stokes, maxwell

Post on 03-Dec-2015

244 views 0 download

Tags:

description

radiacao

Transcript of stokes, maxwell

Powerpoint TemplatesPage 1

Powerpoint Templates

Electromagnetic

Radiation

Powerpoint TemplatesPage 2

1887 (22 years after Maxwell equations) discovered radio waves

Hertz(1857-1894)

Powerpoint TemplatesPage 3

Powerpoint TemplatesPage 4

Maxwell Equations

∇.𝐷= 𝜌

∇.𝐵= 0

∇𝑥𝐻= 𝐽+ 𝜕𝐷𝜕𝑡

∇𝑥𝐸= − 𝜕𝐵𝜕𝑡

𝐹= 𝑞(𝐸+ 𝑣Ԧ 𝑥 𝐵)

Powerpoint TemplatesPage 5

Powerpoint TemplatesPage 6

𝐹= 𝑞(𝐸+ 𝑣Ԧ 𝑥 𝐵)

1.

2

.

kineticE m v v

dE d vm v F v

dt dt

. [ . .( )]dE

F v q E v v v x Bdt

Powerpoint TemplatesPage 7

Powerpoint TemplatesPage 8

Powerpoint TemplatesPage 9

Constitutive Equations

Vacuum

D = εo E

B = μo H

Conductors

J = σ E

Linear media

D = ε E

B = μ H

Powerpoint TemplatesPage 10

Non linear media

P = χ(1)E + χ(2)E2 + χ(3)E3 + …

D = εo(E + χ(1)E + χ(2)E2 + χ(3)E3 + …)

D = εo(E + P)

∇𝑥𝐻= 𝐽+ 𝜀𝑜 𝜕𝐸𝜕𝑡 + 𝜀𝑜 𝜕𝑃𝜕𝑡

∇𝑥𝐻= 𝐽+ 𝜕𝐷𝜕𝑡

Powerpoint TemplatesPage 11

Example SHG

E = 𝐸𝑜𝑒𝑖𝜔𝑡

𝑃= 𝐸2 = 𝐸𝑜2𝑒𝑖2𝜔𝑡

∇𝑥𝐻= 𝐽+ 𝜀𝑜 𝜕𝐸𝜕𝑡 + 𝜀𝑜 𝜕𝑃𝜕𝑡

∇𝑥𝐸= −𝜇 𝜕𝐻𝜕𝑡

Powerpoint TemplatesPage 12

Gauss Theorem

∇.𝐷= 𝜌

න ∇.𝐷V 𝑑𝑉= 𝐷.𝑛ሬԦ 𝑑𝑆𝜕𝑉 = 𝑞

Isotropic media => Spherical field

4πr2𝐷= 𝑞 => 𝐸= 14𝜋𝜀𝑜𝑞𝑟2

Powerpoint TemplatesPage 13

න ∇.𝐵V 𝑑𝑉= 𝐵.𝑛ሬԦ 𝑑𝑆𝜕𝑉 = 0

∇.𝐵= 0

Nº of field lines entering a volume must be equal

to the nº of lines living the volume (no magnetic

charge accumulation allowed). => Field lines are

closed loops.

Powerpoint TemplatesPage 14

Stokes Theorem

න ∇𝑥𝐻S .𝑑𝑆= ර 𝐻.𝑑𝑙𝜕𝑆

න ( 𝐽+ 𝜕𝐷𝜕𝑡S ).𝑑𝑆= ර 𝐻.𝑑𝑙𝜕𝑆

I = 2𝜋𝑟𝐻 => 𝐵= 12𝜋𝜇𝐼𝑟

DC current

Powerpoint TemplatesPage 15

Free Space

∇.𝐸= 0

∇.𝐵= 0

∇𝑥𝐵= 𝜇𝑜𝜀𝑜 𝜕𝐸𝜕𝑡 = 1𝑐2 𝜕𝐸𝜕𝑡

∇𝑥𝐸= − 𝜕𝐵𝜕𝑡

∇𝑥∇𝑥𝐸= − ∇𝑥𝜕𝐵𝜕𝑡 = − 𝜕𝜕𝑡(∇𝑥𝐵)

∇𝑥∇𝑥𝐸= ∇(∇.E) − ∇2𝐸

Powerpoint TemplatesPage 16

∇2𝐸= 1𝑐2 𝜕2𝐸𝜕𝑡2

∇2𝐵= 1𝑐2 𝜕2𝐵𝜕𝑡2

Possible solution: Plane waves

E= Eocos (kሬԦ.r ሬሬԦ– ωt + ∅)

B= Bocos (kሬԦ.r ሬሬԦ– ωt + ∅)

Powerpoint TemplatesPage 17

∇.𝐸= 0 ∇.𝐵= 0

E= Eocos (kሬԦ.r ሬሬԦ– ωt + ∅)

∇.𝐸= ൫∇.𝐸𝑜 + 𝐸o.𝑘ሬԦ൯cos൫kሬԦ.r ሬሬԦ– ωt+ ∅൯

B= Bocos (kሬԦ.r ሬሬԦ– ωt + ∅)

𝑘ሬԦ.𝐸o = 0 𝑘ሬԦ.𝐵o = 0 𝑘ሬԦ𝑥𝐸o = 𝜔𝐵𝑜

𝑘ሬԦ𝑥𝐵o = − 𝜔𝑐2 𝐸𝑜

ȁ<𝐸ȁ<ȁ<𝐵ȁ<= 𝑐

Powerpoint TemplatesPage 18

Potentials𝐵= ∇𝑥𝐴

𝐸= −∇𝑉− 𝜕𝐴𝜕𝑡

∇.𝐴+ 1𝑐2 𝜕𝑉𝜕𝑡 = 0

Powerpoint TemplatesPage 19

Polarization

Powerpoint TemplatesPage 20

Powerpoint TemplatesPage 21

Powerpoint TemplatesPage 22

Powerpoint TemplatesPage 23

Powerpoint TemplatesPage 24

Powerpoint TemplatesPage 25

Powerpoint TemplatesPage 26

Powerpoint TemplatesPage 27

Powerpoint TemplatesPage 28

Powerpoint TemplatesPage 29

Powerpoint TemplatesPage 30

Powerpoint TemplatesPage 31

Powerpoint TemplatesPage 32

Refraction & Reflection

Powerpoint TemplatesPage 33

Law of reflection: θi = θr

Snell’s law: n1 sin θi = n2 sin θt

R

2

2

( )

( )i t

i t

tgR

tg

2

2

( )

( )i t

i t

sinR

sin

2 2

(2 ) (2 )

( ) ( )i t

i t i t

sin sinT

sin cos

2

(2 ) (2 )

( )i t

i r

sin sinT

sin

Powerpoint TemplatesPage 34

Brewster's angle: 56.4º

Total reflection: 42º

Powerpoint TemplatesPage 35