XII Physics Rotational Motion

Post on 28-Nov-2015

31 views 1 download

description

An important concept from Mechanics section of Physics, dealing with fundamentals of rotational motion of rigid bodies.

Transcript of XII Physics Rotational Motion

Rotational MotionProf. Sameer Sawarkar

Contents

• Rigid Body• Rotational Motion• Cause & Consequence• Moment of Inertia• Kinetic Energy• Angular Momentum• Conservation Principle• Parallel & Perpendicular Axes Theorems• Radius of Gyration• Rolling Motion

Prof. Sameer Sawarkar 2

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

3Prof. Sameer Sawarkar

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

4Prof. Sameer Sawarkar

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

5Prof. Sameer Sawarkar

A

B

C

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

6Prof. Sameer Sawarkar

No body is truly rigid nor elastic or plastic. The state is always referred to as rigid/elastic/plastic in context with the magnitude and range of external forces.

A

B

C

7Prof. Sameer Sawarkar

Rotational Motion: A body is said to be purely rotating

when all the constituents of the body are moving in circular motions, with centers of their paths lying on a

fixed straight line called axis of rotation.

,

8Prof. Sameer Sawarkar

Rotational Motion: A body is said to be purely rotating

when all the constituents of the body are moving in circular motions, with centers of their paths lying on a

fixed straight line called axis of rotation.

,

A

B

9Prof. Sameer Sawarkar

The axis of rotation may lie within the body or without the body

,

10Prof. Sameer Sawarkar

Examples: Motion of table/ceiling fan bladesMotion of Turbine rotorMotion of gear wheelsSpinning Motion of planetsOpening of doors/window panelsMotion of hands of clock etc.

Prof. Sameer Sawarkar 11

CAUSE & CONSEQUENCEin Rotational Motion

12Prof. Sameer Sawarkar

Force produces translationi.e. linear acceleration, ‘a’

Couple Moment produces rotation i.e. angular acceleration, ‘’

F

a

F

F

d

13Prof. Sameer Sawarkar

• Rigid body subjected to

torque

• Rotating about a fixed axis

with angular acceleration

14Prof. Sameer Sawarkar

1

n

2

R1

R2

Rn

• Consider ‘n’ particles of the

body in circular motion with

masses m1, m2, … , mn.

• R1, R2, … , Rn are the radii.

15Prof. Sameer Sawarkar

R1

R2

Rn

a1

an

a2

• Linear tangential accelerations of constituents; a1, a2, … , an

• Using aT = R

a1 = R1 a2 = R2 … … … …… … … …an = Rn

(1)

Prof. Sameer Sawarkar 16

R1

R2

Rn

a1

an

a2

F1

F2

Fn

a1 = R1 , a2 = R2 , … , an = Rn _(1)

• Using Newton’s II Law; F = ma

F1 = m1a1 = m1R1 F2 = m2a2 = m2R2 … … … … … … … …… … … … … … … …Fn = mnan = mnRn

(2)

Prof. Sameer Sawarkar 17

F1

F2

Fn

R1

R2

Rn

a1

an

a2

1

n

F1

F2

Fn

F1 = m1R1 , F2 = m2R2 , … … … Fn = mnRn _(2)

• Using definition of torque; = d*F1 = R1F1 = R1(m1R1)

1 = m1R12

2 = m2R22

… … … … … … … … … …n = mnRn

2

(3)

Prof. Sameer Sawarkar 18

F1

F2

Fn

R1

R2

Rn

a1

an

a2

1

n

F1

F2

Fn

1 = m1R12, 2 = m2R2

2, … … … n = mnRn

2 _(3)

• Sum of all individual constituent torques must be equal to the externally applied original torque.

= 1 + 2 + … + n

= m1R12 + m2R2

2 + … + mnRn2

= (miRi2)

i = 1, 2, … , n.

Prof. Sameer Sawarkar 19

Translational Motion Rotational Motion

= (miRi2)*F = m*a

F a

m miRi2

Quantity miRi2 is called as Moment of Inertia of rotating body

about the defined axis of rotation.

Prof. Sameer Sawarkar 20

Moment of Inertia (miRi2 ) about a given axis of rotation is

defined as the sum of product of

mass of each constituent and

square of its distance from the axis of rotation.

Moment of Inertia (abbreviated as MI, denoted by I) represents

inertia in rotational motion i.e. reluctance of a rigid body to

undergo angular acceleration. Larger the MI, more difficult it is

to change the state of the body (to accelerate/decelerate).

Prof. Sameer Sawarkar 21

With regular geometric boundaries,

where division in discrete shapes is

possible, MI is expressed as;

I = miRi2

With irregular geometric boundaries,

where division in elemental shapes is

necessary, MI is expressed as;

I = R2 dm

Prof. Sameer Sawarkar 22

• I = (mi, Ri2)

• MI represents mass distribution of the rotating rigid body.

• Rotational motion depends not just upon total mass but upon

mass distribution!!

Prof. Sameer Sawarkar 23

Prof. Sameer Sawarkar 24

Moment of Inertia

I = miRi2 or I = R2 dm

Unit: kg-m2

Dimensions: [L2 M1 T0]

Prof. Sameer Sawarkar 25

KINETIC ENERGYin Rotational Motion

26Prof. Sameer Sawarkar

• Rigid body rotating about a

fixed axis with angular

velocity

27Prof. Sameer Sawarkar

1

n

2

R1

R2

Rn

• Consider ‘n’ particles of the

body in circular motion with

masses m1, m2, … , mn.

• R1, R2, … , Rn are the radii.

28Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

• Linear tangential velocities of constituents; V1, V2, … , Vn

• Using V = R

V1 = R1 V2 = R2 … … … …… … … …Vn = Rn

(1)

29Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

V1 = R1 , V2 = R2 , … , Vn = Rn _(1)

• KE = ½ mV2 = ½ m(R22) of each constituent.

U1 = ½ m1R122

U2 = ½ m2R222

… … … … … …… … … … … …Un = ½ mnRn

22

(2)

30Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

U1 = ½ m1R122, U2 = ½ m2R2

22, … … Un = ½ mnRn

22 _(2)

• Total KE of the rotating rigid body;U = U1 + U2 + … + Un

U = ½ m1R122 + ½ m2R2

22 + … + ½ mnRn

22

U = ½ (miRi2)2

U = ½ I2

Prof. Sameer Sawarkar 31

ANGULAR MOMENTUM in Rotational Motion

Prof. Sameer Sawarkar 32

V, mV

L

R

m

Angular Momentum: Property possessed

by a rotating body by virtue of its

angular velocity.

Defined as; moment

of linear momentum.

i.e. L = R*P = R*(mV)

Like linear momentum, angular momentum

is a vector.

Unit: kg-m2/s, Dimensions: [L2 M1 T-1]

Prof. Sameer Sawarkar 33

P

L

R

m

Vector relation between linear momentum and angular momentum:From scalar relation; L = R*Pand using Right-hand rule;

PRL

R

34Prof. Sameer Sawarkar

• Rigid body rotating about a

fixed axis with angular

velocity

35Prof. Sameer Sawarkar

1

n

2

R1

R2

Rn

• Consider ‘n’ particles of the

body in circular motion with

masses m1, m2, … , mn.

• R1, R2, … , Rn are the radii.

36Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

• Linear tangential velocities of constituents; V1, V2, … , Vn

• Using V = R

V1 = R1 V2 = R2 … … … …… … … …Vn = Rn

(1)

37Prof. Sameer Sawarkar

, L

R1

R2

Rn

V1

Vn

V2

V1 = R1 , V2 = R2 , … , Vn = Rn _(1)

• Linear momentum P = mV for each constituent.

• Angular momentum for each constituent; L = R*P = RmV = Rm(R) = mR2

L1 = m1R12

L2 = m2R22

… … … … … …… … … … … …Ln = mnRn

2

(2)

38Prof. Sameer Sawarkar

, L

R1

R2

Rn

V1

Vn

V2

L1 = m1R12, L2 = m2R2

2, … … Ln = mnRn

2 _(2)

• Total angular momentum of the rotating rigid body;L = Li, i = 1, 2, … , n.

L = m1R12 + m2R2

2 + … + mnRn2

L = (miRi2)

L = I

Prof. Sameer Sawarkar 39

PRINCIPLE OF CONSERVATION OFANGULAR MOMENTUM

Prof. Sameer Sawarkar 40

Ldt

dI

dt

ddt

dII

,0 LIf then is constant.

In absence of an external torque, the angular momentum of the system remains constant

Prof. Sameer Sawarkar 41

Applications of Principle of Conservation of Angular Momentum

Prof. Sameer Sawarkar 42

PARALLEL AXES THEOREMPERPENDICULAR AXES THEOREM

Prof. Sameer Sawarkar 43

• Rigid body with mass M

• Purely rotating about an

axis through C.M.

• MI = IG (known)

IG

G

Prof. Sameer Sawarkar 44

IP

• It is desired that MI

about a parallel axis at a

distance ‘h’ through P

i.e. IP be found.

IG

GP

h

Prof. Sameer Sawarkar 45

IP

GP

• Assume elemental mass

dm at an arbitrary point

Q.

IG

Q

GP

h

Prof. Sameer Sawarkar 46

IP

• ConstructionIG

GP

Q (dm)

Sh

Prof. Sameer Sawarkar 47

IP IG

GP

Q (dm)

Sh

IG = QG2dm

IP = QP2dm

QP2 = PS2 + SQ2

= (PG + GS)2 + SQ2

= PG2 + 2PG*GS + (GS2 +

SQ2)

QP2 = PG2 + 2PG*GS + QG2

Prof. Sameer Sawarkar 48

IP IG

GP

Q (dm)

Sh

QP2 = PG2 + 2PG*GS + QG2

Multiplying throughout by dm and

integrating;

òQP2 dm = PG2dm + 2PG GSdm

+ QG2dm

òQP2 dm = IP

QG2dm = IG

PG2dm = PG2dm = Mh2

GSdm = 0, G being the center of

mass of the body.

Prof. Sameer Sawarkar 49

IP

Substituting;

IP = IG + Mh2IG

GP

Q (dm)

Sh

MI of a rigid body about any

axis is equal to sum of its MI

about a parallel axis through

center of mass and product of

mass of body and square of the

distance between two parallel

axes.

Prof. Sameer Sawarkar 50

• Rigid with mass M

• Laminar body (thickness

very small compared to

surface area)

Prof. Sameer Sawarkar 51

• System of 3 mutually

perpendicular axes

through any point O.

• X and Y in the plane of

the lamina, Z being

perpendicular to the

plane.

O

XY

Z

Prof. Sameer Sawarkar 52

• Imagine elemental mass

dm at a distance ‘r’ from

Z axis.O

XY

Z

r

dm

Prof. Sameer Sawarkar 53

• Moment of inertia of

the lamina @ Z axis;

IZ = r2dmO

XY

Z

r

dm

IZ

Prof. Sameer Sawarkar 54

• Construction –

perpendiculars on X and

Y axes from elemental

mass.O

XY

Z

r

dm

IZ

xy

Prof. Sameer Sawarkar 55

• MI of lamina about X

axis;

IX = y2dm

• MI of lamina about Y

axis;

IX = x2dm

O

XY

Z

r

dm

IZ

xy IY

IX

Prof. Sameer Sawarkar 56

r2 = x2 + y2

Multiplying throughout by

dm and integrating;

r2dm = x2dm + y2dm

Substituting;

O

XY

Z

r

dm

IZ

xy IY

IX

IZ = IX + IY

Moment of inertia of a lamina about an axis perpendicular to its plane is equal to sum of its moments of inertia about two mutually perpendicular axes in the plane of lamina and concurrent with that axis.

Prof. Sameer Sawarkar 57

RADIUS OF GYRATION

58Prof. Sameer Sawarkar

Radius of Gyration (K) w.r.t. the given axis of rotation is the theoretical distance at which, when entire mass of the body is assumed to be concentrated, gives same MI (of idealized point mass system) as that of the original rigid body. If MK2 = R2dm, then K is the radius of gyration.

I = R2dm I = MK2

MK

Prof. Sameer Sawarkar 59

IG = ½MR2 IG = MK2

KM

REAL SYSTEMS IDEALIZED SYSTEMS

IG = 2MR2/5 IG = MK2

KM

MK2 = ½MR2

K = R/2

MK2 = 2MR2/5

K = R*(2/5)

Prof. Sameer Sawarkar 60

Thank You!