuzzy controller?

Calculation of parameters?

27

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

2. Tuning path

1. EMR of the system

- Inversion-based control of a system -

3. Inversion step-by-step

4. Simplification of control

5. Estimation of variables

6. Tuning of controllers

Maximal Control Scheme

• mirror of the EMR (systematic)

• unique and theoretical solution

Practical Control Schemes

• several solutions (expertise)

• reduced performances

EMR’18

Hanoi

June 2018

4. « Example of a

paper processing system »

based on common papers at IEEE ISIE’2004 and IEEE-IECON 2006

Prof. Pierre Sicard1, Prof. Alain Bouscayrol2, Prof. Betty Lemaire Semail2

1 GRÉI, Université du Québec à Trois Rivières, Canada2 L2EP, Université Lille1, MEGEVH network, France

29

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

IM1 IM2

IM2

IM1

Paper processing

using 2 induction machines

Technical requirements:

- paper tension control for high quality of paper roll

- winding velocity control for high quality of processing

- Paper processing system as an example -

[Leclerc 04]

[Barre 06]

[Djani 06]

30

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Maximum control structure -

iim1

iim1 eim1

Tim1

Wim1

Wim1

induction machine 1

Troll1

vroll1

roll 1

Tband

Tband

band

vroll2

Troll2

Wim2

Wim2

Tim2 iim2

iim2eim2

uvsi2svsi2

ivsi2

Vdc

roll 2 induction machine 2 VSI 2

DC Bus

Vdc

ivsi1svsi1

uvsi1

VSI 1

Step 2a: identify all variables to be controlled (outputs) and control inputs

Step 2b: identify tuning paths from inputs to outputs, avoiding crossing the paths

Step 1: develop the EMR of the system

DC Bus

31

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Maximum control structure -

iim1

iim1 eim1

Tim1

Wim1

Wim1

induction machine 1

Troll1

vroll1

roll 1

Tband

Tband

band

vroll2

Troll2

Wim2

Wim2

Tim2 iim2

iim2eim2

uvsi2svsi2

ivsi2

Vdc

roll 2 induction machine 2 VSI 2

DC Bus

Vdc

ivsi1svsi1

uvsi1

VSI 1

DC Bus

Step 3: invert each element of the tuning paths by applying inversion rules

• assume that all the signals are measurable;

• compensate for all disturbances.

uvsi1-ref Wim1-ref Tband-refvroll1-ref

2. PWM: Pulse Width Modulation

Tim1-ref

Fim1-ref

iim1-ref

1. FOC: Field Oriented Control

12

uvsi2-ref

Fim2-ref

iim2-refTim2-refWim2-refvroll2-ref

1 2

32

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Maximum control structure -

iim1

iim1 eim1

Tim1

Wim1

Wim1

induction machine 1

Troll1

vroll1

roll 1

Tband

Tband

band

vroll2

Troll2

Wim2

Wim2

Tim2 iim2

iim2eim2

uvsi2svsi2

ivsi2

Vdc

roll 2 induction machine 2 VSI 2

DC Bus

Vdc

ivsi1svsi1

uvsi1

VSI 1

DC Bus

Maximal Control Structure

• 16 sensors (including 2 ac components for currents and voltages)

• 5 closed-loop controls (including 2 controllers of dimension 2 for currents)

uvsi1-ref Wim1-ref Tband-refvroll1-ref

2. PWM: Pulse Width Modulation

Tim1-ref

Fim1-ref

iim1-ref

1. FOC: Field Oriented Control

12

uvsi2-ref

Fim2-ref

iim2-refTim2-refWim2-refvroll2-ref

1 2

33

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Practical control structures -

iim1

iim1 eim1

Tim1

Wim1

Wim1

induction machine 1

Troll1

vroll1

roll 1

Tband

Tband

band

vroll2

Troll2

Wim2

Wim2

Tim2 iim2

iim2eim2

uvsi2svsi2

ivsi2

Vdc

roll 2 induction machine 2 VSI 2

DC Bus

Vdc

ivsi1svsi1

uvsi1

VSI 1

DC Bus

uvsi1-ref Wim1-ref Tband-refvroll1-refTim1-ref

Fim1-ref

iim1-ref

12

uvsi2-ref

Fim2-ref

iim2-refTim2-refWim2-refvroll2-ref

1 2

Step 4: Simplify the MCS: group operations, do not reject disturbances explicitly.

— Impact will be on cost, on processing time and on performance.

34

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Practical control structures -

iim1

iim1 eim1

Tim1

Wim1

Wim1

induction machine 1

Troll1

vroll1

roll 1

Tband

Tband

band

vroll2

Troll2

Wim2

Wim2

Tim2 iim2

iim2eim2

uvsi2svsi2

ivsi2

Vdc

roll 2 induction machine 2 VSI 2

DC Bus

Vdc

ivsi1svsi1

uvsi1

VSI 1

DC Bus

Step 5: Estimate non-measured variables, e.g.

disturbances that cannot be neglected, and estimate

unknown or time varying parameters

uvsi1-ref Wim1-ref Tband-refvroll1-refTim1-ref

Fim1-ref

iim1-ref

12

uvsi2-ref

Fim2-ref

iim2-refTim2-refWim2-refvroll2-ref

1 2

Troll2_est

Wim2_est

Wim2_est

Tim2_est iim2

Wim2

closed-loop observer

35

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Practical control structures -

iim1

iim1 eim1

Tim1

Wim1

Wim1

induction machine 1

Troll1

vroll1

roll 1

Tband

Tband

band

vroll2

Troll2

Wim2

Wim2

Tim2 iim2

iim2eim2

uvsi2svsi2

ivsi2

Vdc

roll 2 induction machine 2 VSI 2

DC Bus

Vdc

ivsi1svsi1

uvsi1

VSI 1

DC Bus

uvsi1-ref Wim1-ref Tband-refvroll1-refTim1-ref

Fim1-ref

iim1-ref

12

uvsi2-ref

Fim2-ref

iim2-refTim2-refWim2-refvroll2-ref

1 2

Step 6: choose and tune all controllers

(dynamic decoupling), and estimatorsPI controllers OK

except

EMR’18

Hanoi

June 2018

« Conclusion»

Inversion based control = inversion of EMR

based on the cognitive systemic

and the causality principle (energy)

Inversion rule for control scheme

closed-loop control to invert accumulation, direct inversion for

conversion element, degrees of freedom for coupling element

Different steps on the control scheme

From Maximum Control Scheme….

… to Practical Control Schemes

EMR’18

Hanoi

June 2018

« BIOGRAPHIES AND REFERENCES »

38

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- Speaker & contributors -

Prof. Alain BOUSCAYROL

University of Lille 1, L2EP, MEGEVH, France

Coordinator of MEGEVH, French network on HEVs

PhD in Electrical Engineering at University of Toulouse (1995)

Research topics: EMR, HIL simulation, traction systems, EVs and HEVs

Prof. Pierre SICARD

Université du Québec à Trois-Rivières, GRÉI, Canada

Professor in electrical engineering

PhD in Electrical Engineering at Rensselaer Polytechnic Institute, USA (1993)

Research topics: EMR, nonlinear control, AI, traction systems, EVs and HEVs

Prof. João P. TROVÃO

Université de Sherbrooke, e-TESC Lab., Qc, Canada

PhD in Electrical Engineering at University of Coimbra (2012)

Research topics: Electric Vehicles, Multiple Energy Storages, Energy Management

39

« Inversion-Based Control from EMR »

EMR’18, Hanoi, June 2018

- References -

[Barre 2006] P. J. Barre, A. Bouscayrol, P. Delarue, E. Dumetz, F. Giraud, J. P. Hautier, X. Kestelyn, B. Lemaire-Semail,

E. Semail, "Inversion-based control of electromechanical systems using causal graphical descriptions", IEEE-IECON'06,

Paris, November 2006.

[Bouscayrol 2000] A. Bouscayrol, B. Davat, B. de Fornel, B. François, J. P. Hautier, F. Meibody-Tabar, M. Pietrzak-

David, “Multimachine multiconverter system: application for electromechanical drives”, European Physics Journal -

Applied Physics, vol. 10, no. 2, May 2000, p. 131-147 (common paper GREEN Nancy, L2EP Lille and LEEI Toulouse,

according to the SMM project of the GDR-SDSE).

[Bouscayrol 2006] A. Bouscayrol, M. Pietrzak-David, P. Delarue, R. Peña-Eguiluz, P. E. Vidal, X. Kestelyn, “Weighted

control of traction drives with parallel-connected AC machines”, IEEE Transactions on Industrial Electronics, December

2006, 53(6), pp. 1799-1806 (common paper of L2EP Lille and LEEI Toulouse).

[Bouscayrol 2012] A. Bouscayrol, J. P. Hautier, B. Lemaire-Semail, "Graphic Formalisms for the Control of Multi-

Physical Energetic Systems", Systemic Design Methodologies for Electrical Energy, tome 1, Analysis, Synthesis and

Management, Chapter 3, ISTE Willey editions, October 2012, ISBN: 9781848213883

[Delarue 2003] P. Delarue, A. Bouscayrol, A. Tounzi, X. Guillaud, G. Lancigu, “Modelling, control and simulation of an

overall wind energy conversion system”, Renewable Energy, July 2003, 28(8), pp. 1159-1324 (common paper L2EP and

Jeumont SA).

[Leclercq 2004] A. Leclercq, P. Sicard, A. Bouscayrol, B. Lemaire-Semail,"Control of a triple drive paper system based

on the Energetic Macroscopic Representation", IEEE-ISIE'04, Ajaccio (France), May 2004, pp. 889-893.

[Djani 2006] Djani Wankam, Y., P. Sicard, A. Bouscayrol "Maximum control structure of a five-drive paper system using

Energetic Macroscopic Representation," IEEE IECON’2006, Special Session Graphical Description for Modeling and

Control Power Systems, Paris, France, November 2006, 5332-5337.

[Sicard 2009] P. Sicard, A. Bouscayrol, “Inversion-based control of electromechanical systems”, EMR’09 summer school,

Trois-Rivières, Canada, September 2009