核三廠小幅度功 安全評估報告 - aec.gov.tw · nrd-ser-97-07...

100
NRD-SER-97-07 核三廠小幅度功率提昇 安全評估報告 行政院原子能委員會 中華民國 97 年 10 月 16 日

Transcript of 核三廠小幅度功 安全評估報告 - aec.gov.tw · nrd-ser-97-07...

  • NRD-SER-97-07

    97 10 16

  • i

    (Measurement Uncertainty Recapture Power Uprate)

    97 2

    NRC RIS 2002-03

    7 1.69%

  • ii

    .................................................................................................................................i ................................................................................................................................ii ............................................................................................................v 1 ..........................................................................................................................1 1.1 ................................................................................................................1 1.2 ................................................................................................2 1.3 1.69%......................................................................3 1.4 ............................................................................................4 1.5 ........................................................................................................5 1.6 ........................................................................................................6

    2 ..............................................................................7 2.1 NSSS ...................................................................................7 2.1.1 .....................................................................................................7 2.1.2 ............................................................7 2.1.3 ............................................................................................7 2.1.4 ............................................................................................8

    2.2 RCS .........................................................................................8 2.3 ........................................................................................................9

    3 ................................................................................................................11 3.1 NSSS .............................................................................................11 3.1.1 ..................................................................................................11 3.1.2 ..................................................................................................11 3.1.3 ..................................................................................................14

    3.2 ......................................................................................15 3.2.1 ..............................................................................15 3.2.2 ......................................................................................15 3.2.3 ..................................................................................................16

    3.3 .......................................................................................................16 4 ................................................................................................17 4.1 ..........................................................17 4.1.1 ..................................................................17 4.1.2 NSSS .........................................................................17

    4.2 /............................................18 4.3 ......................................................................................................22

    5 ........................................................................................24

  • iii

    5.1 ..............................................................................24 5.2 ..........................................................................24 5.3 ..........................................................................................26 5.4 ..................................................................27 5.5 ..........................................................................................28 5.6 ..............................................................................28 5.6.1 ..............................................................................28 5.6.2 ......................................................................29

    5.7 ..................................................................................................30 5.7.1 ......................................................................................30 5.7.2 ..............................................................................30 5.7.3 ..........................................................31 5.7.4 ..........................................................................32 5.7.5 ..................................................................................32 5.7.6 U ...............................................................33 5.7.7 U ...........................................................................34 5.7.8 ..........................................................................................35

    5.8 ..........................................................................................................35 5.9 ......................................................................................................36 5.10 ....................................................................................................36

    6 ................................................................................38 6.1 ..........................................................................38 6.2 ..................................................................39 6.3 ..........................................................................39 6.4 ..................................................................57 6.4.1 ..............................................57 6.4.2 ..............................................58

    6.5 ..........................................................58 6.5.1 ......................................58 6.5.2 .......................................59

    6.6 (STGR)..............................................59 6.7 ......................................................................................................59 6.8 ......................................................................................................61 6.9 ......................................................................................................64

    7 ................................................................................................................65 7.1 ..................................................................................65 7.2 ......................................................................................................67 7.3 ......................................................................................................67

  • iv

    8 ........................................................................................68 8.1 ...................................................................68 8.2 ..................................................................................68 8.3 ..............................................................................................72 8.4 .......................................................................................73 8.5 .......................................................................................................77 8.6 .......................................................................................................80 8.7 ...............................................................................................81 8.8 ......................................................................................................82 8.9 ......................................................................................................82

    9 ........................................................................85 9.1 .......................................................................85 9.2 ..........................................................85 9.3 ......................................................................................86 9.4 ..................................................................................87 9.5 ..............................................................................................88 9.6 ..............................................................................88

    10 ..........................................................................................90

  • v

    AAC Alternate AC Source

    AC Alternating Current

    AEC Atomic Energy Council

    AFS Auxiliary Feedwater System

    ALARA As Low As is Reasonably Achievable

    AMSAC ATWS Mitigation System Actuation Circuitry ATWS

    ANC Advanced Nodal Code

    ANS American Nuclear Society

    ANSI American National Standard Institute

    AOR Analysis of Record

    ART Adjusted Reference Temperature

    ARV Atmospheric Relief Valve

    ASD After Shutdown

    ASME American Society of Mechanical Engineers

    ASTM American Society for Testing and Materials

    ATWS Anticipated Transient Without Scram

    AVB anti-vibration bar

    B&PV Boiler and Pressure Vessel

    BEF Best-Estimated Flow

    BHP Brake Horsepower

    BIT Boron Injection Tank

    BOP Balance-of-Plant

    BTRS Boron Thermal Regeneration System

    C&FS Condensate and Feedwater System

    CCW Component Cooling Water

    CDV Condenser Dump Valve

    CF Chemistry Factor

    CFR Code of Federal Regulations

    CLTP Current Licensed Thermal Power

    COPS Cold Overpressure Protection System

    CRDM Control Rod Drive Mechanism

    CSS Containment Spray System

    CST Condensate Storage Tank

    CVCS Chemical and Volume Control System

    CW Circulating Water

    DBA Design Basis Accident

    DC Direct Current

    DNBR Departure from Nucleate Boiling Ratio

    DRLL Dropped Rod Limit Line

    ECCS Emergency Core Cooling System

    EDG Emergency Diesel Generator

    EFPY Effective Full-Power Year

    EHC Electro-hydraulic Control

  • vi

    EOL End of Life

    EPRI Electric Power Research Institute

    EQ Environmental Qualification

    ERG Emergency Response Guideline

    ESDR Engineered Safeguards Design Rating

    ESF Engineered Safety Feature

    degree Fahrenheit

    FAC Flow Accelerated Corrosion

    FWLB Feedwater Line Break

    FF Fluence Factor

    FQ Peaking Factor

    FSAR Final Safety Analysis Report

    FH Enthalpy Rise Factor

    GL Generic Letter

    gpm gallons per minute /

    HEI Heat Exchanger Institute

    HELB High Energy Line Break

    HFF Hydraulic Forcing Function

    HFP Hot Full-Power

    HI Hydraulics Institute

    hp horsepower

    HP High Pressure

    HVAC Heating, Ventilating and Air Conditioning

    HZP Hot Zero-Power

    IASCC Irradiation Assisted Stress Corrosion Cracking

    IEEE Institute of Electrical and Electronics Engineers

    IFM Intermediate Flow Mixer

    IN Information Notice

    INER Institute of Nuclear Energy Research

    IPBD Isolated Phase Bus Duct

    lbm pound(s) mass -

    LOCA Loss-of-Coolant Accident

    LONF Loss of Normal Feedwater

    LOOP Loss of Offsite Power

    MCC Motor Control Center

    MCO Moisture Carryover

    MDF Mechanical Design Flow

    MELB Moderate Energy Line Break

    Mlbm Million pounds

    MOV Motor-Operated Valve

    MSIV Main Steam Isolation Valve

    MSLB Main Steam Line Break

    MSR Moisture Separator and Reheater

    MSS Main Steam System

    MTC Moderator Temperature Coefficient

    MUR-PU Measurement Uncertainity Recapture Power Uprate ()

    MVA Million Volt Amps

  • vii

    MVAR Mega Volt Amps - Reactive

    MWe Megawatts - electric

    MWt Megawatts - thermal

    NA Not Applicable (N/A)

    NEMA National Electrical Manufacturers Association

    NPSH Net Positive Suction Head

    NRC Nuclear Regulatory Commission

    NRS Narrow Range Span

    NSSS Nuclear Steam Supply System

    ODSCC Outside Diameter Stress Corrosion Cracking

    OPT Overpower delta-T T

    OTT Overtemperature delta-T T

    PCWG Performance Capability Working Group

    PEPSETM

    Performance Evaluation of Power System Efficiencies

    (Computer Program)

    PORV Power-Operated Relief Valve

    ppm part per million

    PRT Pressurizer Relief Tank

    Psteam Secondary Side Steam Pressure

    psi pounds per square inch /

    psia pounds per square inch absolute /()

    psig pounds per square inch gauge /()

    P-T Pressure-Temperature -

    PTS Pressurized Thermal Shock

    PU Power Uprate

    PWR Pressurized Water Reactor

    PWSCC Primary Water Stress Corrosion Cracking

    RAOC Relaxed Axial Offset Control

    RCCA Rod Cluster Control Assembly

    RCL Reactor Coolant Loop

    RCP Reactor Coolant Pump

    RCS Reactor Coolant System

    RHR Residual Heat Removal

    RHRS Residual Heat Removal System

    RIS Regulatory Issue Summary

    rpm revolution(s) per minute

    RPV Reactor Pressure Vessel

    RSAC Reload Safety Analysis Checklist

    RSE Reload Safety Evaluation

    RTD Resistance Temperature Detector

    RTDP Revised Thermal Design Procedure

    RTNDT Reference Temperature (nil-ductility transition) ()

    RTPTS Reference Temperature (pressurized thermal shock) ()

    RTS Reactor Trip System

    RTSR Reload Transition Safety Report

    RWAP Rod Withdrawal at Power

    RWST Refueling Water Storage Tank

  • viii

    SAR Safety Analysis Report

    SDS Steam Dump System

    SER Safety Evaluation Report

    SFP Spent Fuel Pool

    SFPCCS Spent Fuel Pool Cooling and Cleanup System

    SGBS Steam Generator Blowdown System

    SGFP Steam Generator Feed Pump

    SGTP Steam Generator Tube Plugging

    SGTR Steam Generator Tube Rupture

    SIS Safety Injection System

    SLB Steam Line Break

    SRP Standard Review Plan

    SSCs Structures, Systems, and Components

    SSE Safe Shutdown Earthquake

    STDP Standard Thermal Design Procedure

    T Temperature

    Tavg average temperature

    TBCCW Turbine Building Closed Cooling Water

    Tcold Cold Leg Temperature

    TDF Thermal Design Flow

    TFW Feedwater Temperature

    T/H Thermal-Hydraulic

    Thot Hot Leg Temperature

    Tsat saturation temperature

    Tsteam Secondary Side Steam Temperature

    UFM Ultrasonic Flow Meter

    USE Upper-Shelf Energy

    VCT Volume Control Tank

    WCAP Westinghouse Commercial Atomic Power

    RTNDT change in reference temperature (nil-ductility

    transition)

  • 1

    1

    1.1

    (MUR-PU)

    (LOCA)

    (ECCS)102%

    2%

    (1-1)(1-2)

    (UFM)2%

    0.3 %UFM

    101.7% (102 % - 0.3 % = 101.7 %)

  • 2

    1.7%

    9710(USNRC)

    400.4%1.7%

    (96)

    1.2

    97219314MUR-PU

    MS-MUR-SAR-00 0(NSSS)

    (WCAP-16744-P Rev.1)(BOP)

    (Evaluation No.2008-04562 Rev.0)

    97318

    7481

    (Safety Evaluation Report, SER)

    1.69%

  • 3

    1.3 1.69%

    2775

    MWt2822 MWt47 MWt1.69%

    Cameron/CaldonLEFM CheckPlusTM

    (LEFMTM)

    LEFMTMAlden

    (Commissioning Test)LEFMTM

    9717

    LEFMTM

    0.31%(1-3)

    1.69%

    (2250 psia)

    (621.5 )RCS

    RCS

  • 4

    1.4

    10 CFR 50 Appendix K (Emergency Core

    Cooling System Evaluation Models) Regulatory Guide 1.49

    (Power Levels of Nuclear Power Plants)ECCS

    2%102%

    102%

    200010 CFR 50 Appendix K

    (LOCA)2%

    2%

    Appendix K

    LOCAECCS

    (Design Change Request, DCR)

  • 5

    2002

    RIS 2002-03Guidance on the Content of Measurement

    Uncertainty Recapture Power Uprate Applications

    1.5

    9723

    (2%)(1.7%)

    LEFMTM

    0.31%

    1.69%

    1.69%

    1FSAR

    2FSAR3

    (4)2%1.7%

  • 6

    1.69%(5)

    (6)

    2,822

    MWtDCR

    FSAR

    1.6

    1-1 USNRC 10 CFR 50.46 "Acceptance criteria for ECCS for

    light-water nuclear power reactor".

    1-2 USNRC 10CFR 50, Appendix K "ECCS evaluation models".

    1-3 Caldon Ultrasonics, Engineering Report: ER-672 Rev.0,

    Uncertainty Analysis for Thermal Power Determination at

    Maanshan NPS Unit 2 Using the LEFM CheckPlus, June 2008.

  • 7

    2 NSSS

    (45)

    NSSS

    2.1 NSSS

    2.1.1

    NSSSPerformance

    Capability Working GroupPCWG

    2.1.2

    NSSSNSSSPlus

    First Principles

    2.1.3

    NSSS

    NSSS

  • 8

    2.1.4

    MUR101.7102PCWG

    MS-MUR-SAR-001.112

    010WCAP-16744-P Rev 12.1-1

    MS-MUR-SAR-001.112

    2

    PCWG

    (12)

    6.3

    2.2 RCS

    MUR2RCS

    Best-Estimated Flow, BEFThermal Design

    Flow, TDFMechanical Design Flow, MDF

    20

  • 9

    10Thermal Design Flow

    NSSSPlus

    MS-MUR-SAR-00 2.510

    0

    RCS

    92,600

    gpm/MUR292,600 gpm/

    106,900 gpm/MUR

    2106,900 gpm/

    MUR2TDFMDF

    2.3

    NSSSRCS

  • 10

    101.7

    101.69 WCAP-16744-P

    Rev 1.12.1-2101.69PCWG

    WCAP-16744-P Rev 1.1

    MS-MUR-SAR-01

  • 11

    3

    3.1 NSSS

    3.1.1

    NSSS2787 MWt

    RCS588.5440

    10

    1.7

    MS-MUR-SAR-00

    3.1WCAP-16744-P Rev. 13.1-151

    (normal conditions)2(upset conditions)

    3(emergency conditions) 4(faulted

    conditions)5(test conditions)

    3.1.2

    RCS

    ThotTcoldTsteamPsteam

    TFW1.7

    1.7

  • 12

    1314

    Vantage+

    MUR2.0

    WCAP-16744-P Rev. 13.1-2

    MUR2.0

    10

    0

    WCAP-16744-P Rev. 13.1-2MUR2.0

    :

    (1)MUR2.0Thot

    1.6

    MUR2.0Thot

    (2)MUR2.0Tcold1.4

    2.9(1)MUR2.0

    Tcold

    (3)MUR2.0TsteamPsteam1.9

  • 13

    15 psi5.644 psiTsteamPsteam

    ----

    Tsteam5.6

    Tsteam

    NSSSWCAP-16744-P Rev. 1Figures

    3.1-13.1-33.1-53.1-73.1-93.1-113.1-133.1-15

    3.1-16

    (4)MUR2.0NSSS

    56 MWtRCS56 MWtNSSS

    (5)MUR2.0RCS

    5,000 gpmMUR2.0RCS

    5,000 gpmRCSTsteam

    Psteam

    (1)-(4)

    (6)MUR2.0

    2.63TFW2.6

    TFW

    WCAP-16744-P Rev. 1Figures 3.1-23.1-43.1-6

  • 14

    3.1-83.1-103.1-123.1-143.1-173.1-183.1-19

    3

    NSSSRCS

    MURMUR

    40

    WCAP-16744-P Rev. 1 3.1-1Reactor

    Coolant System Cold Over-pressurizationMUR

    FSARFSAR

    FSAR

    1989MUR

    FSAR

    3.1.3

    3.1.2 MUR 2

    Tsteam TFW

    5 NSSS

  • 15

    3.2

    RCS Class 1 NSSS

    40

    3.2.1

    MUR

    102 PCWG

    PCWG

    3.2.2

    Tcold

    RCS

    MUR

    Tcold 560 102

    RCS 554.1 MUR

    2

    MUR 2

  • 16

    3.2.3

    RCS Tcold

    MUR 2

    MUR 2 MUR

    1.7

    3.3

    (1)MUR 2 Tsteam TFW

    5

    NSSS

    (2)RCS

    Tcold MUR 2

    MUR 2

    MUR 1.7

    (3) FSAR Reactor Coolant System

    Cold Over-pressurization

    (4) 101.7

    101.69

    WCAP-16744-P Rev 1.1 MS-MUR-SAR-01

  • 17

    4

    4.1

    4.1.1

    RCS

    (AOR)92,600 gpmRCS

    960 gpm700 gpm

    MUR1.7%

    (BEF100,000 gpm)960 gpmMUR1.7%

    RCS

    MUR1.7%

    4.1.2 NSSS

    NSSS

    MUR1.7%RCSpsi

    (CVCS)(2165 psi)

  • 18

    RCS

    1.7%RCSTcold

    CVCSMUR

    RHRCOOL5

    2%RHRNSCW

    90(32.2 )RHR2%

    MUR1.7%

    32.2

    4.2 /

    BOP

    NSSS/BOP

    MS-MUR-SAR-00MUR1.7%

    10%923 psia

    84.0%85%

  • 19

    0%943

    psia85.8%

    MS-MUR-SAR-004.3MUR1.7%

    4.3

    4.3MUR

    563.4 psig560.5 psig0.5

    NPSH ratio10.4810.02ANSI/HI

    2.0

    Low suction pressure alarm 145 psig

    MS-MUR-SAR-00MUR

    HEIHEI

    MUR

    HEI

    10 ft/secRecommendation

    RegulationMUR

    2%

  • 20

    NDE

    NDE

    NDE

    (List of Commitments)

    MS-MUR-SAR-00

    NPSH

    MUR

    NPSH Ratio10.510.0HEI2.0Required

    Pump SpeedBHP84%49%

    99%101%

    MURTR2.7G

    Evaluation of the Power Train Pumps Non-Safety Related Client

    Comment IssueSee Task Report 12A

    and 12B for Technical Specification impacts associated with the

    Condensate and Feedwater Systems.See Task Report 12A and

    12B for FSAR impacts associated with the Condensate and

    Feedwater Systems.Technical SpecificationFSAR

    Task Report 12A and 12BTR2.7MTR2.7E

  • 21

    Technical SpecificationFSAR

    923 psia

    WCAP-16744-P Rev.1920psia

    WCAP-16744-P Rev.1102%

    10%964 psia920

    psia101.7%

    10%964 psia923 psia

    MUR1.7%/

    (1)

    (2) HEI

    NDE

    (3)Technical SpecificationFSAR

  • 22

    4.3

    NSSS

    P-8

    (1)MS-MUR-SAR-00 102%

    OTT RTS

    OTT K1 1.45 1.49

    WCAP-16744-P K1 Sargent & Lundy K1

    K6

    MUR-PU Core Thermal

    Limit OTT OPT

    Core Thermal Limit(k1k3k4k6

    ) Non-LOCA

    Condition II OTT

    (a)Uncontrolled RCCA bank Withdrawal at

    Power (b)Loss of External Load/Turbine Trip (c)RCS

    Depressurization OPTRupture of

    Main Steam Line at Power

    (2)P-8MUR1.7%

  • 23

    31.9% WCAP-16744-P

    31.2%

    16 6

    10 964 psia 12.3

    Mlbm/hr 89.4 33.9%

    MUR 1.7 10

    923 psia 12.53 Mlbm/hr

    33.9%923/96412.3/12.53=31.9%

    WCAP-16744-P 31.2% 2%

    31.6% MS-MUR-SAR-00 WCAP-16744-P Rev.1

    MS-MUR-SAR-01 WCAP-16744-P Rev.1.1

    MUR 1.7%

  • 24

    5

    5.1

    RPV

    LOCA

    RCS MUR

    ASME B&PV

    1

    MUR 1.7MS-MUR-SAR-00 5.1

    Instrumentation Tubes

    ASME

    1.7% MUR

    ASME BPV

    5.2

    MUR

    (1)

  • 25

    10CFR 50 Appendix H (Beltline)

    (2) RG 1.99

    (P-T Curve) (3) 10CFR 50.61 RTPTS

    (4)EOL

    Upper Shelf Energy, USERTNDT

    (5) ASTM E900

    32 (Effective Full Power

    Year, EFPY)

    P-T CurveERG PTS USE

    36 EFPY

    (Capacity Factor) 0.9

    36 EFPY

    36 EFPY MUR 2

    ERG

    36 EFPY ARTRTPTSUSE

    36 EFPY -

  • 26

    -

    MUR 2 MUR 1.7

    5.3

    1

    2

    Flow-induced Vibration3

    4 MUR

    MUR

    RIPD

    MUR 1.7

    MUR1.7

    MUR 1.7

  • 27

    0.3

    MUR 1.7

    5.4

    MUR

    Reactor Coolant Loop, RCL

    (1) RCL (2)Nozzle(3)

    (4)(5)RCL

    (6)Class I MUR

    1.7

    ASME

    BPV

    MSLB

    FWLB LOCA

    MUR

    (flow accelerated corrosion, FAC)

  • 28

    MS1EOC-17

    MS2EOC-16 MUR

    FAC FAC

    MUR1.7

    5.5

    MUR

    40

    MUR 1.7

    5.6

    5.6.1

    (RCL) Model 93A-1

    7000 hp

    RCP

    ASME B&PV

  • 29

    MUR 1.7

    2250 psia RCS

    555.0RCP

    1.0

    MUR

    1.7

    5.6.2

    NSSS 102 %

    1hot-loop

    2cold-loop3

    4

    7176 bhp 9370 bhp

    7000 hp 8750

    hp 2.5 7.1

    MUR 1.7

  • 30

    5.7

    5.7.1

    Model F MUR

    1.7

    MUR 1.7

    5.7.2

    MUR 2 U

    0 10

  • 31

    chamber head

    0.070

    MUR 2

    MUR 1.7

    MUR 2MUR

    1.7

    5.7.3

    MUR

    ASME B&PV Code

    0 10

    10 MUR 2

    1,480 psi

    1,730 psi ASME B&PV

    1,600 psi 1,760 psi

    MUR 2

    ASME B&PV MUR 2

  • 32

    MUR 1.7

    5.7.4

    Ribbed Rolled

    Collar-cable

    Stabilizer

    ASME

    B&PV MUR

    MUR 1.7

    5.7.5

  • 33

    MUR

    5.7.6 U

    U

    fluid-elastic stabilityturbulence

    MURU

    MUR 2U

    0.500 0.523

    0.521 1.0 U

    0.3 mils 2 mils

    MUR 2 U

    9.2 8.6

    NSSS

    WCAP-16744-P

    U MUR 2

    2 U

    MUR 1.7 U

    MUR 2 MUR 1.7

  • 34

    U

    5.7.7 U

    MUR U

    Model F U Alloy 600 TT

    Alloy 600 MAmill-annealed

    AVB EOC-16

    U

    U

    PWSCC ODSCCAVB

    MUR

    U

    U MUR 1.7

  • 35

    5.7.8

    EPRI

    Guidelines

    MUR

    MUR 1.7

    5.8

    RCSRCS

    ThotTcold

    12

    NSSS

    3

    MUR NSSS

  • 36

    /

    MUR 1.7 ASME

    MUR 1.7

    5.9

    MUR

    ASME

    MUR 1.7

    MUR

    MUR 1.7

    5.10

    1.7 Vantage+

    123

    45

  • 37

    MUR 2

    2MUR

    2MUR 1.7

  • 38

    6 MUR NSSS 1LOCA

    2LOCA 3 LOCA 4

    5LOCA 6

    7

    6.1

    LOCA

    LOCA

    LOCA

    MUR Tcold LOCA

    TcoldLOCA

    LOCA

    LOCA

    LOCALOCA

    MUR 1.7

    LOCA RCS LOCA

    LOCA LOCA MUR 1.7

  • 39

    6.2

    Vantage+

    2

    MUR

    2

    MUR 1.7

    6.3

    MUR

    (Safety

    Limits)FSAR

    Non-LOCA

    MUR 2

    2,843MWt MUR 2( 1.7)

    Non-LOCA

    (DNBR) Non-LOCA (1)

  • 40

    RTDP WRB-2 (2) WRB-2

    STDP W-3

    RTDP RTDP

    DNBDNBRDNBR

    DNBR Condition I

    Condition II 95 95

    Non-LOCA THINC-IV WRB-2 DNB

    DNBR Vantage+ DNBR

    1.23 1.22 MUR

    VIPRE-W THINC-IV WRB-2 DNB

    DNBR 6-1

    MUR DNBR

    DNB Non-LOCA

    DNBR

    DNBR 1.32

    MUR 2

    MUR2Non-LOCAMS-MUR-SAR-00

    6.4

  • 41

    MUR Non-LOCA

    6.4 RTDP

    RTDP DNBR RTDP

    0.3 MUR

    1.7 RCS 430 psi

    DNB

    FH MUR 2

    FHRTDP FH RTDP 1.62 1.68

    DNBR 1.55 chopped

    cosine OTT

    RCP chopped

    cosine

    DNB

    FQRCCA

    FQ 2.42 RCP 2.50

  • 42

    Non-LOCA

    MS-MUR-SAR-00 6.4

    RCCA

    2.4

    Non-LOCA

    Non-LOCA

    MS-MUR-SAR 6.5 OTT OPT

    MUR

    OTT OPT

    Non-LOCAOTT

    1 RCCA

  • 43

    2

    3RCS

    OPT

    1

    (1)WCAP-16744-P Rev.1 6.3

    MS-MUR-SAR-00 6.3

    ( BWR )

    WCAP-16744-P BWR

    MS-MUR-SAR-00

    MS-MUR-SAR-00 6.3.29 WCAP-16744-P

    6.6

    (2) Non-LOCA

    THINC-IV WRB-2 DNB DNBR MUR

    VIPRE-W THINC-IV WRB-2 DNB

    DNBR 6-1

    (3) WCAP-16744-P 2.1-1 6.3-4

    0% 10%

  • 44

    (4)

    6.3

    MUR(WCAP-16744-P)

    (a) 2% 2,775 MWt

    2,831 MWt(b)(Thot)

    (Tcold) 555.5 554.1(Tavg)

    588.5 587.8(c) 440 442.6

    12.29 Mlbm/hr 12.57 Mlbm/hr

  • 45

    935 psia 920 psia (PCWG )(d) DNBR

    (SAL DNBR=1.32) MURPU PCWG Core Limit

    Lines(e) FH 1.65 1.62 (2% reduction)(f)OT

    T OPT (g)

    (h)Feedwater System Malfunction

    SG Common Mode Failure (i)

    ( LOOPLONF FWLB)

    MURPU FSAR

    (ITS)

    Core Thermal Power =2,822 MWt

    FH =1.62

    Core Limits and OTT/OPT Setpoints

    36 EFPY P-T Curves

    LTOPS/COMS PORVs Setpoint

    ATWS MTC Reload Design Criteria

    Motor Driven AFW Flow (FSAR Table 10.4-14)

    (a)(LOOP):380 GPM

    3

    (b)(LONF):500 gpm 3

  • 46

    (c)(FWLB):330 gpm 2

    Applicable Power for Inoperable SGSVs

    Design Basis for RHR Cooldown (FSAR 5.4.7.1)

    No Re-insertion of OFA Fuel

    FSAR Chapter 15

    (5) MUR-PU Non-LOCA

    WCAP-16744-P Table 6.3-5 MUR-PU

    Reload Transition Safety Report (RTSR) for use of

    Vantage+ at Maanshan Units 1 and 2 (pre-MUR-PU) Table 7.3.0-3

    MUR-PU

    (a)Steam System Piping Failure:

    Hot Zero Power MUR-PU

    WCAP-16744-P Hot Zero Power

  • 47

    Feedwater

    Malfunction Hot Zero Power

    SG Common Mode Failure

    (b)Loss of Load/Turbine Trip: RTSR(pre-MUR-PU)

    pressure case DNB case moderator

    temperature coefficient(MTC)pressure case MTC

    +7 pcm/F DNB case MTC 0 pcm/F

    MTC 0 pcm/F 50%

    +7 pcm/F RTSR pressure case

    +7 pcm/F WCAP-16744-P

    pressure case DNB case MTC

    0 pcm/F

    part power

    part power MTC

    Loss of Load/Turbine Trip

    MTC 0 pcm/F part power

  • 48

    MTC

    (c) (Locked Rotor): RTSR

    (pre-MUR-PU)pressure case DNB case

    WCAP-16744-P

    pressure case

    (2%)

    DNB case

    WCAP-16744-P

    2%

    2843MWt

    2843MWt DNB case

    pressure case DNB case

    (d)(Inadvertent

    Opening of a Pressurizer Safety or Relief Valve):

    MTC 0

    Inadvertent Opening of a Pressurizer Safety or Relief Valve

    MTC 0

    pcm/F part power MTC

  • 49

    MTC part

    power

    (e)(Rod Withdrawal at Power): MTC

    part power MTC

    MTC

    (6) minimum DNBR

    1.35 DNBR safety analysis limit 1.32

    MUR-PU

    RTSR Relaxed Axial Offset

    Control (RAOC)

    minimum DNBR

    RTSR RAOC MUR-PU

    Minimum DNBR 1.64 1.45 1.357

    LOFTRAN RW3

    RTSR RW3

  • 50

    DNBR safety analysis limitRTSR

    Minimum DNBR RAOC

    MUR-PU RAOC MUR-PU DNBR safety

    analysis limit 1.32 MUR-PU PCWG

    Core Limit Lines MUR-PU RW3 RAOC

    MUR-PU RW3 OPTOAX

    OPTOAXDNB core limit linesOTT trip

    line OTT trip line OPT trip line RW3

    RW3 core limit

    RW3PLO RW3PLL

    RW3PLO RW3PLL

    DNBR RAOC

    MUR-PU

    MUR-PU Minimum DNBR

    MUR-PU Minimum DNBR

    RAOC

    MUR-PU MUR-PU

    MUR-PUMinimum DNBR RAOC

  • 51

    RAOC MUR-PU

    LOFTRAN RW3 Minimum DNBR

    (7)

    loss of non-emergency AC power to the

    plant auxiliariesloss of normal feedwater flow

    4 Loss of Normal Feedwater Event Loss of

    Non-Emergency AC Power to the Plant Auxiliaries

    /

    Loss of Normal Feedwater

  • 52

    Event Condition IV

    WCAP-16744-P Rev.1

    WCAP-16744-P Rev.1.1

    (8) Loss of Non-Emergency AC Power to the Plant

    Auxiliaries Loss of Normal Feedwater Event

    WCAP-16744-P Rev.1.1

    WCAP-16744-P Rev.1

    WCAP-16744-P Rev.1.1 WCAP-16744-P Rev.1.1

    (9) RSAC Rod Withdrawal Event DNB

    limit MUR-PU Pre-MUR-PU

    DNBR marginrod bow penalty MUR-PU

    Pre-MUR-PU

  • 53

    (10)Automatic Rod Control System

    Tavg lead/lag 80 /10

    40 /10 OTT OPT lead/lag

    OTT OPT

    RCS Tavg

    OTT OPT

    OPT OTT

    Non-LOCA

    (11) OTT OPT

    3

    OTT OPT 3

    Non-LOCA

    3To OPTOAX K1

    3 OTT OPT

  • 54

    (12)

    ...

    Thermal Design Flow

    Minimum Measured Flow

    Thermal Design Flow Minimum Measured Flow

    (13)MS-MRU-SAR-006.3.7

    (14) WCAP-16744-P 6.3.8-1

    1,318 psia 6.3.8.1

  • 55

    110% 1,318.5 psia

    0.5 psia

    0.5 psia

    NSSS

    (Thermal Design Flow)

    MSSV

    MSSV tolerance

    WCAP-16744-P 6.3.8-1

    (15) MS-MUR-SAR-00 6.3.30

  • 56

    (a) ATWS MTC -8

    pcm/ MTC -5 pcm/

    RCS 330 psi

    RCS MTC

    technical basis RCS MTC

    (b)ATWS

    Doppler Coefficient Main steam safety valve and

    PORV response and capacity ATWS

    ATWS

    (c)MS-MUR-SAR-00 6.3.30 10%

    10%

    10%

    ATWS

    (SGTP)

    Loss of Load Loss of Normal Feedwater ATWS

    SGTPL 0%

  • 57

    (16) Locked Rotor

    WCAP-16744-P 3,200 psig

    RCS

    pressure < 110% design pressure

    General Design Criterion 31 SRP

    faulted

    condition

    RCS pressure < 110% design pressure4

    RCS pressure < 110% design

    3 2 RCS pressure <

    110% design pressure

    faulted condition

    6.4

    6.4.1

    2

    MUR

    2

    MURFSAR6

  • 58

    6.4.2

    FSAR

    6.5

    6.5.1

    WCAP-8264-P-A Rev.1FSAR

    NSSS2,968

    MWt2,775 MWtRCP(10

    MWt)4.5%(ESDR)

    2%MUR-PU 1.7%PCWGRCP

    12 MWtNSSS2,971 MWt2,971 MWt

    2,968 MWt3 MWt (0.1%)Long-Term LOCA

    Mass and Energy Release Analysis

    MUR-PU 1.7%Tcold/Thot(AOR)(MUR-PU

    554.1F/621.5F vs. AOR 558.8F/627.2F)

    MUR

  • 59

    6.5.2

    Cavity

    65.7 in2100 in

    2150 in

    2

    10

    FSAR

    MUR

    6.6 (STGR)

    Vantage+

    RTSR2MUR

    1.7

    6.7

    FSAR15:

  • 60

    2,900 MWt

    2,775 MWtMUR1.72,822 MWt

    MUR1.7

    MUR

    MUR

    MUR1.7

  • 61

    6.8

    (1) LOCA RCS LOCA

    LOCA LOCA MUR 1.7

    (2)

    MUR 1.7

    (3)WCAP-16744-P Rev1 Non-LOCA (6.3 )

    MS-MUR-SAR-00 6.3

    (4) MUR VIPRE-W THINC-IV

    WRB-2 DNB DNBR

    (5)

    0% 10%

  • 62

    (6) FSAR

    Chapter 15

    (7) Non-LOCA

    WCAP-16744-P Table 6.3-5

    MUR-PUReload Transition

    Safety Report (RTSR) for use of Vantage+ at Maanshan Units 1

    and 2 (pre-MUR-PU) Table 7.3.0-3

    (8) minimum DNBR

    1.35 DNBR safety analysis limit 1.32

    LOFTRAN

    RW3 Minimum DNBR

    (9)

  • 63

    (10)Automatic Rod Control System

    Non-LOCA

    (11) OTT OPT

    (12) 1,318 psia

    1,318.5 psia. 0.5 psia

    0.5 psia

    (13)

    MUR

    (14) FSAR

    MUR

  • 64

    (15) MUR 1.7

    (16)

    MUR 1.7

    (17)

    WCAP-16744-P Rev.1

    WCAP-16744-P Rev.1.1

    (18) 101.7

    101.69

    WCAP-16744-P Rev.1.1

    MS-MUR-SAR-01

    6.9

    6-1 NRD-SER-97-03,

  • 65

    7

    7.1

    MS-MUR-SRA 7.1 7.1

    The data presented in WCAP-9620 are based on a set of

    assumptions and calculation tools that are nearly 30 years old.

    Although the following list does not summarize all of the key

    assumptions that were made to support the WCAP-9620

    documentation, several important changes have occurred that

    are highlighted below.

    Fuel Product Line Changes

    Axial blankets regions with annular pellets

    Longer fuel cycle lengths

    shorter bottom and top nozzle designs

    Transition from out-in to low leakage loading patterns

    (L3P)

    Plant Modifications

  • 66

    Upratings

    Other programs that reflect changing PCWG parameters for

    a plant

    Methodology Updates

    Current nuclear cross-section data

    P5 versus P1 expansion of the scattering cross-sections

    S16 versus S8 angular quadrature

    No gap assumed between the fuel rod and bottom nozzle

    From this list of differences, the change from out-in to L3P

    is the most significant. The out-in fuel management strategy

    that was assumed in WCAP-9620 places fresh fuel on the periphery

    and these assemblies are moved towards the center of the core

    during subsequent reload fuel cycles. However, L3P reload

    designs intentionally place fresh fuel in the center of the core

    burned fuel assemblies on the core periphery. Out-in core

    loading patterns have relatively high peripheral power and

    correspondingly low power in the central region of the core.

    In contrast, L3P designs have low power on the core periphery

    and high power in the center of the core. Hence, transitioning

  • 67

    from out-in to L3P core designs makes the WCAP-9620 results

    conservative for the baffle and core barrel regions, but

    non-conservative for the core plate structures since more power

    is now being produced in the central portion of the core

    7.2

    2008

    MUR 1.7%

    7.3

    MUR 1.7%MS-MUR-SAR-00

  • 68

    8 8.1

    MUR

    MUR 1.7%

    8.2

    (1) MUR 1.7%

    BOP

    ()

    18%

    ABB

    5% MUR

    R2.7AEvaluation of the Turbine

    Generator for MUR Power Uprate Non-Safety Related Client

  • 69

    Comment Issue R2.7A FSAR

    Sections 3.5, 10.1, and 10.2 were reviewed. In Section 10.2,

    Fig. 10.1-1 should be replaced with a heat balance which

    reflects MUR-PU. Section 10.2.2.2.7 should be revised to

    reflect the differences between the Unit 1 and Unit 2 generator

    operating hydrogen pressures.

    FSAR

    R2.7A

    (2) MUR

    1.7%

    MUR

    1.7% 6.26109Btu/hr

    6.38109Btu/hr steam dump 32%

    8.82109Btu/hr

    6.267109 BTU/hr/shell (FSAR Table 10.4-1)2shell

    12.5109Btu/hr

    (3) 100% 1.7%MUR

  • 70

    ()

    MUR NPSH Ratio (~1.15) HEI1.1

    TR2.7GEvaluation

    of the Power Train Pumps Non-Safety Related Client Comment

    Issue 4.2 (4)

    (4)

    8.2.2

    (

    4 25%)

    MUR 0.3

    TR2.7B

    Main Condenser Non-Safety Related Client Comment Issue

    TR2.7C Evaluation of the Circulating Water and Condenser

    Evacuation System Non-Safety Related Client Comment Issue

    TR2.7C FSAR The current text of

    UFSAR Section 10.4 was reviewed and changes are required in the

    text related to the main condensers full load conditions which

    will increase after MUR uprate. The total turbine exhaust steam,

  • 71

    total condensate outflow, and the total condenser duty need to

    be updated to reflect the MUR uprate conditions.TR2.7B

    7.1.2 The severity factor (tube vibration) could not

    be calculated because the tube exhaust flange area and tube

    support span information is not available. See Open items 9.1

    and 9.2. FSAR

    tube exhaust flange

    area and tube support span informationS&L

    Open items 9.1 and 9.2 TR2.7B

    TR2.7C

    MUR 1.7%

    (1) FSAR

    (2) R2.7ATR2.7B TR2.7C

  • 72

    8.3

    (1)

    T

    hAT(h A )

    MUR

    Qmur/Q=Tmur/T

    1.7Tmur/T=1.017Tmur-To=1.017(T-To) To

    Tmur=1.017T-0.017To1.017T=1.017103 =104.7

    105

    103MUR 1.7

    105

    (2)MUR 1.7%

    TBCCW 8.3%

    TBCCW

  • 73

    ( Generator Stator CoolerAir Compressor Aftercooler

    Main Turbine Lube Oil Cooler 15 ) 68.5106 BTU/hr

    TBCCW 76.32106 BTU/hr 10%

    MUR ( Air Compressor

    Aftercooler) 1.7%

    8.3%

    (3) MUR

    1.7% SFP

    0.4 0.8

    Scenario 1 MUR 123.34122.91

    = 0.4Scenario 3 MUR

    146.4145.59 = 0.8

    MUR 1.7%

    8.4

    Engineered Safety Feature, ESF

  • 74

    ESF Containment

    Containment Heat Removal System

    Containment Isolation System

    Containment Combustible Gas Control System

    Fission Product Removal and Control System

    Habitability SystemEmergency Core

    Cooling System, ECCSAuxiliary Feedwater

    System MUR 1.7% ESF

    MS-MUR-SAR-00 4.2.3.4

    MUR 1.7

    MUR

    ASME B&PV Code

    Section III Articles NC-2l60 NC-3l20

    FSAR

    (Mass and Energy Release Analyses For Postulated

  • 75

    Loss-of-Coolant Accidents)MUR

    MS-MUR-SAR-00LOCA

    NSSS2,971 MWt

    1NSSS

    2,968 MWt1LOCA

    NSSS2843 MWtNRC 10 CFR

    50 Appendix K0.31%

    2,968 MWt1

    TcoldThot (AOR)

    MUR 1.7FSAR

    MUR

    MURFSAR

    MUR

    1.7 MUR

    MUR

    MUR1.7

  • 76

    1.69 MUR

    MUR

    LOCAMUR

    MUR

    LOCAECCS10 CFR 50 Appendix K

    2MUR1.7

    MURLOCA

    MUR

    MURLOCA

    102MUR1.7

    MUR

    1.7 MUR

    LOCA

  • 77

    1.7 MURMUR

    1.7% MUR

    8.5

    FSAR

    (Reactor Trip System, RTS)

    Engineering Safety Feature Actuation System,

    ESFAS

    (Safety-Related Display Instrumentation)

    FSAR

    (ATWS (Anticipated Transient Without Scram) Mitigation

    System Actuation Circuitry, AMSAC)

    RTS

    MUR 1.7

    MUR OTT OP

  • 78

    T OTT OP

    T

    OTT OPT

    Non-LOCA

    DNB 1.7

    FSAR

    LOCA ECCS

    102 CLTP MUR

    1.7 ESFAS

    ESF ESFAS MUR 1.7

    MUR 1.7

    MUR 1.7

    MUR

    MUR 1.7

    RHR

  • 79

    MUR

    1.7PORV

    --

    MUR LTOP PORV

    MUR

    Automatic Rod Control System

    TavgLead/Lag

    Tavg

    Tavg

    MUR

    2

    90MUR

    1.7(Cv1,250

    gpm/psi)MUR1.72

    (Cv 935 gpm/psi)

    AMSAC MUR

    1.7 AMSAC

  • 80

    1.7% MUR

    8.6

    345 kV 161 kV

    MUR 1.7

    MUR 1.7

    MUR 1.7

    MUR

    1.7

  • 81

    EDG ESF

    ESF 102 CLTPMUR

    1.7 ESF

    EDG MUR 1.7

    UFM

    MUR 1.7

    1.7% MUR

    8.7

    IPBD

    MUR 1.7

    1.69

    IPBD

    IPBD IPBD IPBD

    MUR

  • 82

    1.7% MUR

    8.8

    MS-MUR-SAR-00 MUR 1.7%

    FAC

    MUR 1.7%

    8.9

    EQ-

    EQ Radiation Dose

    FSAR Table 3.11-5 b 40 years operation (0.8

    plant capacity factor assumed for drywell Zones 1 and 2

    doses) FSAR Table 3.11-2 a Includes

    40-year normal operation radiation exposure. 0.8 plant

    capacity factor Tables

    Containment Building DBA Integrated Dose 1.0108 rad

    5.0106NEQ EQ

    FSAR (Equipment Qualification Report, Rev.

  • 83

    3 , Dec. 1988)

    EQ 10 CFR50.49 (Environmental Qualification of

    Electric Equipment Important to Safety for Nuclear Power Plants)

    IEEE 323 (IEEE Standard for Qualifying Class IE Equipment

    for Nuclear Power Generating Station, 1983) 10CFR50.49

    IEEE 323

    10% USNRC IEEE 323

    FSAR Table3.11-2Includes

    40-year normal operation radiation exposure.

    0.8( FSAR Table 3.11-5) Containment

    Building DBA Integrated Dose 1.0 ~ 2.0108 rad

    ( 5.0106

    rad) FSAR

    ( 0.8 0.85)NEQ EQ

    FSAR (Equipment Qualification

    Report, Rev.3 , Dec.1988)

    0.3

  • 84

    94 0.3

    TR2.7C PEPSETM BOP Heat Balance

    MUR

    MUR 1.7%

  • 85

    9

    9.1

    2 SCFM 0.1-0.3 SCFM 10 1.7%

    0.102-0.306 SCFM

    9.2

    1.7 2,822MWt

    (LRS)

    30 (101,127 3,347 )

    7 (26,250 /3,347 /)

    12%

    LRS LRS

    25

  • 86

    87

    91 82

    985 96 211 4.67

    200 93 30,000

    99MUR 1.7

    9.3

    MUR

    105

    MUR

    1.7%

    1.7%

    2,775 MWt 1.7%

  • 87

    1.7% 5

    5 Sv/hr 1.7%

    5

    MUR 1.7

    9.4

    MUR

    1.7 2

    2,775 MWt 1.7%

    1.7%

    MUR 1.7

  • 88

    9.5

    1.7% 1.7%

    105%

    105%

    102%101.7%+ 0.3%

    FSAR

    9.6

  • 89

    0.01 1.7%

    FSAR 12.212.312.4 1.7%

  • 90

    10

    (1) FSAR Reactor Coolant System

    Cold Over-pressurization

    (2) 10%

    (3) HEI

    NDE

    (4) Technical Specification FSAR

    (5)

    (6) WCAP-16744-P Rev.1.1

    (7) FSAR

  • 91

    (8) R2.7ATR2.7B TR2.7C

    (9)