open questions and the impact of future facilitiesgalpatagonia/GALPAT_PRESENTATIONS/... · Madau &...

Post on 14-Jul-2020

2 views 0 download

Transcript of open questions and the impact of future facilitiesgalpatagonia/GALPAT_PRESENTATIONS/... · Madau &...

GarthIllingworthUCSC

firstgalaxies.org

openquestionsandtheimpactoffuturefacilities

DistantGalaxiesfromtheFarSouth

11-15December2017Bariloche Argentina

i – ourupcomingsetofremarkablenewfacilities

ii-- somethoughtsreearlygalaxiesandJWST

iii– opportunitiesandchallengesforthelonger-termfuture

gdi

ALMA

gdi

ALMA[CII]157.74𝜇mredshiftsandvelocitystructure(rotation?)intwoz~6.8galaxies

velocitystructure(rotation?)intwogalaxies

consistent with rotation but could bemorecomplex (merging?;gas flows?)

modelscomparedtodata

Smit+2017ALMAwillplayakeyroleinunderstandingthegasflows,the

velocitystructure,starformationanddustintheearliestgalaxies

gdiSmit+2017

ELT

gdi

majorannouncementbyESOlastweekabouttheEuropean39mExtremelyLargeTelescope(ELT)

ESOELTannouncementrefullmirror

plussparesand2024firstlight

gdi

EuclidLSSTWFIRST

gdi

surveysforhigh-zstudiesandcosmicvariance

Madau &Dickinson2014

clearlyneedtoimagelargerareas!

theyellowregionsareCANDELS&thetinyboxinGOODS-SistheHUDF…..

surveyregionssuperimposedonasimulationshowinggalaxydistributionatz~2

largefluctuationsfromclustering

gdi

surveysforhigh-zstudiesandcosmicvariance

needtoimagelargerareas!

theyellowregionsareCANDELS&thetinyboxinGOODS-SistheHUDF

wide-areasurveys>>HubbleorJWST

WFIRSTEuclid

LSST

gdi

threeupcomingmajorwide-fieldprojects

currentschedules

Euclid– launch2020/21✔LSST– surveystart2022✔WFIRST– launch2025/26?

notethatLSSTisoptical(<~1µm),whileEuclidandWFIRSTalsohavenear-IRcapability(<~2µm)

WFIRSTbeingre-baselined/descoped asaresultofWFIRSTIndependentExternalTechnical/Management/CostReview (WIETR)reportthatwasreleasedinNovember

goalistohaveanewbaselinefortheWFIRSTmissionbyJanuaryandthenworktowardsapprovalforthetransitiontoPhaseB(KDP-B)earlyin2018 gdi

JWST

gdi

quickupdateforthosewhodidseeMattGreenhouse’sexcellent,andverycomprehensive,publictalkonJWST

JWSTisthe“what’snext”fortheearliestgalaxies

JWST– full-sizemodelat“SouthbySouthwest”gettingasensefortherealsizeofJWST!

notepeople

JWSTlaunchesspring2018 gdi

☛ intotheJWSTera☚

Sunshield

OTIS

gdigdisomephotosfromrecentscienceteamupdates

JWSTOTISCVtestatJSC

movingOTISinthroughthechamberAdoorandOTISinthechamber

gdi

JWSTspacecraftassemblyin

thecleanroomatNGAS

thespacecraftplussunshieldpalletsplustheOTISsimulator

thisisonebigtelescope…

gdi

JWSTsunshieldin

thecleanroomatNGAS

foldinguptheflightsunshield(oneside)afterdeploymenttest

flightsunshieldfullydeployed(lateOct2017)

JWSTisverylarge!

gdi

JWSTlaunchmovedtospring2019

• 2010– ICRPestimatedlaunchin2016for$6Btotal– andsaidthatasubstantialchangetoboththelaunchscheduleandthefundinglevelwasneeded(andthatNASAneededtodoathoroughreplan to80%confidence)

• 2011– Newbudgetderived– budgetandschedulewassetthroughajointcost/schedulestudy(JointConfidenceLevelJCL)witha80%goal– newlaunchwasOct2018andcost$8B

• 2011– CongresskilledJWST;backagainafter~4monthsofeffortbutascarytime…• 2011/12– Congresslegislatedan$8Bbudgetcapthroughconstruction• 2011/12– NASAadded$0.875Bforfiveyearsofops:lifecyclecost(LCC)total$8.875B

• 2011-2017– JWSThaskepttoscheduleandbudgetover6years,andremainswithinbudget– remarkableachievementforsuchacomplexproject

background2010– IndependentComprehensiveReviewPanel(ICRP)formed

torespondtobudgetandschedulecrisisintheProject

gdi

JWSTlaunchmovedtospring2019

• BepiColombo haslimitedlaunchwindowsandOct2018isanoptimalwindow• issueswithpropulsionsystemonspacecraftthatrequiredrework

(pressuretransducerreworkandthennewthrustervalvesneeded)• integrationandtestactivities(I&T)onthesunshieldandspacecraftaretaking

longerthanoriginallyplanned

http://firstgalaxies.org/gdi_jstac_note.html

JWSTwillnowlaunchintheApril-June2019timeframe

announcementinlateSeptemberrenewlaunchschedulecamefromconsiderationoverthelastyearofanumberoffactorsthat

increasinglysuggestedthatOct2018wasnotoptimal

gdi

JWSTandgalaxiesatz>8– first~500Millionyears

gdi

evolutionofstellarmassandstarformation

evolutionoftheglobalstellarmassdensityover13billionyears

evolutionofthecosmicstarformationratedensityover13billionyears

Madau &Dickinson2014

onlyafewmeasurementsatz>6

gdi

NOW NOW

FirstGyr FirstGyr

notethatatz~8– first0.1%ofstellarmassbuild-up

cosmicstarformationoveralltime

relativerateofstarformation

BigBangNow

revealingthestarformationratedensityover96%oftime

linearfigurecredit:PascalOesch gdi

diversitycomplexityevolutiontransition

stabilitycharacterizationarchaeology

dramaticgrowthextremeSF

z~2

FrontierFields

6clusters+6parallelfields

840orbitsoftrulyremarkableACSandWFC3/IRdata

1000hoursofSpitzerIRAC

longhistoryofgalaxyclusterimagingprogramswithHST:

ACSGTOTeamCLASHHFF+others

usingtheFrontierFields(HFF)todeterminefaintluminosityfunctions– theHFFisaremarkabledataset–

thankstoMattMountain

gdi

HFF

thechallengesofluminosityfunctionsusinglensingclusters(i)modeluncertaintiesathighmagnifications

gdi

differentmodelsyieldsubstantiallydifferentresultsathighmagnification

stronglylensingclustersprovidetheopportunitytogomuchfainterthandeepfields,buthowfaintcanwereliablypush?

limitforreliableLFsfromtheHFF

theuncertainty“blowsup”fainterthan-14.5

theerrorsintheLFbecomesolargeastomakeestimatesoftheLFfromtheHFFnotreallyusefulbelowMUV,AB ~-14.5

systematicsarethelimitingfactor

seealsoHakimAtek+2017WedtalkatBariloche gdi

simulations:

(HubbleFrontierFields)

Bouwens+2017b

HFF

XDFlimit

limitforreliableLFsfromtheHFF

theuncertainty“blowsup”fainterthan-14.5

theerrorsintheLFbecomesolargeastomakeestimatesoftheLFfromtheHFFnotreallyusefulbelowMUV,AB ~-14.5

systematicsarethelimitingfactor

seealsoHakimAtek+2017WedtalkatBariloche gdi

simulations:

(HubbleFrontierFields)

Bouwens+2017b

HFF

XDFlimit

limitforreliableLFsfromtheHFF

theuncertainty“blowsup”fainterthan-14.5

theerrorsintheLFbecomesolargeastomakeestimatesoftheLFfromtheHFFnotreallyusefulbelowMUV,AB ~-14.5

systematicsarethelimitingfactor

seealsoHakimAtek+2017WedtalkatBariloche gdi

simulations:

(HubbleFrontierFields)

Bouwens+2017b

HFF

XDFlimit

bottomline:withthecurrentstateoftheartforlensingmodelsandwithcurrentHubbledataonecannotsetusefulconstraintsfainterthanaboutMUV,AB ∼ -14

sizesofstar-formingregionsinhigh-zgalaxies

gdi

lowluminosityhigh-zgalaxiesarefoundtobesurprisinglysmall

Hubbleimagesofgalaxiesinthefirstbillionyearsthisiswhatthelargestandbrightesthigh-redshiftgalaxiestypicallylooklikeatz>~6

mostgalaxiesinthefirstbillionyearsareobserved

tobereallysmall!

thisisthesizeoftypicalfainthigh-redshiftgalaxiesonthesamescale

theMilkyWaytothesamescale(animageofUGC-12158– similartotheMW)

~sizeofHubblePSF

1.8”(~10kpc)

luminousyoungstarforminggalaxiesareakpc ortwoinsize– lowerluminositygalaxiesaremuchsmaller

gdi

recoversourceplaneimage– magnified10-20X

HDF-S

galaxyCL1358-G1atz=4.92– 1.3Gyr afterBigBang:lensedbyarichclusterofgalaxiesatz~0.3

aremarkablefoldarcinCL1358– sizesofstar-formingregions

Ø moststarformation(>50%)inthebrightest“blob”

Ø just100-200pcinsize(re ~130pc)

distortedfoldimageof amagnifiedgalaxyafternearbyellipticalremoved

Franx GDI+1997

astronglylensedfoldarcdiscoveredinWFPC2imagingofCL1358followedupwithKeckLRISforredshiftandkinematics+NIRSPECimaging

SFRaround40M⨀/yr

gdi

lensedresolutionsof~100pcorlesslike30-40mtelescopewithAO

• veryrareexampleshowingsuchdetailsinanearlygalaxy

• indicatesstar-formingregionsathighzareverysmall

~25X

Franx,GDI+1997

WFPC2images

ACSimages

a remarkablefoldarcinCL1358

Zitrin+2011

veryrare(!)

zarc =4.92

gdi

arehighredshiftgalaxiesreallysosmall?

Bouwens+2017c

cf.CL1358-G1

☞ wecouldwellbeseeingacompacthighsurfacebrightnessregion(orregions)inalargerobject

gdi

z=4.92CL1358-G1

lensedresolutionsof~100pcorlesslike30-40mtelescopewithAO

• veryrareexampleshowingsuchdetailsinanearlygalaxy

• indicatesstar-formingregionsathighzareverysmall

~25X

Franx,GDI+1997

WFPC2images

ACSimages

a remarkablefoldarcinCL1358

Zitrin+2011

veryrare(!)

zarc =4.92

ELTwithadaptiveopticsneededtomeasurethesizesofstarformingstructuresinasignificantsampleofearlygalaxies

gdi

z~6-8galaxysizecomparisontolocalstarformingregions

Bouwens+2017c

seealsoVanzella+2017a,b;Laporte+2016;Kawamata+2015,2017

sizesofz~6-8galaxiesinHFFscomparedtostar-formingclusters/complexesand

superstarclusters

☞ observedsizesofz~6-8galaxiesaresimilartoz~0-3starformingcomplexes–

alsonote30Doradus

gdi

307z~6-8galaxiesinHFFs

z~6-8galaxysizecomparisontonearbyevolvedobjects

seealsoVanzella+2017a,b;Laporte+2016;Kawamata+2015,2017

sizesofz~6-8galaxiesinHFFscomparedtonearbyevolved

objects

localobjectsfromNorris+2014(seealsoBrodie+2011)

☞ couldwebeseeingsomeglobularclustersformingat

veryhighredshift?

gdi

Bouwens+2017c

* measuringthehighestredshifts

galaxiesatz~10(450Myr)

implicationsforcosmicstarformationatz>10

gdi

measuringthehighestredshifts:GN-z11

HubbleandSpitzerreachoutintoJWSTterritorywiththedeterminationofthez~11.1redshiftofGN-z11

gdi

GN-z11firstdetectedasaveryluminousz~10galaxyinGOODS-NasGN-z10-1

WFC3/IRgrismdetectedbreak&confirmedredshifttobe11.09+0.08-0.12

combinationofHSTgrism +WFC3/IR+SpitzerIRACgiveshighdegreeofconfidencetoredshiftdetermination

Oesch+2014,2016

GN-z10-1=>GN-z11

ageofuniverseis400Myr atz~11

gdi

8 Oesch et al.

TABLE 2Summary of Measurements for GN-z11

R.A. 12 : 36 : 25.46Dec. +62 : 14 : 31.4Redshift z

grism

11.09+0.08�0.12

a

UV Luminosity MUV �22.1± 0.2Half � Light Radiusb 0.6± 0.3 kpclogMgal/M� c 9.0± 0.4log age/yr c 7.6± 0.4SFR 24± 10 M� yr�1

AUV

< 0.2 magUV slope � (f� / ��) �2.5± 0.2d

a Age of the Universe at z = 11.09 using our cosmol-ogy: 402 Myrb From Holwerda et al. (2015)c Uncertainties are likely underestimated, since ourphotometry only partially covers the rest-frame opti-cal for GN-z11d See also Wilkins et al. (2016)

to estimate how many such galaxies we could have ex-pected based on (1) the currently best estimates of theUV LF at z > 8 and (2) based on theoretical models andsimulations.Our target was found in a search of the GOODS fields,

which amount to ⇠ 160 arcmin2. However, in a sub-sequent search of the three remaining CANDELS fieldsno similar sources were found with likely redshifts atz & 10 (Bouwens et al. 2015a). We therefore use thefull 750 arcmin2 of the CANDELS fields with match-ing WFC3/IR and ACS imaging for a volume estimate,which amounts to 1.2⇥106 Mpc3 (assuming �z = 1).Using the simple trends in the Schechter parameters of

the UV LFs measured UV at lower redshift (z ⇠ 4 � 8)and extrapolating these to z = 11, we can get an empir-ical estimate of the number density of very bright galax-ies at z ⇠ 11. This amounts to 0.06 (Bouwens et al.2015b) or 0.002 (Finkelstein et al. 2015) expected galax-ies brighter thanM

UV

= �22.1 in our survey correspond-ing to less than 0.3 per surveyed square degree. Simi-larly, recent empirical models (Mashian et al. 2016; Ma-son et al. 2015; Trac et al. 2015) predict only 0.002�0.03galaxies as bright as GN-z11 in our survey or 0.01�0.2per deg2. All the assumed LF parameters together withthe resulting estimates of the number of expected brightgalaxies N

exp

are listed in Table 3.The above estimates illustrate that our discovery of

the unexpectedly luminous galaxy GN-z11 may challengeour current understanding of galaxy build-up at z > 8.A possible solution is that the UV LF does not followa Schechter function form at the very bright end as hasbeen suggested by some authors at z ⇠ 7 (Bowler et al.2014), motivated by ine�cient feedback in the very earlyuniverse. However, current evidence for this is still weak(see discussion in Bouwens et al. 2015b). Larger areastudies will be required in the future (such as the plannedWFIRST High Latitude Survey; Spergel et al. 2015) sur-veying several square degrees to determine the bright endof the UV LF to resolve this puzzle.

5. SUMMARY

In this paper we present HST slitless grism spectrafor a uniquely bright z > 10 galaxy candidate, whichwe previously identified in the GOODS-North field, GN-

6 7 8 9 10 11

−23

−22

−21

−20

−19Redshift

Abso

lute

Mag

nitu

de M

UV

0.9 0.8 0.7 0.6 0.5 0.4

4

2

1

0.5

0.25

Age of the Universe [Gyr]

UV

Lum

inos

ity [L

/L*(z

=7)]

zspeczphot

GN-z11

Fig. 7.— The redshift and UV luminosities of known high-redshift galaxies from blank field surveys. Dark filled squares corre-spond to spectroscopically confirmed sources, while small gray dotsare photometric redshifts (Bouwens et al. 2015b). GN-z11 clearlystands out as one of the most luminous currently known galaxies atall redshifts z > 6 and is by far the most distant measured galaxywith spectroscopy (black squares; see Oesch et al. 2015b, for a fulllist of references). Wider area surveys with future near-infraredtelescopes (such as WFIRST) will be required to determine howcommon such luminous sources really are at z > 10.

TABLE 3Assumed LFs for z ⇠ 10� 11 Number Density Estimates

Reference � ⇤ /10�5 M⇤ ↵ Nexp

[Mpc�3] [mag] (< �22.1)

Bouwens et al. (2015b) 1.65 -20.97 -2.38 0.06Finkelstein et al. (2015) 0.96 -20.55 -2.90 0.002Mashian et al. (2016) 0.25 -21.20 -2.20 0.03Mason et al. (2015) 0.30 -21.05 -2.61 0.01Trac et al. (2015) 5.00 -20.18 -2.22 0.002

Note. — The parameters �⇤, M⇤, and ↵ represent the threeparameters of the Schechter UV LF taken from the di↵erent papers.

z11. Our 2D data show clear flux longward of ⇠ 1.47 µmexactly along the trace of the target galaxy and zeroflux at shorter wavelengths, thanks to our comprehensiveand accurate treatment of contamination by neighboringgalaxies. The interpretation that we indeed detect thecontinuum flux from GN-z11 is supported by the mor-phology of the spectrum, the fact that the counts fall o↵exactly where the sensitivity of the G141 grism drops, aswell as the consistency of the observed counts with theH-band magnitude of GN-z11 (see e.g. Fig 3).The grism spectrum, combined with the photometric

constraints, allows us to exclude plausible low-redshiftSEDs for GN-z11 at high confidence. In particular, wecan invalidate a low redshift SED of an extreme line emit-ter galaxy at z ⇠ 2 (see section 3 and Fig 4). Instead,the grism spectrum is completely consistent with a veryhigh-redshift solution at z

grism

= 11.09+0.08

�0.12

(see Figures3 and 5). This indicates that this galaxy lies at only⇠ 400 Myr after the Big Bang, extending the previousredshift record by ⇠ 150 Myr.GN-z11 is not only the most distant spectroscopically

measured source, but is likely even more distant thanall other high-redshift candidates with photometric red-shifts, including MACS0647-JD at z

phot

= 10.7+0.6

�0.4

(Coe

GN-z11– themostdistantgalaxyfoundtodate

surprisingdiscoveryofGN-z11:HST+Spitzer arereachingintoJWSTterritory

Oesch+2016

−22.5 −22 −21.5 −2110−8

10−7

10−6

10−5

Trac+15Mashian+15Mason+15

GN−z11

Absolute Magnitude Muv [AB mag]

q [m

ag−1

Mpc

−3]

Model LF Predictions

~10-

50x

high

er

GN-z11

Does GN-z11 tell us something fundamentally new about early galaxy formation?

• DetectionofGN-z11inexistingdataisunexpected,givencurrentmodels

• Expectedtorequire10-100xlargerareastofindonez~11galaxyasbrightasGN-z11

• Difficultthoughtodrawconclusionsbasedononesourcegdi

GN-z11

thederivedphysicalpropertiesofGN-z11areconsistentwithexpectationsfrom

large-volumesimulations

simulationsshowthatgalaxiesasmassiveasGNz-11atz~11arerarebutnotunexpectedperse

Mutch+2016Waters+2016

butitisunexpectedtofindGN-z11insuchsmallsearch

volumes/areas(byfactor10-100)?BlueTides

mass109 M⨀ SFR24M⨀/yrAUV <0.2mag𝛽 -2.5age40Myr

DRAGONS

gdi

measuringthehighestredshifts

* galaxiesatz~10(450Myr)

implicationsforcosmicstarformationatz>10

gdi

theluminosityfunctionatz~10

z~10galaxiesarehardtofind!– 7yearsofWFC3/IRimaginghaveresultedinonly9galaxiesinallfields,HFF+CANDELSetc

Oesch+2017

theageoftheuniverseatz~10is~500Myr

gdi

~10x

notethechangeofanorderofmagnitudebetweenz~8andz~10

theluminosityfunctionatz~10

Oesch+2017

considerablespreadbutshapematches(broadly)tomodels–butmodelsareconsistentlyhigh

gdi

“acceleratedevolution”– thestarformationratedensityatz~9-10

clearlyatrendtolowerSFRDatz>8

“acceleratedevolution”isactuallyconsistentwiththeexpectedbuildup*ofdarkmatterhalosoverthattime

Oesch+2017

*darkmatterhalogrowth(>~1010 M⨀)fromHMFcalc – Murray+2013

gdi

thecaseofthemissingz~10galaxies

indicationthatthesituationatz~10isunusual

thenumbersofobjectsthatwehavefoundissmallerthanallmodelsexceptGALFORM–theoffsetsaresmallinmanycasesbutarequitesystematic

Oesch+2017

observednumberofz~10galaxies

gdi

modelcomparisons– thestarformationratedensityatz>6

notethat“acceleratedevolution”isseeninsomemodels,butthereisarangeofshapes/slopes

Oesch+2017

gdi

cosmicstarformationinthefirst1.5billionyears

galaxiesareevolvingrapidlyinthefirst~600millionyears

therearefarfewergalaxiesthanwe(naively)expectedatearlytimes

thisisanimportantresultforJWST

gdiOesch+2017

measuringthehighestredshifts

galaxiesatz~10(450Myr)

* implicationsforcosmicstarformationatz>10

gdi

reionizationepoch– latestPlanck2016results

strikingconcordancebetween2016Planckresultsandgalaxyconstraints

implicationsofonsetofreionizationatz~10

simulation:Alvarezetal.2009 gdi

Planck2016 remarkablemission

constraintsonthereionizationhistory

PlankCollaborationXLVII+2016

• …Thomsonopticaldepthτ =0.058±0.012….

• …averageredshiftatwhichreionizationoccursisfoundtoliebetweenz=7.8and8.8…

• …upperlimittothewidthofthereionizationperiodof∆z<2.8.

• …theUniverseisionizedatlessthanthe10%levelatredshiftsabovez≃ 10…

• …anearlyonsetofreionizationisstronglydisfavoredbythePlanckdata.

gdi

Planck2016 remarkablemission

constraintsonthereionizationhistory

PlankCollaborationXLVII+2016

• …Thomsonopticaldepthτ =0.058±0.012….

• …averageredshiftatwhichreionizationoccursisfoundtoliebetweenz=7.8and8.8…

• …upperlimittothewidthofthereionizationperiodof∆z<2.8.

• …theUniverseisionizedatlessthanthe10%levelatredshiftsabovez≃ 10…

• …anearlyonsetofreionizationisstronglydisfavoredbythePlanckdata.

gdi

reionizationconstraintsfromPlanck2016strikingconsistencywithgalaxyresults

reionizationhistorycomparedwithobservationalconstraints

endatz~6

PlankCollaborationXLVII+2016

constraintsonionizationfractionfromonsetduringreionization

onsetatz~10

68%&95%

evolutionoftheintegratedopticaldepthcomparedtogalaxyresults

Bouwens+2015Robertson+2015Ishigaki+2015

95%

Planck2016 τ68%

gdi

reionizationconstraintsfromPlanck2016strikingconsistencywithgalaxyresults

reionizationhistorycomparedwithobservationalconstraints

endatz~6

PlankCollaborationXLVII+2016

constraintsonionizationfractionfromonsetduringreionization

onsetatz~10

68%&95%

evolutionoftheintegratedopticaldepthcomparedtogalaxyresults

Bouwens+2015Robertson+2015Ishigaki+2015

95%

Planck2016 τ68%

gdi

forthefirsttimewenowknowwhengalaxiesstartedtoreionize theuniverse

thisisacrucialpieceofinformationforhowfarbackwemighthavetolooktofind“firstgalaxies”

implicationsforJWSTand“firstlight”fromthez~9-10LFsandthelatestPlanck2016results

gdi

whatdoesallthistellusaboutJWSTandthe“first”galaxies?

discussionaboutwhatJWSTcanseere“firstlight”

verychallengingif”firstgalaxies”wereveryearly(z~15-20?– z>15isverydifficultforJWST)

reionizationonsetatz~10

FirstLightandReionizationoneofJWST’sfoursciencethemes

Planck

Gyr fromBigBang0.50.30.2

reionizationonsetatz~10

“acceleratedevolution”

gdiMason+2015

whatdoesallthistellusaboutJWSTandthe“first”galaxies?

Newresults:“acceleratedevolution”fromz~9-10LFsandreionizationturn-onatz~10-11fromPlanck

=>suggestmajorchangesinthenatureofthegalaxypopulationatredshiftsaroundz~10-15

Ithinktheseresultspointtosubstantialbuild-upoftheearliestgalaxiesatz~10-15– veryaccessibleforJWST’s“firstlight”goal

☞ excitingtimesaheadat“CosmicSunrise”!☜

reionizationonsetatz~10

FirstLightandReionizationoneofJWST’sfoursciencethemes

Planck

Gyr fromBigBang0.50.30.2

reionizationonsetatz~10

“acceleratedevolution”

gdi

☛ thenextdecadeto2030☚

gdigdi

lookinggood…..

note:thefocushereisonoptical/IR/submm capabilitiesthatwillplayamajorroleinthenextdecadeforhighredshiftgalaxiesatz>~2.SKAisnotlistedsinceitstimescaleremainsuncertain.

theheartofthenextdecade

gdi

theheartofthenextdecade– andwithasupportingcast!

gdi

☛ thelong-termfuture– afterJWST☚

gdigdi

notsosanguine…..

☛ thespacetelescopeflagshipsofthe2030s☚

gdigdi

HabEx

ESA/USLISA

NASAstrategicmissionsunderstudyfor2020Decadal

OST– OriginsSpaceTelescope

LUVOIR10-15m

4-8m

starshade?

5𝜇m-1mm

ESA Athena

?

plannedfor2034

Lynx x-ray

only0-1ofthese!

plannedfor2028

flagshipstakedecades fromconcepttocompletion

• Hubble– conceptin1960s;Decadal??;launched1990• Spitzer/SIRTF– conceptin1970s;1990Decadal;launched2002• GSMT– conceptinlate1990s;2000Decadal;ESOELTin2025;US??• ALMA– concept1980s;1990Decadal;completed2014-6??• WFIRST– concept~2005(JDEM);2010Decadal;launch2025-6?

gdi

S

• NGSTpassively-cooledIR10mconceptinmid-1980s• NASA/STScI NGSTscienceconference1989• 1989/90:1990DecadalSurveyUV-OpticalinSpacepanel:6-mpassively-

cooledIRtelescope– expectedcostwas$2BinFY90$forlaunchin2009• 1991:NASAHQAstrotech 21studyandworkshopon8mNGST• 2000Decadalrecommends8mNGST• JWSTtolaunchin2019 see2016STScINewsletterarticle

NGST:TheEarlyDaysofJWSTnewsletter.stsci.edu/early-webb-history

OTHERS:

NGST/JWST:

☛ ifwecollectivelyfailtolookmorethanadecadeintothefutureforflagshipopportunitiesinthe

2030s,IamveryconcernedthatastronomywillloseanopportunitytoleverageoffthesuccessofJWSTandwillundergoasignificantdeclineinfunding☚

gdigdi

whatis“beyondJWST”?

JWST’stechnologyandsuccesswillopenupnewhorizonsandgiveusall*confidencethatwecandoevengreatermissions

*policy-makers,government,industry,scientists

ideally“beyondJWST”therewouldbeanotherflagshipcommensuratewithourcapabilitiesandsociety’sinterestinexploringtheuniverseandinsearchingfor(andfinding?)lifeelsewhereinourgalaxy!Butwillwedoso?….

gdi

☛ thankstothelocalorganizersandKarinawhoworkedhardtomakeaconferencelikethishappenandtofunctionsosmoothly☚

gdigdi