The Study of Nuclear Structures with the Brueckner-AMD

Post on 03-Jan-2016

40 views 2 download

description

The Study of Nuclear Structures with the Brueckner-AMD. Tomoaki Togashi and Kiyoshi Kato. Department of Physics, Hokkaido University. P. n. n. n. n. INPC2007, Tokyo June 6, 2007. P. P. n. Purposes. - PowerPoint PPT Presentation

Transcript of The Study of Nuclear Structures with the Brueckner-AMD

The Study of Nuclear Structures wThe Study of Nuclear Structures with the Brueckner-AMDith the Brueckner-AMD

Tomoaki Togashi and Kiyoshi Kato

Department of Physics, Hokkaido University

INPC2007, Tokyo

June 6, 2007

P

P

Pn

nnnn

PurposesPurposes

- We develop a new ab initio calculation framework based on the antisymmetrized molecular dynamics (AMD) and the Brueckner theory.

Brueckner-AMD; the Brueckner theory

+ Antisymmetrized molecular dynamics

(AMD)

T.Togashi and K.Kato; Prog. Theor. Phys. 117 (2007) 189

},{),( 2121 AA ΑZZZ

Zrr ii ))(exp()( 2

jiijB iij

jij CCB i

iiC

1~

 

}~~{ˆ~~~ ˆ ~ Gt

Gtt

QVVG ˆ

)ˆˆ(ˆˆˆ

2121

Framework of the Brueckner-AMD

1. AMD wave function

2. Single particle orbits are constructed with the AMD-HF

3. G-matrix is calculated with the single particle orbits

( B-matrix ) ( diagonalization )

single particle orbit*

( Slater determinant )

( Bethe-Goldstone equation )

( Gaussian wave packet )

i

i

i

i

Z

H

dt

Zd

Z

H

dt

Zd

4. The frictional   cooling method

t t t

The state at the energy minimum

self-consistent

P n

P

Pn

nn nn

PP

Pn

H.Bando, Y.Yamamoto , S.Nagata , PTP 44 (1970) 646

A.Dote, H.Horiuchi, PTP 103 (2000) 91A.Dote, Y.Kanada-En’yo, H.Horiuchi, PRC56 (1997) 1844

*The single particle orbits should be Hartree-Fock hamiltonian eigen states, however, in the case that   those state are adopted as the single particle orbits, the results have scarcely been changed until now.

Brueckner-AMD Results

Intrinsic Density (8Be)

ρ(r)

YIntrinsic Density (12C)

ρ(r)

ρ(r)Intrinsic Density ( 4

He)

*In the case of 8Be and 12C, the Gaussian width parameter is the same value as the case of 4He. X

Av8’; P.R.Wringa and S.C.Pieper, PRL89 (2002), 182501.

Parity- & Jπ- projection in the Brueckner-AMD

Parity-projected state :

Space inversion operator  parity

⇒   the liner combination of two Slater determinants

Ex) Parity Projection

The G-matrix between the different Slater determinants is necessary. ba

ba G

ˆ

Bethe-Goldstone Equation

)())(1()( ijijGe

Qij

ijF̂

))()()()(( ijijGijijv

Correlation function

Model (AMD) wave function

)(/)(ˆ ijijFij

bl

bk

bkl

aij

aj

ai

bl

bk

aj

ai FvvFG )()( ˆˆˆˆ

2

The G-matrix is constructed with the correlation functions.

Y. Akaishi, H. Bando, and S. Nagata,   PTP. Suppl. No.52 (1972), 339.

Results of 4He with variation after projection (VAP)

Argonne v8’(no Coulomb force)

A. Variation (cooling) with no projection

Binding Energy (4He) : -22.5(MeV)

B. Variation after projection (VAP): parity+

Binding Energy (4He: +) : -23.6(MeV) +

Projection after variation (PAV): J=0

Binding Energy (4He: 0+) : -24.7(MeV)

-25.9(MeV)benchmark calculations† :†Ref: H. Kamada et al. , PRC64 (2001) 044001

The result is comparable with that of the benchmark calculations

ρ(r)Y4He (Parity +)

Results of Be isotopes with VAP (Parity)

8Be (Parity +)

Argonne v8’(no Coulomb force)

9Be (Parity -)

10Be (Parity +)

Binding energy: -37.2(MeV) Binding energy: -36.5(MeV)

Binding energy: -39.6(MeV)

*The Gaussian width parameter is the optimized value of 8Be in the case with no projection.

XX

ρ(r) ρ(r)

ρ(r)

Y Y

( matter )

( proton )

( neutron )

Intrinsic density of 9Be (Parity -)

Argonne v8’(no Coulomb force)

Binding energy: -36.5(MeV)

ρ(r)

ρ(r)

ρ(r)

*The Gaussian width parameter is the optimized value of 8Be in the case with no projection.

π-orbit

Intrinsic density of 9Be (Parity +)

( matter )

( proton )

( neutron )

ρ(r)

ρ(r)

ρ(r)

Argonne v8’(no Coulomb force)

Binding energy: -34.0(MeV)

*The Gaussian width parameter is the optimized value of 8Be in the case with no projection.

σ-orbit

Intrinsic density of 10Be (Parity +)

( matter )

( proton )

( neutron )

Argonne v8’(no Coulomb f

orce)Binding energy: -39.6(MeV)

*The Gaussian width parameter is the optimized value of 8Be in the case with no projection.

Y ρ(r)

ρ(r)

ρ(r)

Intrinsic density of 10C (Parity +)

( matter )

( proton )

( neutron )

ρ(r)

ρ(r)

ρ(r)

Argonne v8’(no Coulomb 

force)Binding energy: -39.6(MeV)

*The Gaussian width parameter is the optimized value of 8Be in the case with no projection.

Summary & Future works

Summary

・ We constructed the framework of AMD with realistic interactions   based on the Brueckner theory.

・ Furthermore, we proposed the projection method in the Brueckner-AMD   with the correlation functions based on the Bethe-Goldstone equation.・ With the Brueckner-AMD and the variation(cooling) after projection,      we obtained the reasonable results for light nuclei starting with the realistic   interaction.

Future works

・ Systematic calculations in light nuclei

・ Calculations with other realistic interactions:   Argonne v18, CD-Bonn, ・・・・ Three-body force

http://wwwndc.tokai-sc.jaea.go.jp/CN04/CN001.html

: Calculated

: Calculating

Molecular structures will appear close to the respective cluster threshold.

Nuclear Cluster Structures IKEDA Diagram

Threshold rules

Threshold Physics

Unstable nuclei Ground states of drip-line nuclei are observed near the thresholds.

It is desired to understand exotic properties of drip-line nuclei and various kinds of cluster structures in light nuclei from more basic points of view, namely with a realistic nuclear force and a wide model space.

Intrinsic density of 9B (Parity -)

( matter )

( proton )

( neutron )

Argonne v8’(no Coulomb force)Binding energy: -36.5(MeV)

Y ρ(r)

ρ(r)

ρ(r)

*The Gaussian width parameter is the optimized value of 8Be in the case with no projection.

( preliminary)

Intrinsic density of 7Li (Parity -)

( matter )

( proton )

( neutron )

Argonne v8’(no Coulom

b force)Binding energy: -25.1(MeV)

Y ρ(r)

ρ(r)

ρ(r)

*The Gaussian width parameter is the optimized value of 8Be in the case with no projection.