Localized modes in the nonlinear Schrodinger equation with...

Post on 23-Jan-2021

2 views 1 download

Transcript of Localized modes in the nonlinear Schrodinger equation with...

Localized modes in the nonlinearSchr odinger equation with periodicnonlinearity and periodic potential

Vladimir Konotop

University of Lisbon, PORTUGAL

Yu. V. Bludov , VVK, Phys. Rev. A 74, 043616 (2006)

Yu. V. Bludov, V.A. Brazhnyi , VVK, Phys Rev A 76 (2007) (in press;

cond-mat:0706.0079)

F. Kh. Abdullaev , Yu. V. Bludov, S. V. Dmitriev , P. G. Kevrekidis , VVK,

(submitted; cond-mat: 0707.2512)Nonlinear Schrodinger equation with periodic coefficients – p. 1/17

Outline

Physical applications

Modulational instability and localized modes

Delocalizing transition

Lattices: "Tight-binding" approximation

Nonlinear Schrodinger equation with periodic coefficients – p. 2/17

EM waves in stratified media

∂2E

∂x2+∂2E

∂z2+ω2

c2n2E = 0,

where n = n0 + n1(x, z) + n2(x, z)|E|2 + n4(x, z)|E|4.In the parabolic approximation E(x, z) = eikzA(x, z), k = ω

cn0,

Az ≪ kA

2ik∂A

∂z+∂2A

∂x2+k2

(

2n1

n0

+n2

1

n20

+2n2

n0

|A|2 +

(

n22

n20

+2n4

n0

)

|A|4)

A = 0

Nonlinear Schrodinger equation with periodic coefficients – p. 3/17

EM waves in stratified media

∂2E

∂x2+∂2E

∂z2+ω2

c2n2E = 0,

where n = n0 + n1(x, z) + n2(x, z)|E|2 + n4(x, z)|E|4.In the parabolic approximation E(x, z) = eikzA(x, z), k = ω

cn0,

Az ≪ kA

2ik∂A

∂z+∂2A

∂x2+k2

(

2n1

n0

+n2

1

n20

+2n2

n0

|A|2 +

(

n22

n20

+2n4

n0

)

|A|4)

A = 0

Nonlinear Schrodinger equation with periodic coefficients – p. 3/17

EM waves in stratified media

∂2E

∂x2+∂2E

∂z2+ω2

c2n2E = 0,

where n = n0 + n1(x, z) + n2(x, z)|E|2 + n4(x, z)|E|4.In the parabolic approximation E(x, z) = eikzA(x, z), k = ω

cn0,

Az ≪ kA

2ik∂A

∂z+∂2A

∂x2+k2

(

2n1

n0

+n2

1

n20

+2n2

n0

|A|2 +

(

n22

n20

+2n4

n0

)

|A|4)

A = 0

Let n1(x, z) ≡ n1(x), n2(x, z) ≡ n2(x), and n4 ≡ 0, then

2ik∂A

∂z+∂2E

∂x2+ 2k2

(

n1(x)

n0

+n2(x)

n0

|A|2)

A = 0

or after renormalization iψt = −ψxx + V (x)ψ +G(x)|ψ|2ψNonlinear Schrodinger equation with periodic coefficients – p. 3/17

BEC in an optical lattice

Heisenberg equation

i~Ψt = − ~2

2m∆Ψ + Vext(r)Ψ + g(r)Ψ†

ΨΨ

Assumption: Ψ = Ψ + ψ with Ψ ≈ 〈N |Ψ|N + 1〉Mean-field approximation (Gross-Pitaevskii equation)

i~Ψt = − ~2

2m∆Ψ + Vext(r)Ψ + g(r)|Ψ|2Ψ

One-dimensional limit

iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψ[Fedichev, Kagan, Shlyapnikov, PRL, 77, 2913 (1996); Abdullaev and Garnier, PRA 72,061605 (2005)]

Nonlinear Schrodinger equation with periodic coefficients – p. 4/17

Boson-fermion mixture in OL

Heisenberg equations

i~Ψt = − ~2

2mb

∆Ψ + VbΨ + g1Ψ†ΨΨ + g2Φ

†ΦΨ ,

i~Φt = − ~2

2mf

∆Φ + Vf Φ + g2Ψ†ΨΦ

Mean-field approximation: Ψ = 〈Ψ〉, 〈Φ†Φ〉 = ρ0(r) + ρ1(r, t)

[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

i~∂Ψ

∂t= − ~

2

2mb

∆Ψ + Vb(r)Ψ + gbb|Ψ|2Ψ + gbfρΨ

∂2ρ1

∂t2= ∇

[

ρ0(r)∇(

(6π2)2/3~

2

3m2fρ

1/30 (r)

ρ1 +gbfmf

|Ψ|2)]

.

ρ0(r) is an unperturbed (Thomas-Fermi) distribution of fermions

Nonlinear Schrodinger equation with periodic coefficients – p. 5/17

BF mixture in OL

1D limit [Bludov, Konotop, PRA 74, 043616 (2006)]

iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψU(x) ≡ U0(x) + U1(x), G(x) = G0 − G1

1/3(x),

Here U0(x) = Vb(x)/(~2κ2/2mb), U1 = 4πκabfmb/m,

G0 = 4abbNb/κa2, and G1 = 2 (6/π)1/3 (abf/a)

2(mfmb/m2)Nb

(x) = ρ0(x)/κ

Λ = κabb

Nonlinear Schrodinger equation with periodic coefficients – p. 6/17

NLS equation with periodic nonlinearity

iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψ,

U(x) = U(x+ π), G(x) = G(x+ π)

The linear eigenvalue problem

−d2ϕ

(σ)n

dx2+ U(x)ϕ(σ)

n = E (σ)n ϕ(σ)

n ,(

E (−)α , E (+)

α

)

is α’s gap

Multiple scale expansion: ψ ≈ ǫA(τ, ξ)ϕ(σ)n (x) where ξ = ǫx

and τ = ǫ2t are the slow variables, ǫ ∼ |µ− E (σ)n | ≪ 1

NLS equation: iAτ = −(2M(σ)n )−1Aξξ + χ

(σ)n |A|2A

M(σ)n = [d2E (σ)

n /dk2]−1 is the effective massχ

(σ)n =

∫ π

0G(x)|ϕ(σ)

n (x)|4dx is the effective nonlinearity

For the modulational instability: M (σ)α χ

(σ)α < 0

Nonlinear Schrodinger equation with periodic coefficients – p. 7/17

NLS equation with periodic nonlinearity

If γ(−)2 < Λ < γ

(+)1 : gap

solitons do not exist

Since Gm = minG(X) < 0,in the limit E → −∞, thereexists a soliton:

φS(X) ≈ e−iET

p

2|E|/|Gm|

cosh(Xp

|E|)

If χ(−)1 > 0 in the semi-infinite

band there exists a minimalnumber of bosons necessaryfor creation of a localizedmode [Sakaguchi, Malomed,Phys. Rev. A 72, 046610(2005) ]

Nonlinear Schrodinger equation with periodic coefficients – p. 8/17

NLS equation with periodic nonlinearity

All bright localized modes are real [Alfimov, VVK, Salerno, Europhys. Lett. 58, 7

(2002), review Brazhnyi, VVK, Mod. Phys. Lett. B 14 627 (2004)]

Nonlinear Schrodinger equation with periodic coefficients – p. 9/17

NLS equation with periodic nonlinearity

The first lowest gap

Nonlinear Schrodinger equation with periodic coefficients – p. 10/17

Delocalizing transition

Decrease of the linear lattice potential in the NLS equation results in delocalizingtransition in 2D and 3D, but no transition occurs in 1D. [Kalosakas, Rasmussen,Bishop, PRL 89, 030402 (2002); Baizakov, Salerno, PRA 69, 013602 (2004).]

iψt = −ψxx + U(x)ψ + |ψ|2ψ

V (x) = −A cos(2x)

k

E

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

14

A= 3

α=0

α=1

Nonlinear Schrodinger equation with periodic coefficients – p. 11/17

Delocalizing transition

Consider iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψ

Recall M (σ)n = [d2E (σ)

n /dk2]−1, and χ(σ)n =

∫ π

0G(x)|ϕ(σ)

n (x)|4dxIf M (+)

n χ(+)n > 0 and M (−)

n χ(−)n > 0, small amplitude solitons

cannot exist at the both gap edges.

Let

U(x) = −V cos(2x)

G(x) = G− cos(2x)

A stationary solution:

ψ(x, t) → ψ(x)e−iµtG

(σ)n = G

(σ)n (V ) is the value of G at which

χ(σ)n becomes zero.

Nonlinear Schrodinger equation with periodic coefficients – p. 12/17

Delocalizing transition

Let V is changing and G is fixed

The chemical potential is µ = (E + Enl)/N where

E =

∫(

|ψx|2 + U(x)|ψ|2 +1

2

G(x)|ψ|4)

dx

Enl =1

2

G(x)|ψ|4dx

Nonlinear Schrodinger equation with periodic coefficients – p. 13/17

Delocalizing transition

Let G is changing and V is fixed

Nonlinear Schrodinger equation with periodic coefficients – p. 14/17

Tight-binding approximation

Wannier functions

wnα(x) =1√2

∫ 1

−1

ϕαq(x)e−iπnq dq

The expansion: ψ(x, t) =∑

n,α cnα(t)wnα(x) leads to

icnα − cnαω0α − (cn−1,α + cn+1,α)ω1α−∑

n1,n2,n3

cn1αcn2αcn3αWnn1n2n3αααα = 0

where Eαq =∑

n ωnαeiπnq, ωnα = 1

2

∫ 1

−1Eαqe−iπnqdq

W nn1n2n3αα1α2α3

=

∫ ∞

−∞

G(x)wnα(x)wn1α1(x)wn2α2(x)wn3α3(x)dx

Nonlinear Schrodinger equation with periodic coefficients – p. 15/17

Tight-binding approximation

icn = ω0cn + ω1(cn−1 + cn+1) +W0|cn|2cn+W1

(

|cn−1|2cn−1 + σcn−1c2n + 2σ|cn|2cn−1

+2|cn|2cn+1 + cn+1c2n + σ|cn+1|2cn+1

)

+W2

(

2|cn−1|2cn + cnc2n−1 + cnc

2n+1 + 2|cn+1|2cn

)

,

with

Wj =

∫ ∞

−∞

G(x)wj1α(x)w4−j0α (x)dx j = 1, 2

Nonlinear Schrodinger equation with periodic coefficients – p. 16/17

Tight-binding approximation

t

x

0 20 40 60 80 100

−10

−5

0

5

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

n

0 20 40 60 80 100

−10

−5

0

5

10 0

0.2

0.4

0.6

0.8

cn(t) = A (−i)n exp(−iω0t)Jn(2ω1t)

Nonlinear Schrodinger equation with periodic coefficients – p. 17/17