Localized modes in the nonlinear Schrodinger equation with...

19
Localized modes in the nonlinear Schr ¨ odinger equation with periodic nonlinearity and periodic potential Vladimir Konotop University of Lisbon, PORTUGAL Yu. V. Bludov, VVK, Phys. Rev. A 74, 043616 (2006) Yu. V. Bludov, V.A. Brazhnyi, VVK, Phys Rev A 76 (2007) (in press; cond-mat:0706.0079) F. Kh. Abdullaev, Yu. V. Bludov, S. V. Dmitriev, P. G. Kevrekidis, VVK, (submitted; cond-mat: 0707.2512) Nonlinear Schr ¨ odinger equation with periodic coefficients – p. 1/17

Transcript of Localized modes in the nonlinear Schrodinger equation with...

Page 1: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Localized modes in the nonlinearSchr odinger equation with periodicnonlinearity and periodic potential

Vladimir Konotop

University of Lisbon, PORTUGAL

Yu. V. Bludov , VVK, Phys. Rev. A 74, 043616 (2006)

Yu. V. Bludov, V.A. Brazhnyi , VVK, Phys Rev A 76 (2007) (in press;

cond-mat:0706.0079)

F. Kh. Abdullaev , Yu. V. Bludov, S. V. Dmitriev , P. G. Kevrekidis , VVK,

(submitted; cond-mat: 0707.2512)Nonlinear Schrodinger equation with periodic coefficients – p. 1/17

Page 2: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Outline

Physical applications

Modulational instability and localized modes

Delocalizing transition

Lattices: "Tight-binding" approximation

Nonlinear Schrodinger equation with periodic coefficients – p. 2/17

Page 3: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

EM waves in stratified media

∂2E

∂x2+∂2E

∂z2+ω2

c2n2E = 0,

where n = n0 + n1(x, z) + n2(x, z)|E|2 + n4(x, z)|E|4.In the parabolic approximation E(x, z) = eikzA(x, z), k = ω

cn0,

Az ≪ kA

2ik∂A

∂z+∂2A

∂x2+k2

(

2n1

n0

+n2

1

n20

+2n2

n0

|A|2 +

(

n22

n20

+2n4

n0

)

|A|4)

A = 0

Nonlinear Schrodinger equation with periodic coefficients – p. 3/17

Page 4: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

EM waves in stratified media

∂2E

∂x2+∂2E

∂z2+ω2

c2n2E = 0,

where n = n0 + n1(x, z) + n2(x, z)|E|2 + n4(x, z)|E|4.In the parabolic approximation E(x, z) = eikzA(x, z), k = ω

cn0,

Az ≪ kA

2ik∂A

∂z+∂2A

∂x2+k2

(

2n1

n0

+n2

1

n20

+2n2

n0

|A|2 +

(

n22

n20

+2n4

n0

)

|A|4)

A = 0

Nonlinear Schrodinger equation with periodic coefficients – p. 3/17

Page 5: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

EM waves in stratified media

∂2E

∂x2+∂2E

∂z2+ω2

c2n2E = 0,

where n = n0 + n1(x, z) + n2(x, z)|E|2 + n4(x, z)|E|4.In the parabolic approximation E(x, z) = eikzA(x, z), k = ω

cn0,

Az ≪ kA

2ik∂A

∂z+∂2A

∂x2+k2

(

2n1

n0

+n2

1

n20

+2n2

n0

|A|2 +

(

n22

n20

+2n4

n0

)

|A|4)

A = 0

Let n1(x, z) ≡ n1(x), n2(x, z) ≡ n2(x), and n4 ≡ 0, then

2ik∂A

∂z+∂2E

∂x2+ 2k2

(

n1(x)

n0

+n2(x)

n0

|A|2)

A = 0

or after renormalization iψt = −ψxx + V (x)ψ +G(x)|ψ|2ψNonlinear Schrodinger equation with periodic coefficients – p. 3/17

Page 6: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

BEC in an optical lattice

Heisenberg equation

i~Ψt = − ~2

2m∆Ψ + Vext(r)Ψ + g(r)Ψ†

ΨΨ

Assumption: Ψ = Ψ + ψ with Ψ ≈ 〈N |Ψ|N + 1〉Mean-field approximation (Gross-Pitaevskii equation)

i~Ψt = − ~2

2m∆Ψ + Vext(r)Ψ + g(r)|Ψ|2Ψ

One-dimensional limit

iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψ[Fedichev, Kagan, Shlyapnikov, PRL, 77, 2913 (1996); Abdullaev and Garnier, PRA 72,061605 (2005)]

Nonlinear Schrodinger equation with periodic coefficients – p. 4/17

Page 7: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Boson-fermion mixture in OL

Heisenberg equations

i~Ψt = − ~2

2mb

∆Ψ + VbΨ + g1Ψ†ΨΨ + g2Φ

†ΦΨ ,

i~Φt = − ~2

2mf

∆Φ + Vf Φ + g2Ψ†ΨΦ

Mean-field approximation: Ψ = 〈Ψ〉, 〈Φ†Φ〉 = ρ0(r) + ρ1(r, t)

[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

i~∂Ψ

∂t= − ~

2

2mb

∆Ψ + Vb(r)Ψ + gbb|Ψ|2Ψ + gbfρΨ

∂2ρ1

∂t2= ∇

[

ρ0(r)∇(

(6π2)2/3~

2

3m2fρ

1/30 (r)

ρ1 +gbfmf

|Ψ|2)]

.

ρ0(r) is an unperturbed (Thomas-Fermi) distribution of fermions

Nonlinear Schrodinger equation with periodic coefficients – p. 5/17

Page 8: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

BF mixture in OL

1D limit [Bludov, Konotop, PRA 74, 043616 (2006)]

iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψU(x) ≡ U0(x) + U1(x), G(x) = G0 − G1

1/3(x),

Here U0(x) = Vb(x)/(~2κ2/2mb), U1 = 4πκabfmb/m,

G0 = 4abbNb/κa2, and G1 = 2 (6/π)1/3 (abf/a)

2(mfmb/m2)Nb

(x) = ρ0(x)/κ

Λ = κabb

Nonlinear Schrodinger equation with periodic coefficients – p. 6/17

Page 9: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

NLS equation with periodic nonlinearity

iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψ,

U(x) = U(x+ π), G(x) = G(x+ π)

The linear eigenvalue problem

−d2ϕ

(σ)n

dx2+ U(x)ϕ(σ)

n = E (σ)n ϕ(σ)

n ,(

E (−)α , E (+)

α

)

is α’s gap

Multiple scale expansion: ψ ≈ ǫA(τ, ξ)ϕ(σ)n (x) where ξ = ǫx

and τ = ǫ2t are the slow variables, ǫ ∼ |µ− E (σ)n | ≪ 1

NLS equation: iAτ = −(2M(σ)n )−1Aξξ + χ

(σ)n |A|2A

M(σ)n = [d2E (σ)

n /dk2]−1 is the effective massχ

(σ)n =

∫ π

0G(x)|ϕ(σ)

n (x)|4dx is the effective nonlinearity

For the modulational instability: M (σ)α χ

(σ)α < 0

Nonlinear Schrodinger equation with periodic coefficients – p. 7/17

Page 10: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

NLS equation with periodic nonlinearity

If γ(−)2 < Λ < γ

(+)1 : gap

solitons do not exist

Since Gm = minG(X) < 0,in the limit E → −∞, thereexists a soliton:

φS(X) ≈ e−iET

p

2|E|/|Gm|

cosh(Xp

|E|)

If χ(−)1 > 0 in the semi-infinite

band there exists a minimalnumber of bosons necessaryfor creation of a localizedmode [Sakaguchi, Malomed,Phys. Rev. A 72, 046610(2005) ]

Nonlinear Schrodinger equation with periodic coefficients – p. 8/17

Page 11: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

NLS equation with periodic nonlinearity

All bright localized modes are real [Alfimov, VVK, Salerno, Europhys. Lett. 58, 7

(2002), review Brazhnyi, VVK, Mod. Phys. Lett. B 14 627 (2004)]

Nonlinear Schrodinger equation with periodic coefficients – p. 9/17

Page 12: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

NLS equation with periodic nonlinearity

The first lowest gap

Nonlinear Schrodinger equation with periodic coefficients – p. 10/17

Page 13: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Delocalizing transition

Decrease of the linear lattice potential in the NLS equation results in delocalizingtransition in 2D and 3D, but no transition occurs in 1D. [Kalosakas, Rasmussen,Bishop, PRL 89, 030402 (2002); Baizakov, Salerno, PRA 69, 013602 (2004).]

iψt = −ψxx + U(x)ψ + |ψ|2ψ

V (x) = −A cos(2x)

k

E

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

14

A= 3

α=0

α=1

Nonlinear Schrodinger equation with periodic coefficients – p. 11/17

Page 14: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Delocalizing transition

Consider iψt = −ψxx + U(x)ψ + G(x)|ψ|2ψ

Recall M (σ)n = [d2E (σ)

n /dk2]−1, and χ(σ)n =

∫ π

0G(x)|ϕ(σ)

n (x)|4dxIf M (+)

n χ(+)n > 0 and M (−)

n χ(−)n > 0, small amplitude solitons

cannot exist at the both gap edges.

Let

U(x) = −V cos(2x)

G(x) = G− cos(2x)

A stationary solution:

ψ(x, t) → ψ(x)e−iµtG

(σ)n = G

(σ)n (V ) is the value of G at which

χ(σ)n becomes zero.

Nonlinear Schrodinger equation with periodic coefficients – p. 12/17

Page 15: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Delocalizing transition

Let V is changing and G is fixed

The chemical potential is µ = (E + Enl)/N where

E =

∫(

|ψx|2 + U(x)|ψ|2 +1

2

G(x)|ψ|4)

dx

Enl =1

2

G(x)|ψ|4dx

Nonlinear Schrodinger equation with periodic coefficients – p. 13/17

Page 16: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Delocalizing transition

Let G is changing and V is fixed

Nonlinear Schrodinger equation with periodic coefficients – p. 14/17

Page 17: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Tight-binding approximation

Wannier functions

wnα(x) =1√2

∫ 1

−1

ϕαq(x)e−iπnq dq

The expansion: ψ(x, t) =∑

n,α cnα(t)wnα(x) leads to

icnα − cnαω0α − (cn−1,α + cn+1,α)ω1α−∑

n1,n2,n3

cn1αcn2αcn3αWnn1n2n3αααα = 0

where Eαq =∑

n ωnαeiπnq, ωnα = 1

2

∫ 1

−1Eαqe−iπnqdq

W nn1n2n3αα1α2α3

=

∫ ∞

−∞

G(x)wnα(x)wn1α1(x)wn2α2(x)wn3α3(x)dx

Nonlinear Schrodinger equation with periodic coefficients – p. 15/17

Page 18: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Tight-binding approximation

icn = ω0cn + ω1(cn−1 + cn+1) +W0|cn|2cn+W1

(

|cn−1|2cn−1 + σcn−1c2n + 2σ|cn|2cn−1

+2|cn|2cn+1 + cn+1c2n + σ|cn+1|2cn+1

)

+W2

(

2|cn−1|2cn + cnc2n−1 + cnc

2n+1 + 2|cn+1|2cn

)

,

with

Wj =

∫ ∞

−∞

G(x)wj1α(x)w4−j0α (x)dx j = 1, 2

Nonlinear Schrodinger equation with periodic coefficients – p. 16/17

Page 19: Localized modes in the nonlinear Schrodinger equation with ...dohnal/iciam_talks/Konotop.pdf[Tsurumi, Wadati, J. Phys. Soc. Jap. 69 97 (2000); Bludov, Konotop, PRA 74, 043616 (2006)]

Tight-binding approximation

t

x

0 20 40 60 80 100

−10

−5

0

5

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

n

0 20 40 60 80 100

−10

−5

0

5

10 0

0.2

0.4

0.6

0.8

cn(t) = A (−i)n exp(−iω0t)Jn(2ω1t)

Nonlinear Schrodinger equation with periodic coefficients – p. 17/17