Thermodynamic modeling of the platinum yttrium system

Post on 18-Dec-2014

207 views 1 download

Tags:

description

 

Transcript of Thermodynamic modeling of the platinum yttrium system

1

Thermodynamic Modeling of the Platinum-Yttrium system

Madeline BoyerUndergrad presentation

Summer 2011

2

Outline

• Brief introduction of summer goals• Summary of Pt-Y system

– Literature review– Discussion of experimental data

• Calculations of enthalpy values

• Thermodynamic Data and ThermoCalc– Learning process– Setting up ThermoCalc, challenges

• Modeling Results• Future goals

3

My history with 304 Phases

Diffusion couples (Mg-Al) with Lauren Skrabski

Central South University

Resulted in a paper with Laura Jean Lucca

4

Thermo calc modeling of

Pt-Y

[2]:Moving from Mg-Ni system to Pt-Y

[1] Milestone 1: Completing the Literature review

[3] Finish Pt-Y diagram

AugustJulyJuneLiterature review

Modeling of Pt-Y system

Lauren‘s Steel

[6]: 1000hrs

[9]:100 hrs

1st Batch

Learning ThermoCalc

2nd Batch

Madeline’s Timeline 2011

[7]:2000hrs

[10]:200hrs

[12]:2000hrs[8]:begin [11]:1000hrs

5

Motivation for this work

• Usefulness for others in the lab• Possible work with first-principles in the future

• Contributing to the ONR project• Pt-Y system has not been modeled

• Learning project• Stepping stone for undergraduate thesis• Polymer modeleing in ThermoCalc as senior project

6

Literature Review

Palenzona, Bull. Alloy Phase Diag., 1990

• Drawn based on Er-Pt system

7

Literature Review Discussion

• Previous work:– Holcombe (1976): melting point of the eutectic– Moffatt (1971): Pt-Er system– Vorona (1983): confirmed the existence of 10

compounds at 600 °C– Mediema (1975): calculated 3 different enthalpy

of formation values at .25 composition Y in Pt, .5 and .75

– Hellwig (1978): Experimental Gibbs energy for two compounds

8

Limited experimental enthalpy of formation values found in the literature

Compounds Composition

Mediema DfH (kJ-mol-atom)

Hellwig DfH (kJ-mol-atom)

Pt5Y 0.167 -64.33Pt3Y 0.25 -87.864 -96.71Pt2Y 0.333Pt4Y3 0.429PtY 0.5 -121.34

Pt4Y5 0.556Pt3Y5 0.625PtY2 0.667Pt3Y7 0.7PtY3 0.75 -66.94

L.Hellwig, Kernforschungszentrum Karlsruhe,.1978

A.R Miedema, Journal of Less Common Metals,.1976

9

Used experimental values to create a convex hull as starting point for modeling

10

ThermoCalc: Macros, Pops, and Parrots

• Friendly Thermodynamics with Alyson• Macro files and Pop files• Optimizing and Modeling

– Brief summary of Models used

11

Entropy Calculations for the 8 other compounds

• ∆G = ∆H - ∆S*T• ∆G = A + B*T• Hellwig(1978)

– ∆fGPt5Y = -385.97 + 5.4e10-3*T kJ/mol

– ∆fGPt3Y = -386.83 + 19.6e10-3*T kJ/mol

• As a starting point, calculate A/B ratio for all compounds based on known experimental data

L.Hellwig, Kernforschungszentrum Karlsruhe,.1978

12

As part of the learning process for ThermoCalc, learn to plot with no parameters

Liquid

fcchcp

bcc

13

Creating a setup.tcm and defining the compounds

• Macro file set up: Declaring all compounds• Example:

PT5Y 2 SUBLATTICES, SITES 5: 1 CONSTITUENTS: PT : Y

G(PT5Y,PT:Y;0) - 5 H298(FCC_A1,PT;0) – H298(HCP_A3,Y;0) = + 5*GHSERPT + GHSERYY

+ V1 + V2*T

14

Liquid Parameters

L(LIQUID,PT,Y;0) = +V41+V42*T L(LIQUID,PT,Y;1) = +V43+V44*T L(LIQUID,PT,Y;2) = +V45+V46*T

A

G

BAlyson Lieser, “Friendly Thermodynamics” (2011)

15

ThermoCalc Setup: Pop file

AEP2

AEPT

AEYY

APR1 APR3

APR6

APR4APR5

APR7

APR8

APR2

ACM1 ACM

2

16

First step of modeling with two compounds from experimental data

Liquid

fcchcp

bcc

Pt5Y

Pt3Y

17

Current modeling of the Pt-Y system

Liquid

fcchcp

bccPt5Y

Pt3Y Pt

Y

18

Future Goals

• Scaling entropy values down to get correct temperatures for invariant reactions– Focus on eutectic reactions

• New challenges– Possible modeling of another system in the fall– Working towards possible modeling with

polymers.

19

Acknowledgements

I would like to thank so very much:Chelsey Zacherl and Alyson Lieser

And alsoBrian VanLeeuwan, Bi Cheng Zhou, Arkapol

Saengdeejing, and Dr. Liu

20

21

Calculated Enthalpy values

Compound Composition (percent Y) Estimated DH (kj-mol)Pt5Y 0.167 -64.33Pt3Y 0.25 -96.71Pt2Y 0.333 -106.5Pt4Y3 0.429 -115.5PtY 0.5 -121.34

Pt4Y5 0.556 -111.5Pt3Y5 0.625 -97PtY2 0.667 -86.5Pt3Y7 0.7 -78.5PtY3 0.75 -66.94

Red number: Experimental

22

Entropy Values

CompoundsComposition (Percent Y) Estimated Enthalpy

Calculated entropy value

Pt5Y 0.167 -64.33 0.0009Pt3Y 0.25 -96.71 0.0049Pt2Y 0.333 -106.5 0.002335Pt4Y3 0.429 -115.5 0.002532PtY 0.5 -121.34 0.00266

Pt4Y5 0.556 -111.5 0.002445Pt3Y5 0.625 -97 0.002127PtY2 0.667 -86.5 0.001897Pt3Y7 0.7 -78.5 0.001721PtY3 0.75 -66.94 0.001468

A/B = ratio

23

Current model parameters

24