XII Physics Rotational Motion

60
Rotational Motion Prof. Sameer Sawarkar

description

An important concept from Mechanics section of Physics, dealing with fundamentals of rotational motion of rigid bodies.

Transcript of XII Physics Rotational Motion

Page 1: XII Physics Rotational Motion

Rotational MotionProf. Sameer Sawarkar

Page 2: XII Physics Rotational Motion

Contents

• Rigid Body• Rotational Motion• Cause & Consequence• Moment of Inertia• Kinetic Energy• Angular Momentum• Conservation Principle• Parallel & Perpendicular Axes Theorems• Radius of Gyration• Rolling Motion

Prof. Sameer Sawarkar 2

Page 3: XII Physics Rotational Motion

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

3Prof. Sameer Sawarkar

Page 4: XII Physics Rotational Motion

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

4Prof. Sameer Sawarkar

Page 5: XII Physics Rotational Motion

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

5Prof. Sameer Sawarkar

A

B

C

Page 6: XII Physics Rotational Motion

Rigid Body: A body which does not undergo any appreciable deformation under the

action of external forces, i.e. the intermolecular distances remain constant when

subjected to external forces.

6Prof. Sameer Sawarkar

No body is truly rigid nor elastic or plastic. The state is always referred to as rigid/elastic/plastic in context with the magnitude and range of external forces.

A

B

C

Page 7: XII Physics Rotational Motion

7Prof. Sameer Sawarkar

Rotational Motion: A body is said to be purely rotating

when all the constituents of the body are moving in circular motions, with centers of their paths lying on a

fixed straight line called axis of rotation.

,

Page 8: XII Physics Rotational Motion

8Prof. Sameer Sawarkar

Rotational Motion: A body is said to be purely rotating

when all the constituents of the body are moving in circular motions, with centers of their paths lying on a

fixed straight line called axis of rotation.

,

A

B

Page 9: XII Physics Rotational Motion

9Prof. Sameer Sawarkar

The axis of rotation may lie within the body or without the body

,

Page 10: XII Physics Rotational Motion

10Prof. Sameer Sawarkar

Examples: Motion of table/ceiling fan bladesMotion of Turbine rotorMotion of gear wheelsSpinning Motion of planetsOpening of doors/window panelsMotion of hands of clock etc.

Page 11: XII Physics Rotational Motion

Prof. Sameer Sawarkar 11

CAUSE & CONSEQUENCEin Rotational Motion

Page 12: XII Physics Rotational Motion

12Prof. Sameer Sawarkar

Force produces translationi.e. linear acceleration, ‘a’

Couple Moment produces rotation i.e. angular acceleration, ‘’

F

a

F

F

d

Page 13: XII Physics Rotational Motion

13Prof. Sameer Sawarkar

• Rigid body subjected to

torque

• Rotating about a fixed axis

with angular acceleration

Page 14: XII Physics Rotational Motion

14Prof. Sameer Sawarkar

1

n

2

R1

R2

Rn

• Consider ‘n’ particles of the

body in circular motion with

masses m1, m2, … , mn.

• R1, R2, … , Rn are the radii.

Page 15: XII Physics Rotational Motion

15Prof. Sameer Sawarkar

R1

R2

Rn

a1

an

a2

• Linear tangential accelerations of constituents; a1, a2, … , an

• Using aT = R

a1 = R1 a2 = R2 … … … …… … … …an = Rn

(1)

Page 16: XII Physics Rotational Motion

Prof. Sameer Sawarkar 16

R1

R2

Rn

a1

an

a2

F1

F2

Fn

a1 = R1 , a2 = R2 , … , an = Rn _(1)

• Using Newton’s II Law; F = ma

F1 = m1a1 = m1R1 F2 = m2a2 = m2R2 … … … … … … … …… … … … … … … …Fn = mnan = mnRn

(2)

Page 17: XII Physics Rotational Motion

Prof. Sameer Sawarkar 17

F1

F2

Fn

R1

R2

Rn

a1

an

a2

1

n

F1

F2

Fn

F1 = m1R1 , F2 = m2R2 , … … … Fn = mnRn _(2)

• Using definition of torque; = d*F1 = R1F1 = R1(m1R1)

1 = m1R12

2 = m2R22

… … … … … … … … … …n = mnRn

2

(3)

Page 18: XII Physics Rotational Motion

Prof. Sameer Sawarkar 18

F1

F2

Fn

R1

R2

Rn

a1

an

a2

1

n

F1

F2

Fn

1 = m1R12, 2 = m2R2

2, … … … n = mnRn

2 _(3)

• Sum of all individual constituent torques must be equal to the externally applied original torque.

= 1 + 2 + … + n

= m1R12 + m2R2

2 + … + mnRn2

= (miRi2)

i = 1, 2, … , n.

Page 19: XII Physics Rotational Motion

Prof. Sameer Sawarkar 19

Translational Motion Rotational Motion

= (miRi2)*F = m*a

F a

m miRi2

Quantity miRi2 is called as Moment of Inertia of rotating body

about the defined axis of rotation.

Page 20: XII Physics Rotational Motion

Prof. Sameer Sawarkar 20

Moment of Inertia (miRi2 ) about a given axis of rotation is

defined as the sum of product of

mass of each constituent and

square of its distance from the axis of rotation.

Moment of Inertia (abbreviated as MI, denoted by I) represents

inertia in rotational motion i.e. reluctance of a rigid body to

undergo angular acceleration. Larger the MI, more difficult it is

to change the state of the body (to accelerate/decelerate).

Page 21: XII Physics Rotational Motion

Prof. Sameer Sawarkar 21

With regular geometric boundaries,

where division in discrete shapes is

possible, MI is expressed as;

I = miRi2

With irregular geometric boundaries,

where division in elemental shapes is

necessary, MI is expressed as;

I = R2 dm

Page 22: XII Physics Rotational Motion

Prof. Sameer Sawarkar 22

• I = (mi, Ri2)

• MI represents mass distribution of the rotating rigid body.

• Rotational motion depends not just upon total mass but upon

mass distribution!!

Page 23: XII Physics Rotational Motion

Prof. Sameer Sawarkar 23

Page 24: XII Physics Rotational Motion

Prof. Sameer Sawarkar 24

Moment of Inertia

I = miRi2 or I = R2 dm

Unit: kg-m2

Dimensions: [L2 M1 T0]

Page 25: XII Physics Rotational Motion

Prof. Sameer Sawarkar 25

KINETIC ENERGYin Rotational Motion

Page 26: XII Physics Rotational Motion

26Prof. Sameer Sawarkar

• Rigid body rotating about a

fixed axis with angular

velocity

Page 27: XII Physics Rotational Motion

27Prof. Sameer Sawarkar

1

n

2

R1

R2

Rn

• Consider ‘n’ particles of the

body in circular motion with

masses m1, m2, … , mn.

• R1, R2, … , Rn are the radii.

Page 28: XII Physics Rotational Motion

28Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

• Linear tangential velocities of constituents; V1, V2, … , Vn

• Using V = R

V1 = R1 V2 = R2 … … … …… … … …Vn = Rn

(1)

Page 29: XII Physics Rotational Motion

29Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

V1 = R1 , V2 = R2 , … , Vn = Rn _(1)

• KE = ½ mV2 = ½ m(R22) of each constituent.

U1 = ½ m1R122

U2 = ½ m2R222

… … … … … …… … … … … …Un = ½ mnRn

22

(2)

Page 30: XII Physics Rotational Motion

30Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

U1 = ½ m1R122, U2 = ½ m2R2

22, … … Un = ½ mnRn

22 _(2)

• Total KE of the rotating rigid body;U = U1 + U2 + … + Un

U = ½ m1R122 + ½ m2R2

22 + … + ½ mnRn

22

U = ½ (miRi2)2

U = ½ I2

Page 31: XII Physics Rotational Motion

Prof. Sameer Sawarkar 31

ANGULAR MOMENTUM in Rotational Motion

Page 32: XII Physics Rotational Motion

Prof. Sameer Sawarkar 32

V, mV

L

R

m

Angular Momentum: Property possessed

by a rotating body by virtue of its

angular velocity.

Defined as; moment

of linear momentum.

i.e. L = R*P = R*(mV)

Like linear momentum, angular momentum

is a vector.

Unit: kg-m2/s, Dimensions: [L2 M1 T-1]

Page 33: XII Physics Rotational Motion

Prof. Sameer Sawarkar 33

P

L

R

m

Vector relation between linear momentum and angular momentum:From scalar relation; L = R*Pand using Right-hand rule;

PRL

R

Page 34: XII Physics Rotational Motion

34Prof. Sameer Sawarkar

• Rigid body rotating about a

fixed axis with angular

velocity

Page 35: XII Physics Rotational Motion

35Prof. Sameer Sawarkar

1

n

2

R1

R2

Rn

• Consider ‘n’ particles of the

body in circular motion with

masses m1, m2, … , mn.

• R1, R2, … , Rn are the radii.

Page 36: XII Physics Rotational Motion

36Prof. Sameer Sawarkar

R1

R2

Rn

V1

Vn

V2

• Linear tangential velocities of constituents; V1, V2, … , Vn

• Using V = R

V1 = R1 V2 = R2 … … … …… … … …Vn = Rn

(1)

Page 37: XII Physics Rotational Motion

37Prof. Sameer Sawarkar

, L

R1

R2

Rn

V1

Vn

V2

V1 = R1 , V2 = R2 , … , Vn = Rn _(1)

• Linear momentum P = mV for each constituent.

• Angular momentum for each constituent; L = R*P = RmV = Rm(R) = mR2

L1 = m1R12

L2 = m2R22

… … … … … …… … … … … …Ln = mnRn

2

(2)

Page 38: XII Physics Rotational Motion

38Prof. Sameer Sawarkar

, L

R1

R2

Rn

V1

Vn

V2

L1 = m1R12, L2 = m2R2

2, … … Ln = mnRn

2 _(2)

• Total angular momentum of the rotating rigid body;L = Li, i = 1, 2, … , n.

L = m1R12 + m2R2

2 + … + mnRn2

L = (miRi2)

L = I

Page 39: XII Physics Rotational Motion

Prof. Sameer Sawarkar 39

PRINCIPLE OF CONSERVATION OFANGULAR MOMENTUM

Page 40: XII Physics Rotational Motion

Prof. Sameer Sawarkar 40

Ldt

dI

dt

ddt

dII

,0 LIf then is constant.

In absence of an external torque, the angular momentum of the system remains constant

Page 41: XII Physics Rotational Motion

Prof. Sameer Sawarkar 41

Applications of Principle of Conservation of Angular Momentum

Page 42: XII Physics Rotational Motion

Prof. Sameer Sawarkar 42

PARALLEL AXES THEOREMPERPENDICULAR AXES THEOREM

Page 43: XII Physics Rotational Motion

Prof. Sameer Sawarkar 43

• Rigid body with mass M

• Purely rotating about an

axis through C.M.

• MI = IG (known)

IG

G

Page 44: XII Physics Rotational Motion

Prof. Sameer Sawarkar 44

IP

• It is desired that MI

about a parallel axis at a

distance ‘h’ through P

i.e. IP be found.

IG

GP

h

Page 45: XII Physics Rotational Motion

Prof. Sameer Sawarkar 45

IP

GP

• Assume elemental mass

dm at an arbitrary point

Q.

IG

Q

GP

h

Page 46: XII Physics Rotational Motion

Prof. Sameer Sawarkar 46

IP

• ConstructionIG

GP

Q (dm)

Sh

Page 47: XII Physics Rotational Motion

Prof. Sameer Sawarkar 47

IP IG

GP

Q (dm)

Sh

IG = QG2dm

IP = QP2dm

QP2 = PS2 + SQ2

= (PG + GS)2 + SQ2

= PG2 + 2PG*GS + (GS2 +

SQ2)

QP2 = PG2 + 2PG*GS + QG2

Page 48: XII Physics Rotational Motion

Prof. Sameer Sawarkar 48

IP IG

GP

Q (dm)

Sh

QP2 = PG2 + 2PG*GS + QG2

Multiplying throughout by dm and

integrating;

òQP2 dm = PG2dm + 2PG GSdm

+ QG2dm

òQP2 dm = IP

QG2dm = IG

PG2dm = PG2dm = Mh2

GSdm = 0, G being the center of

mass of the body.

Page 49: XII Physics Rotational Motion

Prof. Sameer Sawarkar 49

IP

Substituting;

IP = IG + Mh2IG

GP

Q (dm)

Sh

MI of a rigid body about any

axis is equal to sum of its MI

about a parallel axis through

center of mass and product of

mass of body and square of the

distance between two parallel

axes.

Page 50: XII Physics Rotational Motion

Prof. Sameer Sawarkar 50

• Rigid with mass M

• Laminar body (thickness

very small compared to

surface area)

Page 51: XII Physics Rotational Motion

Prof. Sameer Sawarkar 51

• System of 3 mutually

perpendicular axes

through any point O.

• X and Y in the plane of

the lamina, Z being

perpendicular to the

plane.

O

XY

Z

Page 52: XII Physics Rotational Motion

Prof. Sameer Sawarkar 52

• Imagine elemental mass

dm at a distance ‘r’ from

Z axis.O

XY

Z

r

dm

Page 53: XII Physics Rotational Motion

Prof. Sameer Sawarkar 53

• Moment of inertia of

the lamina @ Z axis;

IZ = r2dmO

XY

Z

r

dm

IZ

Page 54: XII Physics Rotational Motion

Prof. Sameer Sawarkar 54

• Construction –

perpendiculars on X and

Y axes from elemental

mass.O

XY

Z

r

dm

IZ

xy

Page 55: XII Physics Rotational Motion

Prof. Sameer Sawarkar 55

• MI of lamina about X

axis;

IX = y2dm

• MI of lamina about Y

axis;

IX = x2dm

O

XY

Z

r

dm

IZ

xy IY

IX

Page 56: XII Physics Rotational Motion

Prof. Sameer Sawarkar 56

r2 = x2 + y2

Multiplying throughout by

dm and integrating;

r2dm = x2dm + y2dm

Substituting;

O

XY

Z

r

dm

IZ

xy IY

IX

IZ = IX + IY

Moment of inertia of a lamina about an axis perpendicular to its plane is equal to sum of its moments of inertia about two mutually perpendicular axes in the plane of lamina and concurrent with that axis.

Page 57: XII Physics Rotational Motion

Prof. Sameer Sawarkar 57

RADIUS OF GYRATION

Page 58: XII Physics Rotational Motion

58Prof. Sameer Sawarkar

Radius of Gyration (K) w.r.t. the given axis of rotation is the theoretical distance at which, when entire mass of the body is assumed to be concentrated, gives same MI (of idealized point mass system) as that of the original rigid body. If MK2 = R2dm, then K is the radius of gyration.

I = R2dm I = MK2

MK

Page 59: XII Physics Rotational Motion

Prof. Sameer Sawarkar 59

IG = ½MR2 IG = MK2

KM

REAL SYSTEMS IDEALIZED SYSTEMS

IG = 2MR2/5 IG = MK2

KM

MK2 = ½MR2

K = R/2

MK2 = 2MR2/5

K = R*(2/5)

Page 60: XII Physics Rotational Motion

Prof. Sameer Sawarkar 60

Thank You!