Structure Formation with Scalar Field Dark...

Post on 25-Aug-2020

1 views 0 download

Transcript of Structure Formation with Scalar Field Dark...

Tonatiuh Matoshttp://www.fis.cinvestav.mx/~tmatos/

http://www.iac.edu.mx

Some Problems of the LCDM SFDM

Structure Formation with Scalar Field Dark Matter

The Standard Model of Cosmology: LCDM

• Extreme fine tuning • Coincidence • Cuspy central density profiles • Missing Satellites Problem • Satellites stability • Too big to fail • No-detection of DM • etc.

The Standard Model of Cosmology: Problems

!!

• Cuspy central density profiles • Missing Satellites Problem • Satellites stability !!

The Standard Model of Cosmology: Problems

Galaxy’s Center: Observations

!5

NFW

!6

Gentile G., Tonini C. and Salucci P., A&A, 467, 925-931 (2007).

Galaxy’s Center: Observations

F. Gobernato, et. al., NATURE, Vol 463, 14 January 2010

Galaxy’s Center: Simulations

⇢ = ⇢0e�A r↵

F. Gobernato, et. al., NATURE, Vol 463, 14 January 2010

No evidence for internal features or star formation that could be the result of tidal processes or star formation induced by the cluster environment.ej: Samantha J. Penny, Christopher J. Conselice, !Sven De Rijcke and Enrico V. Held: !Mon. Not. R. Astron. Soc. 393, 1054–1062 (2009), etc.

Galaxy’s Center: Simulations

Einasto profile

Stellar Mass Predictions

!9

Till Sawala, Qi Guo, Cecilia Scannapieco, Adrian Jenkins and Simon White. Mon. Not. Roy. Astron. Soc. 413, (2011), 659

The dwarf galaxies formed in hydrodynamical simulations are almost two orders of magnitude more luminous than expected for haloes of this mass.

Stellar Mass Predictions

!10

V. Avila-Reese, P. Colín, A. González-Samaniego, O. Valenzuela, C. Firmani, H. Velázquez, & D. Ceverino. The ApJ, 736:134, (2011)

Velocity predictions

!11

Jesús Zavala, et. al. ApJ, 700:1779–1793, 2009 August 1

The simulation with CDM predicts a steep rise in the VF toward lower velocities; for Vmax = 35 km/s, it forecasts ∼10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, these results indicate a potential problem for the CDM paradigm

!12

Galactic DynamicsJ. Peñarrubia, A. J. Benson, M. G. Walker,G. Gilmore, A. W. McConnachie & L. Mayer. MNRAS 406(2010)1290

!13

Galactic DynamicsJ. Penarrubia, A. J. Benson, M. G. Walker,G. Gilmore, A. W. McConnachie4 & L. Mayer. MNRAS 406(2010)1290

The Cosmology

• Dark Matter: → • Dark Energy: → Λ !

• Baryons, Radiation, • Neutrinos, etc. !

• ΩΦ ∼ 0.23 • ΩΛ ∼ 0.73 • Ωb ∼ 0.04

T. Matos and L. Ureña, Class. Q. Grav. 17(2000)L75

12m2�2 +

14��4

⇤� +dV

d�= 0

� + 3H� +dV

d�= 0

kBTc =2⇡~2

m53

g 32(1)

! 23

Bose-Einstein CondensatesA Review on the Scalar Field/ Bose-Einstein Dark Matter model. Abril Suarez, Victor Robles and Tonatiuh Matos. arXiv:1302.0903

Φ2 as Dark Matter. T. Matos, A. Vázquez & J.A. Magaña. MNRAS, 389, (2009) 13957.

The Cosmology

�min

!17

In

Natural Cut off

T << Tc

Tonatiuh Matos and Luis A. Ureña. Phys Rev. D63, (2001), 063506. Available at: astro-ph/ 0006024

¨��k + 3H ˙��k +✓

k2

a2+ V,��

◆��k + 2V,� �k � 4�0�k = 0

�min

!18

In

Natural Cut off

T << Tc

Tonatiuh Matos and Luis A. Ureña. Phys Rev. D63, (2001), 063506. Available at: astro-ph/ 0006024

¨��k + 3H ˙��k +✓

k2

a2�m2 +

4T 2

◆��k = 4�0�k

�� + 3H��� 1a2r2�� + V,�� �� + 2V,� � = 0

�� =p

⇥ cos✓

mc2 t

~ + S

◆~v ⌘ ~

mrS

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

~v ⌘ ~mrS

@⇢

@t+

1a2r · (⇢~v) + 3H ⇢

� ~m

⇢⇣S + 3HS

⌘� ~

mˆ⇢S = 0

@~v

@t+

1a2

~vr · ~v +r� +~2

2m2r

✓⇤p⇢p⇢

� ~m

S@~v

@t= 0,

!20

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

~v ⌘ ~mrS

!21

@⇢

@t+

1a2r · (⇢~v) + 3H ⇢ = 0

@~v

@t+

1a2

~vr · ~v +r� +~2

2m2r

✓⇤p⇢p⇢

◆= 0,

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

~v ⌘ ~mrS⇢ = ⇢(t) S = S(t)

!22

@⇢

@t+

1a2r · (⇢~v) + 3H ⇢ = 0

@~v

@t+

1a2

~vr · ~v +r� +~2

2m2r

✓⇤p⇢p⇢

◆= 0,

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

~v ⌘ ~mrS⇢ = ⇢(t)

@⇢

@t+ 3H ⇢ = 0

⇢ ⇠ 1a3

S = S(t)

!23

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

~v ⌘ ~mrS

⇤�

⇤t+

1a2⇥ · (�⌅v) = 0

⇤⌅v

⇤t+

1a2

⌅v⇥ · ⌅v +⇥⇥ +~2

2m2⇥

✓⇤����

◆= 0,

!24

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

~v1 = �~k + ~v2

@⇢1

@t+ 3H⇢1 + i

⇢0

a2k2� = 0

@�

@t+ i(

v2q

⇢0� 4⇡G

a2

k2)⇢1 = 0,

d2�

dt2+ 2 H

d�

dt+

✓v2

qk2

a2� 4⇡G⇢0

◆� = 0,

d2�

dt2+ 2 H

d�

dt+

✓v2

sk2

a2� 4⇡G⇢0

◆� = 0,

� =⇢1

!25

SFDM

CDM

� = �0 + �1(t) exp(i⇤k · ⇤x/a)

⇤v = ⇤v0 + ⇤v1(t) exp(i⇤k · ⇤x/a)

⇥ = ⇥0 + ⇥1(t) exp(i⇤k · ⇤x/a)

v2q =

~2k2

4a2m2

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

!26

Abril Suarez and TM MNRAS 311, (2011), 87

Structure Formation

!27

-1000

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200

l(l+1

)Cl (µ

K)2

Multipole l

CMB anisotropies

TT

1000

10000

0.1

P(k)

(h-3

Mpc

3 )

k/h

Power Spectrum

SDSS2dfs

I. Rodriguez, A. Pérez-Lorenzana, E. de la Cruz, Y. Giraud-Héraud and TM. Bosonic Cosmic Dark Matter. Phys. Rev. D87(2013)025009. arXiv:1110.2751

The Cosmology

M ⇠ 0.06p

�m3

pl

m2

� = 1⇥ 10�6

M ⇠ 1014 M�

Tc =2mp

Tc ⇠ 2000 eV

Scalar Field Fluctuation = HaloM.Alcubierre, F. S. Guzmán, T. Matos, D. Núñez, L. A. Ureña and P. Wiederhold. !

Galactic Collapse of Scalar Field Dark Matter. CQG 19(2002)5017. arXiv:gr-qc /0110102.

J. Balakrishna, E. Seidel and W. Suen. PRD 58(1998)104004

Pau Amaro-Seoane, Juan Barranco, Argelia Bernal and Luciano Rezzolla. Constraining scalar fields with stellar kinematics and collisional dark matter. JCAP11 (2010)002

m ~ 1eV

Axions vs SFDM

!29

Barranco and Bernal, PRD 83,(2011)043525

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9

V (k

m s

-1)

r (kpc)

NGC1560j = 1+3, _= 0.3

0

40

80

120

160

0 5 10 15 20 25 30

V (k

m s

-1)

r (kpc)

NGC6946j = 1+2, _= 0.5

0

30

60

90

120

0 5 10 15 20 25 30 35

V (k

m s

-1)

r (kpc)

NGC1003j = 1+3, _= 0.14

!30

V. H. Robles and TM. MNRAS 392, (2012) in press. arXiv:1201.3032

Galaxy Formation

-2.5

-2

-1.5

-1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Log(l

[Ms/

pc3 ])

Log(Radio [Kpc])

U11557

_= 0.20

BECISO

NFW

0

20

40

60

80

0 1 2 3 4 5 6 7

Velo

cida

d [K

m/s

]

Radio [Kpc]

U11557

observacionalBECISO

NFW

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Log(µ

B 0 [M

s /pc

2 ])

N

!31

V. H. Robles and TM. MNRAS 422, (2012) 282. arXiv:1201.3032

Galaxy Formation

!32

M.Alcubierre, F. S. Guzmán, T. Matos, D. Núñez, L. A. Ureña and P. Wiederhold. !Galactic Collapse of Scalar Field Dark Matter. CQG 19(2002)5017. arXiv:gr-qc /0110102.

Scalar Field Fluctuation=Halo

!33

M.Alcubierre, F. S. Guzmán, T. Matos, D. Núñez, L. A. Ureña and P. Wiederhold. !Galactic Collapse of Scalar Field Dark Matter. CQG 19(2002)5017. arXiv:gr-qc /0110102.

Scalar Field Fluctuation=Halo

!34

Scalar Field Fluctuation=Halo

Galactic Dynamics

!35

V. Lora, V. Robles, F.J. Sanchez-Salcedo and TM. In preparation

MW Potential + Dwarf DM Potential + Dwarf stellar component + Miyamoto-Nagai Disc!             rho_Dwarf = 0.16 Msun/pc^3, peri = 14 kpc, apo = 70 kpc (Peri/Apo = 1/5)

Galactic Dynamics

!36

V. Lora, V. Robles, F.J. Sanchez-Salcedo and TM. In preparation

SFDM

!37

Same predictions for CMB and MPS

Galaxies form by condensation of the SF

Galaxies haloes form earlier and are similar

Behaves like dust at cosmological level

Clusters form by hierarchy Same predictions for structure formation

Haloes are BEC drops Galaxies are core

MPS has a natural cut off Substructure is restricted

A brief Review of the Scalar Field Dark Matter model. Juan Magana, Tonatiuh Matos, Victor Robles, Abril Suarez. arXiv:1201.6107

Conclusion

• Scalar Field Dark Matter is so far an excellent candidate to be the Dark Matter in the Universe