Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.

Post on 17-Dec-2015

228 views 0 download

Transcript of Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.

Prof. David R. JacksonDept. of ECE

Fall 2013

Notes 22

ECE 6340 Intermediate EM Waves

1

Radiation

Infinitesimal Dipole

Current model:

iz

I IlJ

x y x y z

1kl

y

x

l

z

I

y

x y

z

x

z l

2

Radiation (cont.)

Define

Then

1,

( ) 2 2

0

x xx

P x x

otherwise

( , , ) ( ) ( ) ( ) ( )izJ x y z Il P x P y P z

As 0, ( ) ( )x P x x

, , 0x y z Letting

( , , ) ( ) ( ) ( ) ( )izJ x y z Il x y z

( , , ) ( ) ( )izJ x y z Il ror

3

Maxwell’s Equations:

From (3):

(1)

(2)

0 (3)

/ (4)

ic

v

E j H

H J j E

H

E

1H A

(5)

Note: c accounts for conductivity.

Radiation (cont.)

Note: The Harrington book uses

H A

4

ˆ( , , ) ( ) ( )iJ x y z z Il r

From (1) and (5):

or

1( )E j A

( ) 0E j A

Hence E j A

E j A (6)

Radiation (cont.)

This is the “mixed potential” form for E.5

or

Substitute (5) and (6) into (2):

Use the vector Laplacian identity:

1( ) [ ]i

cA J j j A

2( ) icA k A J j

2 ( ) ( )A A A

The vector Laplacian has his nice property in rectangular coordinates:

2 2 2 2ˆ ˆ ˆx y zA x A y A z A

icH J j E

Radiation (cont.)

6

Hence

or

Then we have

2 2 ( )icA k A J A j

2 2( ) icA A k A J j

cA j

Lorenz Gauge:

2 2 iA k A J

Choose

Radiation (cont.)

2 2ck

Note: Lorenz, not Lorentz (as in Lorentz force law)!

7

Take the z component:

Hence we have

2 2 iz z zA k A J

2 2 ( ) ( )z zA k A Il r

Note:2 2 0x xA k A 2 2 0y yA k A

0xA 0yA so

Radiation (cont.)

8

Spherical shell model of 3D delta function:

2 2 ( ) ( )z zA k A Il r

Radiation (cont.)

y

x

a

z

Sa

The Az field should be symmetric (a function

of r only) since the source is.

2

1( )

4r r a

a

In spherical coordinates:

24 1a

V a

r dV r r dr

Note :

9

Assume

For

( ) ( )zA r R r

0r 2 2 0z zA k A

so that 2 22

10

d dRr k R

r dr dr

Next, let1

( ) ( )R r h rr

we have that

Radiation (cont.)

2 22

( ) 1 1( ) ( )

( ) ( )

dR rr r h r h r

dr r r

rh r h r

10

22

22

2

10

10

1( ) ( ) 0

d hrh h k

r dr rh

h rh h kr r

h r k h rr

( ) jkr jkrh r Ae Be

We choose exp (-jkr) for r > a to satisfy the radiation condition at infinity.

Solution:

Radiation (cont.)

We choose sin(kr) for r < a to ensure that the potential is finite at the origin.

( ) / .R r h r rRecall that

11

,

sin ,

jkrAe r ah r

B kr r a

Radiation (cont.)Hence

2 22 2

1 1( ) ( ) ( )

4

d dRr k R Il r Il r a

r dr dr a

22

1 1( ) ( ) ( )

4h r k h r Il r a

r a

The R function satisfies

2 1( ) ( ) ( )

4h r k h r Il r a

a

12

Also, from the differential equation we have

Radiation (cont.)

2 1( ) ( ) ( )

4

a a a

a a a

h r dr k h r dr Il r a dra

1( )

4h a h a Il

a

h a h a

We require

13

(BC #1)

(BC #2)

Hence

Radiation (cont.)

,

sin ,

jkrAe r ah r

B kr r a

sin

1cos ( )

4

jka

jka

Ae B ka

A jk e Bk ka Ila

Recall

14

(BC #2)

(BC #1)

Substituting Ae-jka from the first equation into the second, we have

Radiation (cont.)

1sin cos ( )

4jk B ka Bk ka Il

a

Hence we have

1 1

( )4 sin cos

B Ila k j ka ka

sin1( )

4 sin cos

jkae kaA Il

a k j ka ka

From the first equation we then have

15

Letting a 0, we have

Radiation (cont.)

sin1( )

4 sin cos

1( )

4

jkae kaA Il

a k j ka ka

Il

1( )

4A Il

Hence

1 1 1( )

4jkr jkr

zA r R r h r Ae Il e r ar r r

16

so

Final result:

ˆ ( )4

ˆˆ cos sin ( )4

jkr

jkr

eA z Il

r

er Il

r

Radiation (cont.)

yl

z

I

( , , ) ( ) ( )izJ x y z Il rx

Note: It is the moment Il that is important. 17

Extensions

(a) Dipole not at the origin

ˆ ( )4

jk r reA z Il

r r

y

x

r

z

r r

r

18

Extensions (cont.)

(b) Dipole not in the z direction

x

y

r

z

r r

rp̂

ˆ ( )4

jk r reA p Il

r r

19

(c) Volume current

y

x

( )iJ r

z

( )4

jk r ri

V

eA J r dV

r r

Extensions (cont.)

dl

ˆ

ˆ( )( )

i izJ dV z J dS dl

z I dl

dS

20

ˆ ( )4 4

jk r r jk r rie e

d A z Idl J dVr r r r

Hence

Consider the z component of the current:

The same result is obtained for the current components in the x and y directions, so this is a general result.

(d) Volume, surface, and filamental currents

( ) ( )4

( ) ( )4

ˆ( ) ( ) ( )4

jk r ri

V

jk r ris

S

jk r ri

C

eJ r dV

r r

eA r J r dS

r r

er I r d

r r

volume current density

surface current density

filament of current

( )

( )

ˆ ( )

i

i is

J dV

J dV J dS

I d

volume current density

surface current density

filamentary (wire) current

Extensions (cont.)

21Note: The current Ii is the current that flows in the direction of the unit vector.

ˆ ( ) ( )4

jk r ri

C

eA r r I r d

r r

Extensions (cont.)

22

Note: The current Ii is the current that flows in the direction of the contour.

Filament of current:

CA

BI

Fields

To find the fields:

1

1( 0).

c

H A

E H rj

valid for

1

c

E j A

j A Aj

Note: Ampere’s law (the equation above) for finding the electric field is an alternative to using the following equation:

23

cA j Recall :

Fields (cont.)

Results for infinitesimal, z-directed dipole at the origin:

2

2

1 11 cos

2

1 1 1( ) 1 sin

4 ( )

1 1( ) 1 sin

4

jkrr

jkr

jkr

IlE e

r jkr

IlE j e

r jkr jkr

IlH jk e

r jkr

c

with

24

Note on Dissipated PowerNote: If the medium is lossy, there will be an infinite amount of power dissipated by the infinitesimal dipole.

2

22 2

0 0 0

22 2 2

0 0 0

2 2 2

0

2 22 2

30

1

2

1sin

2

1sin

2

1 4 22

2 3 3

1 4 2 12 1 2

2 3 3 4

d

V

r

N Nr

c

P E dV

E r d d dr

E E r d d dr

E E r dr

Ilr dr

r

2

0

2

0

4sin sin

3

2cos sin

3

d

d

Note:

The N superscript denotes that the dependence is suppressed in the fields.

(power dissipation inside of a small spherical region V of radius )

25

Far Field

Far-field: ( 1)kr

2

10

~ ( ) sin4

~ ( ) sin4

r

jkr

jkr

E Or

jE Il e

r

jkH Il e

r

behaves as

E

H k

Note that The far-zone field acts like a homogeneous plane wave.

26

Radiated Power (lossless case)

*

2

22 2

0 0

2 2

0

1ˆP Re ( )

2

1Re

2

1Re

2

1sin

2

2sin

2

rad

S

S

S

E H r dS

E H dS

EdS

E r d d

E r d

The radius of the sphere is chosen as infinite in order to simplify the fields.

27

We assume lossless media here.

Radiated Power (cont.)

or2

2 2 2

0

22 3

0

P ( ) (sin ) sin4

( ) sin4

rad Il r dr

Il d

3

0

4sin

3d

Hence2

2 4P ( )

4 3rad Il

Integral result:

28

Use

k

22P ( )12rad

kIl

2k

Simplify using

22 4

P ( )4 3rad

kIl

22

2

4P ( )

12rad Il

Radiated Power (cont.)

Then

or

29

2

2P W3rad

lI

Note: The dipole radiation becomes significant when the dipole length is significant relative to a wavelength.

Radiated Power (cont.)

30

Far-Field Radiation From Arbitrary Current

( , , )4

jk r ri

V

eA J x y z dV

r r

y

x

( )iJ r

z

r r

r

r

r

r

31

12 2 2 2

12 2 2 2 2 2 2

2 2 2 2

2

2

2 2

ˆ1 2

r r x x y y z z

x y z x y z xx yy zz

r r r r r r r r

r r rr

r r

211 ~ 1 ...

2 8

xx x

Far- Field (cont.)

Use Taylor series expansion:

x

32

2 2

3

ˆ ˆ1 1 2 11

2 8

r r r r rr r r O

r r r r

2 2

2

1 1 1 1ˆ ˆ

2 2r r r r r r r r O

r r

As r

ˆr r r r r

Far- Field (cont.)

33

ˆr r r r r

Physical interpretation:

Far- Field (cont.)

Far-field point (at infinity)

y

x

z

r r

r

r

r

34

Hence

( )jkre

rr

Define:

( , ) ( )i jk r

V

a J r e dV

Far- Field (cont.)

ˆ

( ) ( , , )4

~ ( )4

jk r ri

V

jkri jkr r

V

eA r J x y z dV

r r

eJ r e dV

r

ˆ ˆ ˆ ˆsin cos sin sin cosk kr x k y k z k

(This is the k vector for a plane wave propagating towards the observation point.)

and

35

ˆr r r r r

The we have

( )jkre

rr

where

( , ) ( )i jk r

V

a J r e dV

Far- Field (cont.)

( ) ~ ,4

A r r a

sin cos sin sin cosk r x k y k z k

and

36

with

( , ) ( )i jk r

V

a J r e dV

Fourier Transform Interpretation

Then

sin cos

sin sin

cos

x

y

z

k k

k k

k k

Denote

( , ) ( , , ) x y zj k x k y k zi

V

a J x y z e dV

The array factor is the 3D Fourier transform of the current.

37

Magnetic Field

1H A

We next calculate the fields far away from the source, starting with the magnetic field.

38

In the far field the spherical wave acts as a plane wave, and hence

ˆjk jkr

1ˆH jk r A

~ ,4

A r a

4H jk r r a

Recall Hence

We then have

Note: Please see the Appendix for an alternative calculation of the far field.

ˆ~ ( , ) ( )4

jkH r a r

The far-zone electric field is then given by

1

1ˆ ˆ

4

ˆ ˆ4

c

c

c

E Hj

jkr Hj

jkjkr r a

j

j r r a

Electric FieldWe start with

39

ˆ ˆ ,4

,4

t

E j r r a

j a

Electric Field (cont.)We next simplify the expression for the far-zone electric field.

40

( ) ~ ,4

A r r a

tE j A

Recall that

Hence

Hence, we have

~ , ,tE j A r

Electric Field (cont.)

Note: The exact field is

E j A

41

The exact electric field has all three components (r, , ) in general, but in the far field there are only (, ) components.

Relation Between E and H

Hence

,EE

H H

ˆ4

ˆ4

ˆ4 / (4 )

t

jkH r a

jkr a

jk Er

j

or

1ˆH r E

Start with

~

4

t

t

E j A

j a

42

Recall:

1c ck

Also

~ , ,tE j A r

Summary of Far Field

( )jkre

rr

( , ) ( )i jk r

V

a J r e dV

( , , ) ~ ,4

A r r a

1ˆH r E

43

(keep only and components of A)

sin cos sin sin cosx y zk r k x k y k z k x k y k z

Poynting Vector

* *

* *

*

* *

1

21

~21 ˆ ˆ ˆ ˆ21

ˆ2

2

t t

S E H

E H

E E H H

r E H E H

E EE Er

44

Assuming a lossless media,

22 2

ˆ ˆ2 2 2

EE ES r r

22 2

* * *ˆ ˆ

2 2 2

EE ES r r

Poynting Vector (cont.)

In a lossless medium, the Poynting vector is purely real (no imaginary power flow in the far field).

45

Far-Field Criterion

Antenna(in free-space)

D : Maximum diameter

D

r r

How large does r have to be to ensure an accurate far-field approximation?z

The antenna is enclosed by a circumscribing sphere of diameter D.

/ 2D

y

x

rr

/ 2r D46

Far-Field Criterion (cont.)

Let Df = maximum phase error in the exponential term inside the integrand.

22

2

ˆ1 1ˆ

2 2

r rrr r r r r O

r r r

22

max

ˆ1

2 2

r rrk

r r

2 2

max

( / 2)

2 2

kr k D

r r

Hence

NeglectError

47

Set

Then

2

max 8

kD

r

omax rad (22.5 )

8

2

8 8

kD

r

Far-Field Criterion (cont.)

48

Hence, we have the restriction

2

0

2Dr

2 2 2

0 0

2 2kD D Dr

Far-Field Criterion (cont.)

max rad8

for

49

“Fraunhofer criterion”

Note on choice of origin:

2

0

2Dr

Far-Field Criterion (cont.)

The diameter D can be minimized by a judicious choice of the origin. This corresponds to selecting the best possible mounting point when mounting an antenna on a rotating measurement platform.

50

aD aD

aD D 2 aD D

Mounted at center Mounted at edge

D = diameter of circumscribing sphereDa = diameter of antenna

Far-Field Criterion (cont.)

51

It is best to mount the antenna at the center of the rotating platform.

Platform (ground plane)Antenna

Rotating pedestal

Wire Antenna

Assume

y

+h

z

I (z')

x-h

0( ) sinI z I k h z

+h-h

Wire antenna in free space

52

Wire Antenna (cont.)

Hence

( , ) ( )i jk r

V

a J r e dV

ˆ ( )iJ dV z I z dz

sin cos sin sin cos

cos

ˆ( , ) ( )

ˆ ( )

ˆ ( )

hjk r

h

hj x k y k z k

h

hjz k

h

a z I z e dz

z I z e dz

z I z e dz

53

cos0ˆ( , ) sin

hjz k

h

a z I k h z e dz

ˆ ˆ ˆ ˆˆ ˆ( , )

ˆ sin

t z z

z

a z a za

a

( ) ( , )4 ttE j A j r a

Wire Antenna (cont.)

Recall that

For the wire antenna we have

54

0 2

cos( cos ) cos( )ˆ( , ) (2 )

sin

kh kha z I

k

The result is

ˆ~ sin ( , )4

jkr

z

eE j a

r

Hence

or

0 2

ˆ~ sin ( , )4

cos( cos ) cos( )ˆ sin (2 )4 sin

jkr

z

jkr

eE j a

r

e kh khj I

r k

k

Simplify using

Wire Antenna (cont.)

55

We then have

0

cos( cos ) cos( )ˆ~2 sin

jkre kh khE j I

r

Wire Antenna (cont.)

Note: The pattern goes to zero at = 0, . (You can verify this by using L’Hôpital’s rule.)

56

Wire Antenna: Radiated Power

22 2

0 0

22

0

22

0

2 2 22 2 2

0

0

1sin

2

1(2 ) sin

2

sin

1 1 cos( cos ) cos( )sin

2 sin

radP E r d d

r E d

r E d

kh khr I d

r

57

Radiated Power (cont.)

or

2

20

0

cos( cos ) cos( )

4 sinrad

kh khP I d

58

Input Resistance

2

2

1(0)

22

(0)

rad in

radin

P R I

PR

I

2

20

0

cos( cos ) cos( )

4 sinrad

kh khP I d

59

Zin

Rin

jXin

I (0)

0

0

(0) sin

sin( )

I I k h z

I kh

2 2

0

cos( cos ) cos( )1

2 sin( ) sinin

kh khR d

kh

/2 Dipole: ,4 2

h kh

73inR

Input Resistance (cont.)

(resonant)

60

61

ExampleA small loop antenna

x

y

z

I

a0a

The current is approximately uniform)

0I I

0

2sin cos

0

0

cos jk aya a I e ad

Assume = 0: yE E

ˆˆ( , ) ya ya a

0 sinxk k

cosx a

ˆ ˆˆ ˆ cosl y y

By symmetry:

0yk

The x component of the array factor cancels for points and - .

62

Example (cont.)

2

cos1

0

cos 2jxe d j J x

0

0

0

00 1 0

4

2 sin4

jk r

jk r

eE j a

r

ej j aI J k a

r

0 1 02 sina j aI J k a

Hence

0 sinx k a

Identity:

We then have

63

020 0 0ˆ sin

4

jk rk a I eE

r

1 , 12

xJ x x

Approximation of Bessel function:

The result is

0

0 01 0

ˆ sin2

jk raI eE J k a

r

Hence

Example (cont.)

Appendix

64

In this appendix we derive the far field expression for the magnetic and electric field from a radiating current source by using the curl operations in spherical coordinates, instead of using the plane-wave approximation for the del operator.

Hence

1ˆ, sin

sin

1 1 1 1

sinr r

aa r a

r

ra raa a

r r r r r r

1,a O

r

2

1 1a O O

r r

Therefore

Magnetic Field (cont.)

Note that a is not a function of r, so these derivative terms are O(1).

65

Therefore

2

ˆ ˆ

ˆ~

ˆ

jkr

jkr

jkr

er r

r r r

jkrr e

r

jkr e

r

jkr

Magnetic Field (cont.)

ˆ~4

jkH a r

Hence

1~

4H a

ˆjkr 66

We then have

ˆ~ ( , ) ( )4

jkH r a r

Magnetic Field (cont.)

ˆ~ ( , ) ( )4 t

jkH r a r

or

Note: The t subscript can be added without changing the result.

The t subscript means transverse to r. That is, keep only

the and components.

67

ˆ~ ( , ) ( )4

jkH r a r

The far-zone electric field is then given by

1

4

c

c

E Hj

jkr a

j

Electric FieldWe start with

68

(This follows from the same reasoning as before.)

ˆ ˆ ˆ

ˆ~

r a r a r a

r a

Hence

ˆ ˆ ˆ~

ˆ ˆ

ˆ ˆ

t

r a r a jkr

jk r a r

jk r r a

jk a

Electric Field (cont.)

69

Electric Field (cont.)We next simplify the expression for the far-zone electric field.

70

( , , ) ~ ,4

A r r a

tE j A

Recall that Hence

4

1

4

4

c

t

c

t

jkE r a

j

jkjk a

j

j a