Opportunities and Challenges for Urban Air Mobility

Post on 09-Jun-2022

3 views 0 download

Transcript of Opportunities and Challenges for Urban Air Mobility

Professor R. John Hansman Director, MIT International Center for Air Transportation

rjhans@mit.edu

Opportunities and Challenges for Urban Air Mobility

MITICAT

•  On Demand Air Mobility motivated by growing surface congestion, success of TNCs and perceived technology transfer from electric vehicles, UAVs and automation

Urban Air Mobility

MITICAT

•  UAM Markets –  Intra-Urban –  Inter-Urban

Urban Air Mobility

Intra-Urban

Inter-Urban

MITICAT UAM Vehicles

vs.

MITICAT UAM Vehicles

vs.

MITICAT

Over 2001 announced vehicle concepts (of varying credibility)

UAM Aircraft Development

1.TheVerticalFlightSociety,TheElectricVTOLNewsWorldeVTOLDirectory.October2019

AirbusA^3Vahana OpenerBlackfly

PipistrelRolls-Royce

Karem Bell

EmbraerJauntAirMobility

OtherAdvancedDevelopmentsVerticalAerospaceSeraph

BetaTechnologiesAvaXC

AstroAerospaceElroyeHang216

Volocopter2x

KittyHawkHeaviside

JobyAviationS4

KittyHawkCora

WorkhorseSurefly AirbusCityAirbus

BoeingPAV LiliumLiliumJetLIFT

HEXA

ExampleFlyingFull-ScalePrototypes

ManyAdditionalVehicleConcepts

MITICAT

Case Study Approach to Identify UAM Operational Constraints (LAX, BOS, DFW)

2.DefinedReferenceMissions

3.AppliedNotionalConOps*toEachMission1.IdentifiedPromisingMarkets

•  Currenthelicoptercharterservices

•  UScensusandcommutingdata

•  Housingmarketdata

4.IdentifiedOperationalChallengesinMissionswww.trulia.com

USCensusBureauOnTheMap

Nelson&Rae

O – Malibu origin X – Century City destination

Figure 1. Malibu to Century City flight profile development.

O – Malibu origin X – Century City destination n water route n direct route n increased speed route

©2016GoogleDataLDEO-Columbia,NSF,NOAASIO,NOAA,U.S.Navy,NGA,GEBCOImageLandsat/Copernicus

*ConOpsassessedconventionaltechnologiesaswellaselectricpropulsionandpilotautomation

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

MITICAT

Challenge to Site Infrastructure Near Demand Existing aviation infrastructure in Boston

PrivateHeliportMedicalHeliportAirport

WBZ

HerbChambers

BostonGlobe

Logan

MassGeneral

Tufts

BostonMedicalCenter

Brigham&Womens/BethIsrael

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

MITICAT

Current ATC Procedures Will Not Scale Controller Workload Constraint

São Paulo “helicontrol” Area –  limited to 6 simultaneous helicopter

operations15

–  designated entry points and routes

SãoPaulo

CommuterMissionsAirTaxiMissionsControlMissions

Boston Logan Controlled Airspace –  additional controller staffed for >3

operations

–  designated helicopter routes

MITICAT ATC Surface Controlled Airspace BOS

MITICAT ATC Surface Controlled Airspace BOS

MITICAT

Special Use Airspace Red Sox Game Example

PrivateHeliportMedicalHeliportAirport

WBZ

HerbChambers

BostonGlobe

Logan

MassGeneral

Tufts

BostonMedicalCenter

Brigham&Womens/BethIsrael

MITICAT

ATC Separation Standards For Terminal Area Operations

AircraftInvolved LateralSeparationReq. VerticalSeparationReq. Longitudinal

SeparationReq.

IFRtoIFRAllclasses

IFRtoVFRClass:B,C

IFRtoObstruction N/A

TowerorPilotVisualSeparationClass:B,C,D

“passwellclear”“seeandavoid”

“passwellclear”“seeandavoid” “seeandavoid”

3NM

1000ftupto8NM

RadarTargetResolution

500ft upto8NM

3NM

1000ft

MITICAT BOS Runway 4R IFR Separation Zone

PrivateHeliportMedicalHeliportAirport

WBZ

HerbChambers

BostonGlobe

Logan

MassGeneral

Tufts

BostonMedicalCenter

Brigham&Womens/BethIsrael

MITICAT

Controlled Airspace Cutout Example New York SFRA Example

NewYorkAirspaceCutout

MITICAT

Impact of ATC Scenarios on Magnitude of Constraint San Francisco MSA

StaticVFRCutout&SUAAccess

FullySegregated

AccessiblePopulation:48%AccessibleCommuterResidences:57%AccessibleCommuterWorkplaces:24%

AccessiblePopulation:86%AccessibleCommuterResidences:90%AccessibleCommuterWorkplaces:86%

MITICAT

ATC Restriction Analysis of US Major Metropolitan Statistical Areas

PhDThesisofParkerVascik

MITICAT

ATC Restriction Analysis of US Major Metropolitan Statistical Areas

PhDThesisofParkerVascik

PopulationCoverage

WorkplaceCoverage

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

MITICAT

Over 2001 announced vehicle concepts (of varying credibility)

UAM Aircraft Development

1.TheVerticalFlightSociety,TheElectricVTOLNewsWorldeVTOLDirectory.October2019

AirbusA^3Vahana OpenerBlackfly

PipistrelRolls-Royce

Karem Bell

EmbraerJauntAirMobility

OtherAdvancedDevelopmentsVerticalAerospaceSeraph

BetaTechnologiesAvaXC

AstroAerospaceElroyeHang216

Volocopter2x

KittyHawkHeaviside

JobyAviationS4

KittyHawkCora

WorkhorseSurefly AirbusCityAirbus

BoeingPAV LiliumLiliumJetLIFT

HEXA

ExampleFlyingFull-ScalePrototypes

ManyAdditionalVehicleConcepts

MITICAT Broad Range of Vehicle Architectures

Rotorcraft

Rotor Lift Actuating Hybrid

Lift Static Hybrid

Lift Wing Lift

Few Propulsors (1-3)

Many Propulsors (4+)

Helicopter Tilt-lift

DEP Tilt-lift Multirotor Stopped Rotor DEP Fixed Wing

Fixed Wing Static Hybrid

Multirotor DEP Powered Lift Fixed Wing

MultirotorandDEPPoweredLiftmostwidelyproposedforUAMapplications

aurora.aero

pipistrel.si

jobyaviation.comvolocopter.com nasa.gov

cartercopters.comelytronaircraft.comgoogle.com

MITICAT

Certification Challenges for Electric UAM Configurations

Hazard Description Multirotor DEP Powered Lift Rotorcraft Fixed Wing

Common Mode Power Failure

(Low-/High-Altitude) High/High High/Medium Medium/Medium

Medium/ Medium

Battery Thermal Runaway High High High High

Battery Energy Uncertainty High High Medium Medium

Fly-By-Wire System Failure High High* Low** Low

Bird Strike Medium Medium Medium Medium

High-Level Autonomy Failure High High High High

Risk Severity= Probability x Consequence High, Medium, Low

The severity of some challenges changes with configurations

MITICAT Hybrid Electric SSTOL Alternative

Uber2019ElevateConf.

30% scale flight demonstrator of a 4 passenger, 2700 lb blown wing aircraft with <100 ft takeoff/landing distance

DistributedElectricPropulsionBlownWingforHighCL

HybridElectricBatteriesSizedforTO&LSurgeEngineSizedforCruise

UnblownStallSpeed<60kts

TakeoffLandingDistance<100ft

MITICAT MIT Beaverworks Prototype

Vehicledesignedandbuiltby16.82classinSY2018-2019

MITICAT Subscale SSTOL Protoype

Flightdemonstratorshowsthathighlift(CL>10)isachievableinreal-worldflightenvironmentbutthattherearecontrolchallengestobeaddressed.

MITICAT UAM V1