電子加速器と新量子放射源 失敗に学ぶacc Far UV Detector Calibration ULSI Lithography...

82
電子加速器新量子放射源 電子加速器新量子放射源 電子加速器新量子放射源 電子加速器新量子放射源 失敗失敗失敗失敗山嵜 鉄夫 200893山嵜 鉄夫 夜話 OHO’08 @KEK

Transcript of 電子加速器と新量子放射源 失敗に学ぶacc Far UV Detector Calibration ULSI Lithography...

電子加速器と新量子放射源電子加速器と新量子放射源電子加速器と新量子放射源電子加速器と新量子放射源

失敗に学ぶ失敗に学ぶ失敗に学ぶ失敗に学ぶ

山嵜 鉄夫

2008年9月3日山嵜 鉄夫

夜話OHO’08 @KEK

山嵜山嵜鉄夫履歴書鉄夫履歴書山嵜山嵜鉄夫履歴書鉄夫履歴書

学歴

山嵜山嵜鉄夫履歴書鉄夫履歴書山嵜山嵜鉄夫履歴書鉄夫履歴書

学歴

1971年 京都大学大学院工学専攻科原子核工学専攻博士課程修了

職歴

1971年 電子技術総合研究所入所

26年 6ヶ月

1998年 京都大学エネルギー理工学研究所に異動

9年 3ヶ月

単身赴任を楽しむ!!

2007年 京都大学退職年 京都大学退職

京都大学原子核工学教室京都大学原子核工学教室京都大学原子核工学教室京都大学原子核工学教室

コッククロフト型加速器ヴァンデグラーフ型イオン加速器

イオンビームの多重散乱

電子技術総合研究所田無分室電子技術総合研究所田無分室電子技術総合研究所田無分室電子技術総合研究所田無分室

40-MeV電子リニアック 加速器の性能向上高エネルギー放射線標準放射線遮蔽新電子加速器施設の設計新電子 速器施設 設計

電子技術総合研究所(つくば)電子技術総合研究所(つくば)電子技術総合研究所(つくば)電子技術総合研究所(つくば)

600 M V電子リニア ク 電子加速器施設の建設600-MeV電子リニアック800-MeV電子蓄積リング電子蓄積リングNIJI I – IV

電子加速器施設の建設加速器の性能向上レーザー・コンプトン散乱

小型蓄積リングNIJIシリーズ 自由電子レーザー・・・・・・・・・・

京都大学エネルギ 理工学研究所京都大学エネルギ 理工学研究所京都大学エネルギ 理工学研究所京都大学エネルギ 理工学研究所京都大学エネルギー理工学研究所京都大学エネルギー理工学研究所京都大学エネルギー理工学研究所京都大学エネルギー理工学研究所

40-MeV電子リニアック 新量子放射エネルギー

AIST ELECTRON ACCELERATOR FACILITYAIST ELECTRON ACCELERATOR FACILITYAIST ELECTRON ACCELERATOR FACILITYAIST ELECTRON ACCELERATOR FACILITY

STORAGE RING TERASSTORAGE RING TERASSTORAGE RING TERASSTORAGE RING TERAS

BL3-1BL3-2BL3-3

VUV DetectorCalibration

Far UVDetectorCalibration

ULSI Lithography

Monochromators

BL2A2 - 8 nm

BL2B10 - 60 nmPolaraized

UR

KICKERMAGNET

B5B6

RFCAVITY

LANDAU CAVITY

2920

BL2C110 - 300 nm

UR

MAGNET

B4B7

QF

QDPOLARIZINGUNDULATORe-

R=2000

4511

.7

BL1B50 - 300 nm

SEEPTUMB3B8

QF

QD UNDULATOR

1800

BL1A1 - 25 nm

50 300

SEEPTUM MAGNET

DCCT

B1 B2

WIGGLER

18

FEL

LCS

Laser Backscattered Photons

LCS

STORAGE RING TERASSTORAGE RING TERASSTORAGE RING TERASSTORAGE RING TERAS

LCS

FEL

Laser Induced Compton BackscatteringLaser Induced Compton BackscatteringLaser Induced Compton BackscatteringLaser Induced Compton Backscattering

AIST LCS FACILITYAIST LCS FACILITYAIST LCS FACILITYAIST LCS FACILITY

by H. Ohgaki

example of LCS spectrumexample of LCS spectrumexample of LCS spectrumexample of LCS spectrum

CONCEPTUAL SCHEME OF FELCONCEPTUAL SCHEME OF FELCONCEPTUAL SCHEME OF FELCONCEPTUAL SCHEME OF FEL

LASER

MIRROR

LASER

Electron bunchMagnetic field

LORENTZ FORCE

BunchingBending magnet

Force

Electric

3 major elements

current

3 major elementsof FEL

FEL deviceOptical cavity

ACCELERATOR

Electron bunch

Bending magnet

MIRROR

LASER

Optical cavityElectron beam

MIRROR

10101010FEL EVOLUTIONFEL EVOLUTIONFEL EVOLUTIONFEL EVOLUTION

6

8 τ = 0

6

8τ = 1/3τ = 2/36

8

6

8

4

6

4

6 τ = 2/3

4

6τ = 1

4

6

0

2

ν

0

2

ν

0

2

ν

0

2

ν

4

-2

ν

4

-2

ν

4

-2

ν

4

-2

ν

-6

-4a0 = 5 j = 10-6

-4

-6

-4

-6

-4

-10

-8 ν0 = 2.6

-10

-8

-10

-8

-10

-8

-2 0 2 4 6 8 10 12

ζ

-2 0 2 4 6 8 10 12

ζ

-2 0 2 4 6 8 10 12

ζ

-2 0 2 4 6 8 10 1210

ζ

Wavelength Tunability of FELWavelength Tunability of FELWavelength Tunability of FELWavelength Tunability of FELg yg yg yg y

)2/1( 22

0 K+=λλ )(

2 20γ

][][493 mTBK λ= ][][4.93 00 mTBK λ=

FEL PRJECTS IN THE WORLDFEL PRJECTS IN THE WORLDFEL PRJECTS IN THE WORLDFEL PRJECTS IN THE WORLD

FEL PRJECTS IN JAPANFEL PRJECTS IN JAPANFEL PRJECTS IN JAPANFEL PRJECTS IN JAPAN

ETLOK I

OPTICAL KLYSTRONOPTICAL KLYSTRONOPTICAL KLYSTRONOPTICAL KLYSTRONETLOK-I

CAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENTCAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENT

Deca Time Method

CAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENTCAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENT

Decay-Time Method

Measured Waveform

PM 1

PM 2ττ

with averagingg g

CAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENTCAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENTDecay-Time Method

CAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENTCAVITYCAVITY--LOSS MEASUREMENTLOSS MEASUREMENT

Purging tubeN2

ROUND-TRIP CAVITY-LOSS

Mechanism of Mirror DegradationMechanism of Mirror DegradationMechanism of Mirror DegradationMechanism of Mirror Degradation

surface degradation

volume degradation

OXYGEN OXYGEN PLASMAPLASMAOXYGEN OXYGEN PLASMAPLASMAPLASMAPLASMA

TREATMENTTREATMENTPLASMAPLASMA

TREATMENTTREATMENT

HfO / SiO2 2

6

2 2

5annealed at 230 C for 10 hours.

annealed at 230 C for 4 hours.

°

°RESTORATIONRESTORATION

OFOFRESTORATIONRESTORATION

OFOF4

X10

)

-3

OFOFMIRRORMIRROR

DEGRADATIONDEGRADATION

OFOFMIRRORMIRROR

DEGRADATIONDEGRADATION3

LO

SS

(XDEGRADATIONDEGRADATIONDEGRADATIONDEGRADATION

2

MIR

RO

R

1

00 12010080604020

initial loss

0 12010080604020TIME (min)

X-RAY PHOTOELECTRONSPECTRA

FROM MIRROR SURFACE

HfO /SiO100

HfO2/SiO2

Ei=1 keVinitial

Positron lifetime Positron lifetime t ft f

Positron lifetime Positron lifetime t ft f

10-1

degradedtreated with plasma

and annealing

ts

spectra ofspectra ofa dielectric a dielectric

multilayer cavitymultilayer cavity

spectra ofspectra ofa dielectric a dielectric

multilayer cavitymultilayer cavity 10

zed

Cou

ntmultilayer cavity multilayer cavity mirror for FELmirror for FEL

multilayer cavity multilayer cavity mirror for FELmirror for FEL

10-2Nor

mal

iz

10-3

0 2 4 6

Time (ns)

FEL GAIN MEASUREMENTFEL GAIN MEASUREMENTFEL GAIN MEASUREMENTFEL GAIN MEASUREMENT

45 45e-

e-

OPTICAL KLYSTRONBM BM

MAPERTURE

RFCAVITY

VAC. VAC.F-1F-2

LCFILTER MONOCHRO-

RFSOURCE

FREQ.DIVIDER

HMFILTER MONOCHRO

MATOR

ND FILTER

DETECTOR

HFLIA

SIG.

REF.

MONOCHROMATOR

E/OMODULATOR

λ/2 PLATE

DETECTOR

LF

SIG.

MDYELASER

Ar+LASER

LFLIAREF.FUNCTION

GENERATOR

GAIN OF TERAS FELGAIN OF TERAS FELGAIN OF TERAS FELGAIN OF TERAS FEL

1 64 mA /bunch10

1.64 mA /bunch

0.85 mA / bunch

010)

-5

0

GAI

N (

x

-10

G

240 245240 245ELECTRON ENERGY (MeV)

STORAGE RING TERASSTORAGE RING TERASSTORAGE RING TERASSTORAGE RING TERAS

BL3-1BL3-2BL3-3

VUV DetectorCalibration

Far UVDetectorCalibration

ULSI Lithography

Monochromators

BL2A2 - 8 nm

BL2B10 - 60 nmPolaraized

UR

KICKERMAGNET

B5B6

RFCAVITY

LANDAU CAVITY

2920

BL2C110 - 300 nm

UR

MAGNET

B4B7

QF

QDPOLARIZINGUNDULATORe-

R=2000

4511

.7

BL1B50 - 300 nm

SEEPTUMB3B8

QF

QD UNDULATOR

1800

BL1A1 - 25 nm

50 300

SEEPTUM MAGNET

DCCT

B1 B2

WIGGLER

18

FEL

LCS

Laser Backscattered Photons

LCS

main RF cavity and Landau cavitymain RF cavity and Landau cavitymain RF cavity and Landau cavitymain RF cavity and Landau cavityy yy yy yy y

P 0 53 kWPLC= 0.53 kW

SUPPRESSION OFSUPPRESSION OFSUPPRESSION OFSUPPRESSION OFCOHERENT SYNCROTRON OSCILLATIONCOHERENT SYNCROTRON OSCILLATIONCOHERENT SYNCROTRON OSCILLATIONCOHERENT SYNCROTRON OSCILLATION

sidebands

Lasing pattern of FEL on storage ring TERASLasing pattern of FEL on storage ring TERASLasing pattern of FEL on storage ring TERASLasing pattern of FEL on storage ring TERASg p g gg p g gg p g gg p g g

spatial coherencespatial coherence

NIJI IV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEMNIJI-IV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEM

STORAGE RING NIJISTORAGE RING NIJI--IVIVSTORAGE RING NIJISTORAGE RING NIJI--IVIV

OPTICAL KLYSTRONOPTICAL KLYSTRONOPTICAL KLYSTRONOPTICAL KLYSTRON

ETLOK-II

GAIN OF NORMAL UNDULATOR & OK3.0

: gd = 56 mm38 3

2.5 : g

d= 38 mm

5

43

2.0 6

5

G2N

1.5 7.5GO

K /

1 0

Optimal curve

4

40 50 60 70 80 90 100 110

1.0 σγ/γ= 10x10-4

f = exp[-8π2(N+Nd)2(σ

γ/γ)2]

GOK= G2N[(N+Nd)/N]fNd

NIJI IV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEMNIJI-IV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEMNIJINIJI--IV FEL SYSTEMIV FEL SYSTEM

SQS SYSTEM OF NIJI-IVSQS S S O J

6-pole 6-poleQuadrupole

B di BendingBending

45

14065 6528.5 50 50 28.5

909

1 5

2.0SD: 5.176 A

HorizontalV i l

(a)

0.5

1.0

1.5 Vertical

atic

ity

-1.0

-0.5

0.0

Chr

oma

CHROMATICITY CORRECTION5.0 5.5 6.0

-1.5

2.5SF: 5.287A

SF Current [A]

CHROMATICITY CORRECTIONWITH

6-POLE MAGNETS

1.0

1.5

2.0(b) Horizontal Vertical

ty

-1 0

-0.5

0.0

0.5

Chr

omat

icit

4.5 5.0 5.5-2.0

-1.5

-1.0

SD Current [A]

SF = 5.09 A, SD = 4.99 A, for x = 0SF = 5.29 A, SD = 5.18 A, for ξ

x = 0.15, ξ

y = 0.08

SD Current [A]

EFFECT OF CHROMATICITY CORRECTION

7x1016Open: before the improvement Solid: after the improvement

5x1016

6x1016

y

4x1016

5x10

n D

ensi

ty

3x1016

Elec

tron

2x1016

Single-bunch OperationE = 309 [MeV]

Peak

-

0

1x1016[ ]

0 5 10 15 20 25 300

Beam Current [mA]

4 5

4.04.5

Al2O3 MIRRORS

3.03.5

(%)

2 3

2.02.5

LOS

S

1 01.52.0

AV

ITY

0.51.0C

A

210 215 220 225 2300.0

WAVELENGTH (nm)WAVELENGTH (nm)

5

4

UVVUV

4

single path gain at 22 mA

In

3 single-path gain at 22 mA

ntensityn [%

]

2

y [ a.u.]G

ain

212 nm

1

]

196 nm

150 200 250 300 350 400 450 500 550 600 6500

Wavelength [nm]

MAIN FEATURES OF FELCan we use FELs ?

Wavelength Tunability

Polarization Tunability

Can we use FELs ?

y

High Efficiency PRESENT STATUS OF FELHigh Power

Large Scale

Expensive

Low Efficiency of Acceleratorwith such

ll t f t Low Efficiency of Accelerator

Unexplored Wavelength Regionexcellent features

研究予算のスケーリング研究予算のスケーリング研究予算のスケーリング研究予算のスケーリング

大学 旧国立 旧国立直轄研究所

研究所 研究所 特殊法人研究所

小売商店スーパー

マ ケットデパート

マーケット

国立大学法人 旧電総研KEK

国立大学法人

私立大学

旧電総研

産総研

KEK

原研

理研

予算 予算 予算

理研

予算

極小

予算

中規模

予算

極大

AG

e

ABSORPTION CEFFICIENTSABSORPTION CEFFICIENTSABSORPTION CEFFICIENTSABSORPTION CEFFICIENTS

107

INd:

YA

Rub

y

CO

CO

2

Ne:

He

Ar+

XeC

lK

rF

Ar 2

F 2 ArF

105

106

m-1)

H2O GaAs Si

103

104

CIE

NT (c

m

101

102

ON

CO

FFIC

2

10-1

100

BS

OR

PTI

O

4

10-3

10-2AB

KU-FELETL

10-1 100 10110-4

WAVELENGTH (μm)

iFEL (Osaka Univ.)(former FELI)

Control roomLab.1

L b 2

User Lab.f Free-Electron Laser a University

(former FELI)

un H V

Lab 4

Lab.3

Lab.2Beam sharing system

L r it r

AT2

AT130MeV

Lab.4

Injector

FIR120 60

Laser monitor room

KU FELKU FELAT2

AT375MeV

AT4

AT5

MIR5-22mm

NIR1-6mm

Optical pipes

20-60mm

5m

m

KU-FELKU-FEL

AT5

AT6

AT7165MeV

1 6mm

Accelerator room 8m

UVV0.23-1.2mm KUFEL

(including RF sourceFIR2

50-100 mm

( gand drive laser)

イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピュータを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。

UJI CAMPUSUJI CAMPUSKYOTO UNIVERSITYKYOTO UNIVERSITY

UJI CAMPUSUJI CAMPUSKYOTO UNIVERSITYKYOTO UNIVERSITY

Lab. for Photon and

北4号棟

北3号棟

Lab. for Photon andCharged Particle Research

北1号棟Keihan Obaku St.

総合研究実験棟

Advanced Research Centerfor Beam Science

Main Bldg.

JR Obaku St.

Gate南3号棟

南2号棟南1号棟

Wood Composite Hall

Laboratory for Photon andLaboratory for Photon andCharged Particle ResearchCharged Particle ResearchLaboratory for Photon andLaboratory for Photon andCharged Particle ResearchCharged Particle Research

量子光・加速粒子量子光・加速粒子総合工学研究棟総合工学研究棟量子光・加速粒子量子光・加速粒子総合工学研究棟総合工学研究棟総合工学研究棟総合工学研究棟総合工学研究棟総合工学研究棟

PRESENT KUPRESENT KU--FELFELPRESENT KUPRESENT KU--FELFELRF GUN

量子光・加速粒子量子光・加速粒子総合工学研究棟総合工学研究棟

8 MeV

Laboratory for Photon andLaboratory for Photon andCharged Particle ResearchCharged Particle Research

dog-leg

NG

LER

ATIN

TUB

E

ULA

TOR

AC

CEL T

30 MeV

UN

DU

180 arc

PRESENT KUPRESENT KU--FELFELPRESENT KUPRESENT KU--FELFEL30 MeV30 MeV

OR180 arc

ND

ULA

TO

NG

UN

ELER

ATIN

TUB

EA

CC

E T

8 MeV

dog-leg

RF GUN

4.5-cavity Themionic RF Gun

KUKU--FEL RESEARCH SUBJECTSFEL RESEARCH SUBJECTSKUKU--FEL RESEARCH SUBJECTSFEL RESEARCH SUBJECTS

Compact RF Modulators

Backbombardment Problemquantitative measurementapplication of dipole magnetic fieldmodulation of RF waveformT i d t RFTriode-type RF gun

Emittance Measurementtomography methodg p y

Simulation of Electron-Beam Transport

Photocathode RF Gunsimulation studyexperiments, to be started

Simulation of FEL ProcessSimulation of FEL Processstart-to-end simulation

Design of undulatorsl i l t d SCplanar, circular, staggered array, SC

Energy Recovery Schemesimulation, radiation shielding

Problem in thermionic RF gun (1) ~ back bombardment ~

RF windowcathode

laser window vacuum pump

1 dimensional model

B kQb(x,τ)

Cathode

Back-streaming

electrosQh

heater

thermionic cathode x

Problem in thermionic RF gun (1) ~ back bombardment ~

Back-streaming electrons hit the cathode.

C th d t t iCathode temperature increases.

Current density on cathode surface

thermionic cathode

Time evolution of electron beam and input/reflected RF power

Time evolution of electron beam and input/reflected RF power

yincreases.

Beam loading increases and thent f f it hresonant frequency of cavity changes.

Beam current becomes unstable.

Maximum pulse duration is limited to at most several μ sec.

reducing the effectreducing the effectof backbombardmentof backbombardmentreducing the effectreducing the effect

of backbombardmentof backbombardment8

10

] of backbombardmentof backbombardmentby adjusting the RF waveformby adjusting the RF waveform

experimentalexperimental

of backbombardmentof backbombardmentby adjusting the RF waveformby adjusting the RF waveform

experimentalexperimental4

6

w

er [M

W Flat RFFlat RF

Modulated RFModulated RF

Adjustment ofthe RF waveform

Adjustment ofthe RF waveform

experimentalexperimentalexperimentalexperimental

0 2 4 6 8 100

2Pow

0 2 4 6 8 10 Time [μsec]

80

100

A]

Flat RFFlat RFModulated RFModulated RF

8 0

8.5

9.0

V] Flat RFFlat RF

Modulated RFModulated RF

40

60

rre

nt [m

A

7.0

7.5

8.0

er

gy [M

eV Modulated RFModulated RF

0 2 4 6 8 100

20Cur

3 4 5 6 76.0

6.5Ene

beam waveformbeam waveform

0 2 4 6 8 10 Time [μsec]

peak energypeak energy Time [μsec]

conventional triodeTRIODETRIODE--TYPE RF GUNTYPE RF GUNTRIODETRIODE--TYPE RF GUNTYPE RF GUN

system system

cathode cathodegrid

1stcell

1stcell

5th cell200m

] 5th cell200m

] 5th cell200m

]

m]

200m]

200

3 d ll

4th cell

Accelerating

150

200

ance

Z [m

m

3 d ll

4th cell

Accelerating

150

200

ance

Z [m

m

3 d ll

4th cell

Accelerating

150

200

ance

Z [m

m

ance

Z [m

mAccelerating

150

200

ance

Z [m

mAccelerating

150

200

10

m]

10

m]

10

m]

2nd cell

3rd cell Accelerating Field

Decelerating Field50

100

Axi

al D

ista

2nd cell

3rd cell Accelerating Field

Decelerating Field50

100

Axi

al D

ista

2nd cell

3rd cell Accelerating Field

Decelerating Field50

100

Axi

al D

ista

Axi

al D

ista Accelerating

Field

Decelerating Field50

100A

xial

Dis

ta Accelerating Field

Decelerating Field50

100

1st cell

Cathode4

6

8

Dis

tanc

e [m

m

1st cell

Cathode4

6

8

Dis

tanc

e [m

m

1st cell

Cathode4

6

8

Dis

tanc

e [m

m

1st cell

Cathode

1st cell

Cathode

1st cell

Cathode

1st cell

Cathode1st cell

Back-bombardment0 2 4 6 80

Phase [π rad]

A 1st cell

Back-bombardment0 2 4 6 80

Phase [π rad]

A 1st cell

Back-bombardment0 2 4 6 80

Phase [π rad]

A A

Phase [π rad]0 2 4 6 80

A

Phase [π rad]0 2 4 6 80

GridCathode

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

2

Phase [π rad]

Axi

al

GridCathode

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

2

Phase [π rad]

Axi

al

GridCathode

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

2

Phase [π rad]

Axi

al

6 8rad]

Grid

6 8rad]

GridGridGrid

mirrorfluorescent

EMITTANCE MEASUREMENTEMITTANCE MEASUREMENT

CCD camera mirrorfluorescent light Measurement of beam profile

changing the Q-mag. strength

y Q magnet

e-

reconstruction of the distribution with tomography methodsL

x

z

y

screene-Electron density distribution

in phase spacex’ x’ x’

emittancex x x

Phase-space distribution

111

−⎞⎛ μ :magnetic permeability

1 11tan −⎟⎟⎠

⎞⎜⎜⎝

⎛−=

fLθ

rvmf z

2001 γ

μ0 :magnetic permeabilityR0 : bore radiusN : no.of turnsm : electron rest mass

eNIzzkf

02 2μ

== m0: electron rest massγ: Lorentz factorvz :electron velocity

ORIGINAL EMITTANCE MEASUREMENTEMITTANCE MEASUREMENT

Tomographic Method

reconstruction of phase-space p pdistribution

ML-EMART

1st lasing in KU1st lasing in KU--FEL FACILITY!!FEL FACILITY!!

0.8

1.0

1.2

Peak12367±4nm

WIdth34±7nm

u.]0.6

0.8

1.0

60

80

100 Amplified Spontaneous Current Profile

u.]

Saturation of Detector or Amplifier

A]

0.4

0.6

Power [a.u

0.2

0.4

20

40Loss = 4%

Sign

al [a

. Gain = 5%

Cur

rent

[mA

12000 12200 12400 12600 128000.0

0.2

Wavelength [nm]

8 10 12 14 16 18-0.2

0.0

-20

0

Time [μs]

C0 3

Wavelength [nm]

FEL Spectrum

0.2

0.3

0.2

0.3

y [a

.u.] C

urre

Current Optical power Saturation

0

0.1

0

0.1

Inte

nsity

ent [A]

0 5 10

0

Time [μs]

KUKU--FEL FUTURE UPGRADESFEL FUTURE UPGRADES

drive laser

d l

therionic RF gunundulator

(FIR radiation)d l

therionic RF gun

photocathode

accelerator tube(decelerator)

dog-leg accelerator tubedog-leg

pRF gun

undulator(THz radiation)

180°arc180°arc

undulator(amplifier)

undulator(master oscillator)

optical cavityundulator optical cavity(amplifier) (master oscillator)

FEL-Compton X-ray

FEL PRJECTS IN JAPANFEL PRJECTS IN JAPANFEL PRJECTS IN JAPANFEL PRJECTS IN JAPAN

KUKU--FEL FUTURE UPGRADESFEL FUTURE UPGRADES

drive laser

d l

therionic RF gunundulator

(FIR radiation)

drive laser

photocathode

accelerator tube(decelerator)

dog-leg

photocathodepRF gun

undulator(THz radiation)

180°arc

photocathodeRF gun

return arc

undulator(amplifier)

undulator(master oscillator)(amplifier) (master oscillator)

FEL-Compton X-ray

KUKU--FEL FEL POWER PER PULSEPOWER PER PULSE

KU-FEL

102

(μJ)

photocathode

101OP

ULS

E

KU-FELpresent

10

/ MIC

RO

KU-FEL

100

NE

RG

Y / new undulatorOPO

10-1

EN

101 10210

WAVELENGTH (μm)

wavelength selective irradiation to

APPLICATION OF FREEAPPLICATION OF FREE--ELECTRON LASERELECTRON LASER

e-

wavelengthtunability

variable

selective irradiation to DNA etc. (wavelength, polarization)

introduction of genese

Free-Electron LaserFEL

polarizationintroduction of genes to cells(wavelength)

prevention of tooth cavityFEL

generation of clean energy sourcef H O d CO

detection and removal of pollutantsselective

prevention of tooth cavity(wavelength)

H 2O (水)

H 2 (水素)

C O 2 (二酸化炭素)

C H 3O H (

クリーン燃料

クリーン燃料

C OH 2

FEL FELFEL①自由電子レーザ ②自由電子レーザ

FEL FELH O

clean fuelCH3OH

CO2

from H2O and CO2 desociation of

Si-H bond

recovery of ozone layer

ozone layer

ozone hole

stratosphere

clean fuelH2

(水) (メタノール)

   脱酸素触媒 (安価な金属/金属酸化物触媒)

酸素付加触媒

H2O

higher efficiency

f

tropoospheresupersensitivedetection

wide area

oxidation catalystreduction catalyst

FEL③自由電子レーザFEL

Isotope separation:C, Si, U (wavelength)

ofsolar cells flon

greenhouse pollutants

decomposition & removal

distributionof pollutants

High-powerIsotope separation:C, Si, U (wavelength)

modulation of semiconductor devices (wavelength)・・・・・・・・・・

of pollutants

NOx, SOx, granular effluent

factory

powerFEL

ATPATP合成酵素の合成酵素のFF 部分部分ATPATP合成酵素の合成酵素のFF11部分部分蛍光分子

ATP S M P iATP S M P i

磁石

ATP Syntase as a Motor Protein ATP Syntase as a Motor Protein -- by the Yoshida & Hisabori by the Yoshida & Hisabori LabLab東工大東工大

蛍光による一分子回転の観察

CONCEPTUAL SCHEME OF FEL MALDI TOFCONCEPTUAL SCHEME OF FEL MALDI TOF--MSMSCONCEPTUAL SCHEME OF FEL MALDI TOFCONCEPTUAL SCHEME OF FEL MALDI TOF--MSMS

i t l l

IR-FEL

giant moleculeDNA, RNA matrix ion

detectorMm

ti f fli ht l igrid

electrodeMALDI

time-of-flight analysis(TOF)

matrix ionprotein molecule matrix iongiant molecule

DNA, RNA+ion

detectorm

fragment ionsm

,

+V 0

detector

UV laser

生存基盤計測フロンティアの基盤整備事業の概要

化学研究所

エネルギー理工学研究所

光 ネ ギ 複合研究領域

宇治地区研究所群

化学研究所

防災研究所

光エネルギー複合研究領域

光量子光源 生存基盤計測フロンティア基盤整備事業

生存圏研究所プラズマエネルギー複合研究領域

バイオエネルギー複合研究領域

量子理工学研究準備状況

•2004年度旧エネ研北2号棟の改修による、量子光・加速粒子総合工学研究棟の完成•光量子光源用加速器装置の完成 国内外大学・研究所

発展

実験センタ-

生存基盤科学高等研究院

光量子光源用加速器装置の完成•共同研究 「高速重イオン・自由電子レーザーの融合

照射を利用した新学際領域の開拓」を開始

国内外大学・研究所産業界

・生存基盤科学高等研究院組織のさきがけ・生存基盤計測・診断科学の創成に寄与・生存基盤計測・診断産業の萌芽育成,生存基盤計測 診断分野の研究者育成

生存基盤科学高等研究院

・生存基盤計測・診断分野の研究者育成、社会人教育

・光量子科学への寄与 「生存基盤科学」の創成

図1図1

ACTIVEACTIVE CREATION OF ENERGY LEVELSCREATION OF ENERGY LEVELSACTIVEACTIVE CREATION OF ENERGY LEVELSCREATION OF ENERGY LEVELS

radiation from an atom (laser)

e- -

Energy levels of an atomi d i l

e e-+

is used passeively.

NSN

radiationfrom an undulator

SNS

Energy levels ared i l

-ecreated actively.

N Q t R di ti

e

New Quantum Radiation

NEW QUANTUM RADIATION SOURCESNEW QUANTUM RADIATION SOURCESNEW QUANTUM RADIATION SOURCESNEW QUANTUM RADIATION SOURCES

LIGHT SOURCESLIGHT SOURCESLIGHT SOURCESLIGHT SOURCES

Synchrotron RadiationSynchrotron Radiation

Free-Electron Lasers (FEL)Free-Electron Lasers (FEL)Free-Electron Lasers (FEL)FEL OscillatorsSASE FELs

Free-Electron Lasers (FEL)

SASE FELs

Energy Recovery Linac (ERL) Light SourcesEnergy-Recovery Linac (ERL) Light SourcesFELsX SFELsX-ray SourcesElectron CoolersElectron Ion CollidersElectron-Ion Colliders

CONCEPTUAL SCHEME OF SASECONCEPTUAL SCHEME OF SASECONCEPTUAL SCHEME OF SASECONCEPTUAL SCHEME OF SASE

LASER

Electron bunchMagnetic field MIRROR

LASERLASER

Bending magnetForce

ElectricBunching

MIRROR

LATOR

current

UNDULATACCELERATOR

Electron bunch

Bending magnet 2 major elementsof SASE

FEL device

3 major elementsof FEL

FEL deviceFEL device

Electron beam

FEL deviceOptical cavityElectron beam

MIRROR

LASER

MIRROR

SASE PROJECTSSASE PROJECTSSASE PROJECTSSASE PROJECTSSASE PROJECTSSASE PROJECTSSASE PROJECTSSASE PROJECTS

http://www xfel spring8 or jp/cband/e/SCSS htm#Milestonehttp://www-xfel.spring8.or.jp/cband/e/SCSS.htm#Milestone

CHALLENGES FOR SASECHALLENGES FOR SASECHALLENGES FOR SASECHALLENGES FOR SASE

λ 0 2 f λ 3

very low emittance of electron beamELECTRON BEAM

πλε

4<

ε = 0.2 nm · rad for λ = 3 nm

εn = 0.4 μm · rad for λ = 3 nm @ 1 GeV

photocathode thermionichigh-current guns

photocathode thermioniclifetime emittanceRF gun DC gun

current-dependent effectsBBU, CSR , HOM, halo problem, space charge, wake fields

bunch compressionmagnetic, RF

tolerance on trajectoriesBPMs, magnet alignment, stable stands, halo problem

CHALLENGES FOR SASECHALLENGES FOR SASECHALLENGES FOR SASECHALLENGES FOR SASE

tolerance on K valuesUNDULATOR

radiation damage to undulators1.5 x 10-4 = 50-μm vertical misalignment

RADIATIONstability and reliabilitystability and reliability

short pulse 1~3 fs

timing jittertiming jitter

shot-to-shot instability

number of beamlines

And many morey

CHALLENGES FOR ERLCHALLENGES FOR ERLCHALLENGES FOR ERLCHALLENGES FOR ERL

very low emittance of electron beamELECTRON BEAMvery low emittance of electron beam

emittance growth @ merger, etc.

high-current gunsphotocathode thermioniclifetime emittance

high-current guns

RF gun DC gun

current-dependent effectsCS O fi

b h i

BBU, CSR , HOM, halo problem, space charge, wake fields,limitation of energy gain?

bunch compressionmagnetic, RF

tolerance on trajectoriesnon-destructive BPMs, magnet alignment,stable stands

And many more

COMPARISON OF LIGHT SOURCESCOMPARISON OF LIGHT SOURCESCOMPARISON OF LIGHT SOURCESCOMPARISON OF LIGHT SOURCES

SRSR ERL (SR)ERL (SR) SASESASE

energyenergy 22--8 GeV8 GeV 11--10 GeV10 GeV 22--15 GeV15 GeV

micropulse widthmicropulse width 3030 –– 100 ps100 ps 10 fs10 fs –– 1 ps1 ps 10 fs10 fs –– 1 ps1 psmicropulse widthmicropulse width 30 30 100 ps100 ps 10 fs 10 fs 1 ps1 ps 10 fs 10 fs 1 ps1 ps

emittanceemittance 11--20 nm (H)20 nm (H)0 10 1 –– 1 nm (V)1 nm (V)

0.1 0.1 -- 1 nm1 nm 0.02 0.02 –– 0.2 nm0.2 nm0.1 0.1 –– 1 nm (V)1 nm (V)

repetition raterepetition rate 10 10 –– 500 Mpps500 Mpps 10 10 --1000 Mpps1000 Mpps 10 10 –– 500 pps500 pps

av brillianceav brilliance 0 010 01 1010×× 10102020 10102222 10102323 10102222 10102626av. brillianceav. brilliance 0.01 0.01 –– 10 10 ×× 10102020

ph ph //s/s/.1%/mm.1%/mm22/mrad/mrad2210102222 --10102323

ph ph //s/s/.1%/mm.1%/mm22/mrad/mrad2210102222 --10102626

ph ph //s/s/.1%/mm.1%/mm22/mrad/mrad22

peak brilliancepeak brilliance 10102222 --10102323 10102525 --10102626 10103333 --10103434

ph ph //s/s/.1%/mm.1%/mm22/mrad/mrad22 ph ph //s/s/.1%/mm.1%/mm22/mrad/mrad22 ph ph //s/s/.1%/mm.1%/mm22/mrad/mrad22

no. of beamlinesno. of beamlines manymany manymany 1 1 –– 1010

COMPARISON OF LIGHT SOURCESCOMPARISON OF LIGHT SOURCESCOMPARISON OF LIGHT SOURCESCOMPARISON OF LIGHT SOURCESSRSR ERL (SR)ERL (SR) SASESASE

electron electron now availablenow available low emittancelow emittance very low emittancevery low emittancebeambeam CSR, HOM, wakeCSR, HOM, wake

very high stabilityvery high stabilityemittance growth atemittance growth at

yyCSR, HOM, wakeCSR, HOM, wakevery high stabilityvery high stability

emittance growth at emittance growth at mergersmergersspace charge (energy space charge (energy

i )i )gain)gain)undulatorsundulators now availablenow available now availablenow available very longvery long

very high precisionvery high precisiony g py g pradiationradiation now availablenow available

stablestablehigh av. fluxhigh av. flux

b lib li

high peak brilliancehigh peak brillianceshotshot--toto--shot instabilityshot instability

ll f b lill f b limany many beamlinesbeamlines

many beamlinesmany beamlines small no. of beamlinessmall no. of beamlinescompetition wt. Xcompetition wt. X--ray ray laserslasers

SR + FELSR + FELCompatibleCompatible

ERL + SASE compatible?ERL + SASE compatible?

自分(達)は何をやりたいか?自分(達)は何をやりたいか?そのためには何が必要か?そのためには何が必要か?

失敗を喜んで認める失敗を喜んで認める

そのためには何が必要か?そのためには何が必要か?

失敗を喜んで認める失敗を喜んで認める失敗から回復する失敗から回復する

いずれは必ず成功するという信念いずれは必ず成功するという信念成功しそうな時の確認成功しそうな時の確認

ライヴ ルとの競争と協調ライヴ ルとの競争と協調ライヴァルとの競争と協調ライヴァルとの競争と協調利用者との議論と協調利用者との議論と協調集中拠点と分散拠点集中拠点と分散拠点集中拠点と分散拠点集中拠点と分散拠点

さまざまな量子放射源さまざまな量子放射源総合的,境際的な視点総合的,境際的な視点加速器技術の重要性加速器技術の重要性加速器技術の重要性加速器技術の重要性

Thank you for your attention.Thank you for your attention.

I have to thank many colleaguesI have to thank many colleagues.Electrotechnical Laboratory (AIST)

Eectron Accelerator GroupTakio TOMIMASU (kyushu U.), Kawakatsu YAMADA, Norihiro SEI Hideaki OHGAKI (k t U )

y ( )

Norihiro SEI, Hideaki OHGAKI (kyoto U.),Suguru SUGIYAMA (retired), Tsutomu NOGUCHI (retired), Takeshi NAKAMURA (JASRI), Tomohisa Mikado (late),Hi ki TOYOKAWA R i hi SUZUKI T hi ki OHDAIRAHiroyuki TOYOKAWA, Ryoichi SUZUKI, Toshiyuki OHDAIRA

Collaboration withKawasaki Heavy Industries Co.

M. KAWAI, M. YOKOYAMA, S. HAMADA, A. IWATA, K. OWAKIMitsubishi Electric CoMitsubishi Electric Co.

N. SATO, H. USAMISumitomo Electric Industries Co.

H TAKADA Y TSUTSUIH. TAKADA, Y. TSUTSUI, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅SR Users⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

I have to thank many colleaguesKU FEL Group

I have to thank many colleagues.

Institute of Advanced Energy, Kyoto UniversityHideaki OHGAKI, Toshiteru KII, Kai MASUDA,Ki hi YOSHIKAWA

KU-FEL Group

Kiyoshi YOSHIKAWAGRADUATE STUDENTS

Quantum Science & Engineering Center Graduate SchoolQuantum Science & Engineering Center, Graduate School of Engineering, Kyoto University

Koji YOSHIDA

National Institute of Advanced Industrial Science and T ch l

Collaborators from

TechnologyiFEL, Graduate School of Engineering, Osaka UniversityNissin Electric Co.FEL Users⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅