Optimizing Renal Cell Cancer Treatment: Molecular Rationale and Evidence of Sequencing TKI-mTOR...

Post on 14-Dec-2015

215 views 1 download

Transcript of Optimizing Renal Cell Cancer Treatment: Molecular Rationale and Evidence of Sequencing TKI-mTOR...

Optimizing Renal Cell Cancer Treatment: Molecular Rationale and Evidence of Sequencing TKI-

mTOR

Ignacio Duran, MD PhDUGC Oncología Medica y RadioterapicaHospital Universitario Virgen del Rocío

Sevilla

Outline

• Molecular Basis of Renal Cell Cancer “classical view”

• New Inputs from the Atlas Genome Project

• Clinical evidence of sequencing TKI-mTOR

• Conclusions

• Q&A

3

Introduction

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth andAngiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

FNIP1

FLCN

FNIP2CromophobeRenal Carcinoma

4

Treatment Development: Rationale

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth and

Angiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

mTOR Inhibit

C-MetInhibit TKIs

mAb

FNIP1

FLCN

FNIP2

Introduction

• PAZOPANIB/SUNITINIB/BEVA-INF

• TEMSIROLIMUS [Only for poor prognosis]

Thus, for the majority of patients with mRCC, there is little controversy around the use of a VEGF-targeted agent as 1st line

First Line Options mRCC

Bellmunt J et al. Clin Transl Oncol. 2014 Dec;16(12):1043-50

Resistencia intrínseca

Resistencia evasiva

Rini BI, and Flaherty K, Urol Oncol 2008

Refractario primario (2–3 meses de tratamiento)

Progresión temprana (6–12 meses de tratamiento)

Progresión tardíaVar

iaci

ón d

e la

s m

edid

as tu

mor

ales

(%

)

Var

iaci

ón d

e la

s m

edid

as tu

mor

ales

(%

)

Var

iaci

ón d

e la

s m

edid

as tu

mor

ales

(%

)

PATIENTS DEVELOP TREATMENT RESISTANCE

Key Question

• So, my patient has been treated with a TKI and has progressed to treatment….

• How effective could be a similar strategy and how a major switch in the therapeutic approach?

• Let’s review the “molecular evidence” of resistance to make a rationale approach

Why patients progress?

• Modes of resistance to VEGF pathway inhibitors include upregulation of alternative pro-angiogenic factors, downregulation of angiostatic factors, recruitment of bone marrow-derived cells for the development of new blood vessels, and invasion without angiogenesis.

Ravaud A, Gross-Goupil M. Overcoming resistance to tyrosine kinase inhibitorsin renal cell carcinoma. Cancer Treat Rev 2012.

Why patients progress?

• Moreover, tumor cells may reduce their dependence on angiogenesis and evade by up-regulating other pathways involved in tumor survival, invasiveness, and

metastasis.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell2011;144:646–74.

Resistance Mechanisms

• Two major mechanisms have been proposed:

– 1.- A rapid scape to anti-VEGF mechanisms through alternative intracellular via

– 2.- The capacity to survive in a microenvironment intrinsically resistant to anti-VEGF therapy.

A rapid scape to anti-VEGF mechanisms

• IL- 8 ( pro-angiogenic cytokine)

• CD11b+Gr1+ cells (MDSCs)

• Basic fibroblast growth factor( bFGF)

• Ephitelial to mesenquimal transition (EMT)

The capacity to survive in a microenvironment intrinsically resistant to

anti-VEGF therapy

Tumor Stromal Architecture

Consideration of the tumor stromal architecture may be an important determinant of whether tumors will be susceptible to treatment with VEGFi

or other vascular modulating agents

Neil RS et al. Clin Cancer Res; 19(24);6943–56. 2013

• Two dominant morphologies were identified:– Tumor vessel phenotype

• Tumor structure with vessels embedded through out the tumor cells– Stromal vessel phenotype

• Pattern of tumor cell nests surrounded by well developed stromal structures containing the majoritly of vessels

Introduction

• Would make sense at this point a different approach?

• ….Probably so

Molecular Basis

• Targeting the PI3K-AKT-mTOR pathway may be crucial as its activation leads to constitutive HIF-1α expression

• The development of mTOR inhibitors have been supported by their potential to inhibit both tumor cell proliferation and angiogenesis

Posadas EM, Limvorasak S, Sharma S, Figlin RA. Targeting angiogenesis in renal cell carcinoma. Expert Opin Pharmacother. 2013 Nov; 14(16): 2221-36.

mTOR Inhibition

• The mechanism of anti-tumor activity of mTOR inhibitors differs from that of VEGF inhibitors.

• Targeted agents that inhibit mTOR signaling block the tumor cell cycle at the G1 phase, resulting in decreased tumor growth and proliferation, cellular metabolism, and angiogenesis

One Step Beyond: Why this pathway?

• In a comprehensive molecular characterization of 400 RCC tumor samples using different genomic platforms, 19 significantly mutated genes were identified

• The PI3K/Akt pathway was recurrently mutated, suggesting this pathway as a potential therapeutic target

Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013 Jul 4; 499(7456): 43-9.

One Step Beyond

Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013 Jul 4; 499(7456): 43-9.

Inputs from the Cancer Genome Atlas suggest that PI3K/AKT pathway might be critical in RCC pathogenesis

PI3K/AKT/mTOR

In the PI3K/Akt/mTOR pathway (altered in ~28% of tumors), the MEMo algorithm identified a pattern of mutually exclusive gene alterations (somatic mutations, copy alterations, and aberrant mRNA expression)targeting multiple components, including 2 genes from the recurrent amplicon on 5q35.3.

The Pathway

• So it seems obvious that this pathway is relevant in RCC biology and resistance

• Let’s try to understand how it works and how we target it

mTOR Inhibition after VEGFR-TKI failure

– This strategy has been reported to provide median progression-free survival (PFS) or time to progression (TTP) ranging from 4.9 to 9.7 months in prospective studies and from 1.4 to 5.5 months in retrospective studies of patients with mRCC whose disease progressed after initial VEGFR- TKI therapy

• Gerullis H, Bergmann L, Maute L, et al. Med Oncol 2010;27:373–8. • Bergmann L, Kube U, Kindler M, et al. J Clin Oncol 2011;29(Suppl.) [abstr 4552]. • Roca S, Quivy A, Gross-Goupil M, Bernhard JC, De Clermont H, Ravaud A. . Acta Oncol 2011;50:1135–6. • Gruenwald V, Seidel C, Busch J, Fenner M, Weikert S. J Clin Oncol 2011;29(Suppl.) [abstr e15028]. • Weikert S, Kempkensteffen C, Busch J, et al. World J Urol 2011 • Grunwald V, Weikert S, Seidel C, et al. Onkologie 2011;34:310–4. • Mackenzie MJ, Rini BI, Elson P, et al. Ann Oncol 2011;22:145–8. • Feinberg BA, Jolly P, Wang ST, et al.. Med Oncol 2011. • Wood L, Bukowski RN, Dreicer R, et al. ASCO Genitourinary Cancers Symposium; Feb 14–16, 2008; San Francisco, CA, USA; abstract 353.

Upon Disease Progression

Safety Interim Analysis

• 416 patients randomized between December 2006 and November 2007• Analysis cut-off: Feb-28-08, based on 266 PFS events• 2nd interim analysis based on cut-off:15-Oct-07, efficacy boundary crossed with 410 patients/191 PFS events (Motzer

et al. Lancet. 2008;372:449–456), complete study unblinded on 28-Feb-08

2nd Interim Analysis Data Cut-Off: 15-Oct-07, N = 410

End of Double- Blind Analysis Data Cut-Off: 28-Feb-08

SurvivalFollow-Up: 15-Nov-08

StudyUnblinded

N = 416

Stratification

•Prior VEGFr-TKI:1 or 2

•MSKCC risk group: favorable, intermediate, or poor

Everolimus 10mg/day + BSC(n = 277)

Placebo + BSC(n = 139)

RAN

DO

MIS

ATIO

N (2

:1)

Double-Blind

Previous Beva, IL2 or INF-alpha allowed

RECORD-1Study: design and conduct

Motzer R et al August 9, 2008

RECORD-1:

Motzer RJ, Escudier B, Oudard S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer 2010;116:4256–65.

RECORD1: Sub-group Analysis

• Sub-group of one previous VEGFR-TKI (n=308)– PFS: 5.4 mos Vs 1.9 HR, 0.32; 95% CI, 0.24–0.43; P < 0.001)

• Sub-group of two previous TKIs (n=108)– 4 mos Vs 1.8 HR, 0.32; 95% CI, 0.19–0.54; P < 0.001

• Sub-group of previous only Sunitinib treated (n=56)– 43 Everolimus -13 Placebo– 4.6 mos Vs 1.8 HR, 0.22; 95% CI, 0.09–0.55; P < 0.001)

Other mTOR inhibitors

Hutson T et al. J Clin Oncol 2013. 32:760-767

Some unanswered questions: Was the OS benefit driven only by the study drugs?What were the treatments received upon progression?94% of missing data in that topic

Some relevant studies just completed

• METEOR– Cabozantinib Vs Everolimus [after TKI]– PFS

• CHECKMATE-025– Anti-PD1 (Nivo) Vs Everolimus [2nd/3rdline]– OS

• These studies wont completely answer the sequencing question

Sequencing Therapies

• SWITCH (Two TKIs): Weak conclussions; many loss

• RECORD-3: mTOR-TKI Vs TKI-mTOR– Non-inferiority Phase II design– Better results from TKI-mTOR

• Others ongoing:– SWITCH 2– START (MD Anderson): 6 Sequences

Conclusions• There is a strong molecular rationale to consider the

PI3K-AKT-mTOR pathway as a key player in mRCC and treatment resistance

• The sequence TKI-mTOR inhibitor seems logical from a mechanistic stand-point

• Despite this, there is still room for improvement in the clinical arena being the data modest in this setting

Conclusions

• Better patient selection will most likely improve treatment outcomes in the near future

• Continuous effort is needed in this research field

Muchas Gracias!!!

• These processes lead to production of HIF 1α and cell-cycle regulators: c-myc and cyclin D1

• In fact mTOR inhibitors are considered both ANTIANGIOGENICS and CELL CYCLE INHIBITORS

34

Treatment Development: Rationale

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth andAngiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

FNIP1

FLCN

FNIP2CromophobeRenal Carcinoma

35

Treatment Development: Rationale

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth and

Angiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

mTOR Inhibit

C-MetInhibit TKIs

mAb

FNIP1

FLCN

FNIP2

RCC treatment outcomes evolution

There has been a significant improvement in PFS compared with the cytokine era

RCC treatment outcomes evolution

There has been a significant improvement in OS compared with the cytokine era

Upon Disease Progression

Safety Interim Analysis

• 416 patients randomized between December 2006 and November 2007• Analysis cut-off: Feb-28-08, based on 266 PFS events• 2nd interim analysis based on cut-off:15-Oct-07, efficacy boundary crossed with 410 patients/191 PFS events (Motzer

et al. Lancet. 2008;372:449–456), complete study unblinded on 28-Feb-08

2nd Interim Analysis Data Cut-Off: 15-Oct-07, N = 410

End of Double- Blind Analysis Data Cut-Off: 28-Feb-08

SurvivalFollow-Up: 15-Nov-08

StudyUnblinded

N = 416

Stratification

•Prior VEGFr-TKI:1 or 2

•MSKCC risk group: favorable, intermediate, or poor

Everolimus 10mg/day + BSC(n = 277)

Placebo + BSC(n = 139)

RAN

DO

MIS

ATIO

N (2

:1)

Double-Blind

Previous Beva, IL2 or INF-alpha allowed

RECORD-1Study: design and conduct

RECORD-1:

RECORD1: Sub-group Analysis• Sub-group of one previous VEGFR-TKI (n=308)

– PFS: 5.4 mos Vs 1.9 HR, 0.32; 95% CI, 0.24–0.43; P < 0.001)

• Sub-group of two previous TKIs (n=108)– 4 mos Vs 1.8 HR, 0.32; 95% CI, 0.19–0.54; P < 0.001

• Sub-group of previous only Sunitinib treated (n=56)– 43 Everolimus -13 Placebo– 4.6 mos Vs 1.8 HR, 0.22; 95% CI, 0.09–0.55; P < 0.001)

Conclusion

• When compared to placebo mTOR inhibition seems to be a good strategy when failure to TKI is observed in patients with advanced mRCC

• Solid data from Randomized Control Trial although a heterogenous population

• Everolimus is a valid option for the treatment of 2nd line mRCC

Literature Evidence

Evidence

Evidence

Optimizar

Optimizar

• Optimizar: “Buscar la mejor manera de hacer una actividad”

“Results have been universally poor. At this time, there appears to be no single

agent, hormonal manipulation, or combination drug regimen which is useful in controlling disseminated renal cancer”

Quoted from Alan Yagoda 1984

• Most of RCC patients dont do very well and a few do very poorly

Renal Cell Carcinoma: The XX Century

Slide modified from Motzer RJ (ASCO 2010)

2014

…Currently there are data to support that RCC can be approached from different perspectives

Multiple drugs have shown activity in this setting

Optimizing: Renal Cell Cancer:

Optimizing: Renal Cell Cancer

Molecular Biology: Summary

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth andAngiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

FNIP1

FLCN

FNIP2CromophobeRenal Carcinoma

Treatment Development: Rationale

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth and

Angiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

mTOR Inhibit

C-MetInhibit TKIs

mAb

FNIP1

FLCN

FNIP2

Molecular Biology: Summary

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth andAngiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

FNIP1

FLCN

FNIP2CromophobeRenal CarcinomamTOR

Inhibit

C-MetInhibit TKIs

mAb

Molecular Biology: Summary

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth andAngiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

FNIP1

FLCN

FNIP2CromophobeRenal Carcinoma

Treatment Development: Rationale

HIF

VHL

ubub

ub HIFProteosomeDegradation

E3ubiquitinligase

VEGFPDGFTGFa

TumorGrowth and

Angiogenesis

RECEPTORS

Clear Cell Renal Cell Carcinoma

PI3KmTor

c-Met

Papillary Type IRenal Carcinoma

Prolyl-Hydoxylase

O2

FumarateHydratase

Fumarate Malate

Papillary Type IIRenal Carcinoma

2-oxoglutarate

Adapted from: Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell Review 2007. 12(1): 9-22; Suarez et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol (2010) 12:15-21.

mTOR Inhibit

C-MetInhibit TKIs

mAb

FNIP1

FLCN

FNIP2

• There are two different mTOR complexes, mTORC1 and mTORC2

• Both of them consist of: mTOR, DEP-domain-containing mTOR-interacting protein (Deptor) and mammalian lethal with Sec13 protein 8 (mLST8)

mTORC1

• mTORC1 comprises 2 distinct components:

• -Regulatory associated

protein of mTOR (Raptor)

-Proline-rich AKT substrate 40 kDa

(PRAS40);

mTORC2

mTORC2 consists of 3 other proteins: mammalian stress-activated protein kinase interacting protein (mSIN1) Rapamycin insensitive companion of tor (RICTOR)

and protein observed with Rictor-1 (Protor-1)

• It is also useful to distinguish two basic signal cascades leading to mTOR1 activation:

• The first one occurs via the insulin - and the second one via Ras – pathway

• The first stage of the insulin signaling cascade involves binding of insulin to its receptor which displays tyrosine kinase activity towards insulin receptor substrate 1 (IRS1)

• When IRS1 is recruited and activated, the signal is transduced via the activation of phosphatidylinositide 3-kinase (PI3K), which subsequently activates phosphoinositide-dependent kinase-1 (PDK1) and then Akt

• The second pathway, which starts from Ras activation, involves signal transduction via Raf andthen MEK 1/2 to mitogen-activated protein kinase (MAPK) and ribosomal s6 kinases (RSKs)

• The stimulation of these two pathways by growth factors increases the phosphorylation of tuberin (TSC2) and this way inactivate hamartin-tuberin complex.

• In the insulin pathway phosphorylation is driven by AKT [23]

• In the RASpathway signal transduction is mediated by MAPK also known as extracellular signal-regulated kinase 1/2 (ERK1/2) [24].

• More precisely, mTORC1 is under control of TSC1/2 complex [25] through its GTPase-activating protein activity towards the G-protein Ras homologue enriched in brain (Rheb) [25].

• When TSC1 is inactivated, Rheb level is increased and activation of mTOR pathway occurs

• Regardless this core pathway, the AKT is able to activate mTORC1 in a TSC1/2 nondependent manner.

• The mechanism involves prolinerich Akt substrate 40 (PRAS40), which regulates mTORC1 by functioning as a direct inhibitor of substrate binding [30]

• There are two main downstream targets of mTORC1 activity: – the eukaryotic initiation factor 4E (eIF4E)-

bindingprotein 1 (4E-BP1) – p70 ribosomal S6 kinase 1 (S6K1)

• The phosphorylation of 4E-BP1 prevents its binding to eIF4E, enabling eIF4E to promote cap-dependent translation [30].

• Translation is also stimulated by S6K1