Lecture 5: Chemical Reactions Outline: basic concepts Nonlinearities: saturation: Michaelis-Menten...

Post on 13-Jan-2016

221 views 0 download

Transcript of Lecture 5: Chemical Reactions Outline: basic concepts Nonlinearities: saturation: Michaelis-Menten...

Lecture 5: Chemical Reactions

Outline:• basic concepts• Nonlinearities:

• saturation: Michaelis-Menten kinetics• switching: Goldbeter-Koshland

Basics

A + B r ⏐ → ⏐ CSimple reaction

Basics

A + B r ⏐ → ⏐ CSimple reaction

Number of AB pairs in volume v:

ρ(A)ρ(B)v 2 = [A][B]v 2

Basics

A + B r ⏐ → ⏐ CSimple reaction

Number of AB pairs in volume v:

Reaction equation:

ρ(A)ρ(B)v 2 = [A][B]v 2

d [C]V( )dt

= −d [A]V( )

dt= −

d [B]V( )dt

= r ⋅[A][B]v 2 ⋅V

v⇒

Basics

A + B r ⏐ → ⏐ CSimple reaction

Number of AB pairs in volume v:

Reaction equation:

ρ(A)ρ(B)v 2 = [A][B]v 2

d [C]V( )dt

= −d [A]V( )

dt= −

d [B]V( )dt

= r ⋅[A][B]v 2 ⋅V

v⇒

d[C]

dt= −

d[A]

dt= −

d[B]

dt= rv[A][B] ≡ k[A][B]

Basics

A + B r ⏐ → ⏐ CSimple reaction

Number of AB pairs in volume v:

Reaction equation:

Note: r has units 1/t, k has units volume/t

ρ(A)ρ(B)v 2 = [A][B]v 2

d [C]V( )dt

= −d [A]V( )

dt= −

d [B]V( )dt

= r ⋅[A][B]v 2 ⋅V

v⇒

d[C]

dt= −

d[A]

dt= −

d[B]

dt= rv[A][B] ≡ k[A][B]

Reversible reactions, stoichiometry

Reaction can go both ways:

A + B k,k '← → ⏐ C

Reversible reactions, stoichiometry

Reaction can go both ways:

A + B k,k '← → ⏐ C

d[A]

dt=

d[B]

dt= −

d[C]

dt= −k[A][B] + ′ k [C]

Reversible reactions, stoichiometry

Reaction can go both ways:

Equilibrium:€

A + B k,k '← → ⏐ C

d[A]

dt=

d[B]

dt= −

d[C]

dt= −k[A][B] + ′ k [C]

[A][B]

[C]=

′ k

k

Reversible reactions, stoichiometry

Reaction can go both ways:

Equilibrium:

Stoichiometry:

A + B k,k '← → ⏐ C

d[A]

dt=

d[B]

dt= −

d[C]

dt= −k[A][B] + ′ k [C]

[A][B]

[C]=

′ k

k

mA + nB k,k'← → ⏐ pC

Reversible reactions, stoichiometry

Reaction can go both ways:

Equilibrium:

Stoichiometry:

A + B k,k '← → ⏐ C

d[A]

dt=

d[B]

dt= −

d[C]

dt= −k[A][B] + ′ k [C]

[A][B]

[C]=

′ k

k

mA + nB k,k'← → ⏐ pC

1

m

d[A]

dt=

1

n

d[B]

dt= −

1

p

d[C]

dt= −k[A]m[B]n + ′ k [C]p

Reversible reactions, stoichiometry

Reaction can go both ways:

Equilibrium:

Stoichiometry:

A + B k,k '← → ⏐ C

d[A]

dt=

d[B]

dt= −

d[C]

dt= −k[A][B] + ′ k [C]

[A][B]

[C]=

′ k

k

mA + nB k,k'← → ⏐ pC

1

m

d[A]

dt=

1

n

d[B]

dt= −

1

p

d[C]

dt= −k[A]m[B]n + ′ k [C]p

[A]m[B]n

[C]p=

′ k

k

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + Preversible rates a,d

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + P

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + Preversible rates a,d

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + Preversible irreversible rates a,d rate k

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + Preversible irreversible rates a,d rate k

d[S]

dt= −a[E][S] + d[C]Rate equations:

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + Preversible irreversible rates a,d rate k

d[S]

dt= −a[E][S] + d[C]

d[E]

dt= −a[E][S] + d[C] + k[C]

Rate equations:

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + Preversible irreversible rates a,d rate k

d[S]

dt= −a[E][S] + d[C]

d[E]

dt= −a[E][S] + d[C] + k[C]

d[C]

dt= a[E][S] − d[C] − k[C]

Rate equations:

Michaelis-Menten

Enzyme + substrate <-> complex -> enzyme + product

E + S ↔ C → E + Preversible irreversible rates a,d rate k

d[S]

dt= −a[E][S] + d[C]

d[E]

dt= −a[E][S] + d[C] + k[C]

d[C]

dt= a[E][S] − d[C] − k[C]

d[P]

dt= k[C]

Rate equations:

Reduction:

[E](t) + [C](t) = const = E0 ⇒ [E] = E0 −[C]Eliminate E:

Reduction:

[E](t) + [C](t) = const = E0 ⇒ [E] = E0 −[C]

d[S]

dt= −a E0 −[C]( )[S] + d[C]

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

Eliminate E:

To solve:

Reduction:

[E](t) + [C](t) = const = E0 ⇒ [E] = E0 −[C]

d[S]

dt= −a E0 −[C]( )[S] + d[C]

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

S(0) = S0

C(0) = 0

Eliminate E:

To solve:

Initial conditions:

Initial regime:Lots of S, [S] hardly changes from S0

Initial regime:Lots of S, [S] hardly changes from S0

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

Initial regime:Lots of S, [S] hardly changes from S0

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

≈ aE0S0 − aS0 + d + k( )[C]

Initial regime:Lots of S, [S] hardly changes from S0

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

≈ aE0S0 − aS0 + d + k( )[C]

[C] ≈aE0S0

aS0 + d + k( )1− exp − aS0 + d + k( )t( )[ ]

Initial regime:Lots of S, [S] hardly changes from S0

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

≈ aE0S0 − aS0 + d + k( )[C]

[C] ≈aE0S0

aS0 + d + k( )1− exp − aS0 + d + k( )t( )[ ]

=E0S0

S0 + KM

1− exp t /τ fast( )[ ]

Initial regime:Lots of S, [S] hardly changes from S0

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

≈ aE0S0 − aS0 + d + k( )[C]

[C] ≈aE0S0

aS0 + d + k( )1− exp − aS0 + d + k( )t( )[ ]

=E0S0

S0 + KM

1− exp t /τ fast( )[ ]

KM =d + k

a,

1

τ fast

= a(S0 + KM )

Initial regime:Lots of S, [S] hardly changes from S0

d[C]

dt= a E0 −[C]( )[S] − (d + k)[C]

≈ aE0S0 − aS0 + d + k( )[C]

[C] ≈aE0S0

aS0 + d + k( )1− exp − aS0 + d + k( )t( )[ ]

=E0S0

S0 + KM

1− exp t /τ fast( )[ ]

KM =d + k

a,

1

τ fast

= a(S0 + KM )

Michaelis constant

Slow dynamics

If [S] changes slowly compared with τfast,

[C] ≈E0[S]

[S] + KM

Slow dynamics

If [S] changes slowly compared with τfast,

[C] ≈E0[S]

[S] + KM

⇒d[S]

dt= −a E0 −

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟[S] + d

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟

Slow dynamics

If [S] changes slowly compared with τfast,

[C] ≈E0[S]

[S] + KM

⇒d[S]

dt= −a E0 −

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟[S] + d

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟

=−aKM + d

[S] + KM

⎝ ⎜

⎠ ⎟E0[S]

Slow dynamics

If [S] changes slowly compared with τfast,

[C] ≈E0[S]

[S] + KM

⇒d[S]

dt= −a E0 −

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟[S] + d

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟

=−aKM + d

[S] + KM

⎝ ⎜

⎠ ⎟E0[S] =

−ad + k

a

⎝ ⎜

⎠ ⎟+ d

[S] + KM

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

E0[S]

Slow dynamics

If [S] changes slowly compared with τfast,

[C] ≈E0[S]

[S] + KM

⇒d[S]

dt= −a E0 −

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟[S] + d

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟

=−aKM + d

[S] + KM

⎝ ⎜

⎠ ⎟E0[S] =

−ad + k

a

⎝ ⎜

⎠ ⎟+ d

[S] + KM

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

E0[S]

= −kE0[S]

[S] + KM

= −[S]

τ slow

Slow dynamics

If [S] changes slowly compared with τfast,

[C] ≈E0[S]

[S] + KM

⇒d[S]

dt= −a E0 −

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟[S] + d

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟

=−aKM + d

[S] + KM

⎝ ⎜

⎠ ⎟E0[S] =

−ad + k

a

⎝ ⎜

⎠ ⎟+ d

[S] + KM

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

E0[S]

= −kE0[S]

[S] + KM

= −[S]

τ slow

τ fast

τ slow

=kE0

a(S + KM )2<<1

Slow dynamics

If [S] changes slowly compared with τfast,

[C] ≈E0[S]

[S] + KM

⇒d[S]

dt= −a E0 −

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟[S] + d

E0[S]

[S] + KM

⎝ ⎜

⎠ ⎟

=−aKM + d

[S] + KM

⎝ ⎜

⎠ ⎟E0[S] =

−ad + k

a

⎝ ⎜

⎠ ⎟+ d

[S] + KM

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

E0[S]

= −kE0[S]

[S] + KM

= −[S]

τ slow

τ fast

τ slow

=kE0

a(S + KM )2<<1

consistent

Result:

d[P]

dt= −

d[S]

dt=

kE0[S]

KM + [S]< kE0

Reaction rate

Result:

d[P]

dt= −

d[S]

dt=

kE0[S]

KM + [S]< kE0

Reaction rate

saturation

Cooperative binding

E + nS ↔ C → E + nP

Cooperative binding

E + nS ↔ C → E + nP

d[S]

dt= −a E0 −[C]( )[S]n + d[C]

d[C]

dt= a E0 −[C]( )[S]n − (d + k)[C]

Equations ->

Cooperative binding

E + nS ↔ C → E + nP

d[S]

dt= −a E0 −[C]( )[S]n + d[C]

d[C]

dt= a E0 −[C]( )[S]n − (d + k)[C]

[C] =E0[S]n

KM + [S]nAfter fast transient:

Equations ->

Cooperative binding

E + nS ↔ C → E + nP

d[S]

dt= −a E0 −[C]( )[S]n + d[C]

d[C]

dt= a E0 −[C]( )[S]n − (d + k)[C]

[C] =E0[S]n

KM + [S]n

Hill coefficient n

After fast transient:

Equations ->

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 → S2 + E1

S2 + E 2 ↔ C2 → S1 + E 2

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 →S2 + E1

S2 + E 2 ↔ C2 →S1 + E 2

dS1

dt= −a1S1E1 + d1C1 + k2C2

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 →S2 + E1

S2 + E 2 ↔ C2 →S1 + E 2

dS1

dt= −a1S1E1 + d1C1 + k2C2

dC1

dt= a1S1E1 − (d1 + k1)C1

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 →S2 + E1

S2 + E 2 ↔ C2 →S1 + E 2

dS1

dt= −a1S1E1 + d1C1 + k2C2

dC1

dt= a1S1E1 − (d1 + k1)C1

dS2

dt= −a2S2E2 + d2C2 + k1C1

dC2

dt= a2S2E2 − (d2 + k2)C2

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 →S2 + E1

S2 + E 2 ↔ C2 →S1 + E 2

dS1

dt= −a1S1E1 + d1C1 + k2C2

dC1

dt= a1S1E1 − (d1 + k1)C1

dS2

dt= −a2S2E2 + d2C2 + k1C1

dC2

dt= a2S2E2 − (d2 + k2)C2

Stot = S1 + S2 + C1 + C2 = const

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 →S2 + E1

S2 + E 2 ↔ C2 →S1 + E 2

dS1

dt= −a1S1E1 + d1C1 + k2C2

dC1

dt= a1S1E1 − (d1 + k1)C1

dS2

dt= −a2S2E2 + d2C2 + k1C1

dC2

dt= a2S2E2 − (d2 + k2)C2

Stot = S1 + S2 + C1 + C2 = const

≈ S1 + S2

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 →S2 + E1

S2 + E 2 ↔ C2 →S1 + E 2

dS1

dt= −a1S1E1 + d1C1 + k2C2

dC1

dt= a1S1E1 − (d1 + k1)C1

dS2

dt= −a2S2E2 + d2C2 + k1C1

dC2

dt= a2S2E2 − (d2 + k2)C2

Stot = S1 + S2 + C1 + C2 = const

≈ S1 + S2

E0(1) = E1 + C1 = const

E0(2) = E2 + C2 = const

Goldbeter-Koshland switching

2 MM reactions, 1 in each direction:

S1 + E1 ↔ C1 →S2 + E1

S2 + E 2 ↔ C2 →S1 + E 2

dS1

dt= −a1S1E1 + d1C1 + k2C2

dC1

dt= a1S1E1 − (d1 + k1)C1

dS2

dt= −a2S2E2 + d2C2 + k1C1

dC2

dt= a2S2E2 − (d2 + k2)C2

Stot = S1 + S2 + C1 + C2 = const

≈ S1 + S2

E0(1) = E1 + C1 = const

E0(2) = E2 + C2 = const

Steady state (add 1st 2 or2nd 2 eqns):

k1C1 = k2C2

Steady state:

k1C1 = k2C2

Steady state:

k1C1 = k2C2

dC1

dt= 0 ⇒ a1S1 E0

(1) − C1( ) = (d1 + k1)C1

Steady state:

k1C1 = k2C2

dC1

dt= 0 ⇒ a1S1 E0

(1) − C1( ) = (d1 + k1)C1

⇒ C1 =E0

(1)S1

KM(1) + S1

, KM(1) =

d1 + k1

a1

Steady state:

k1C1 = k2C2

dC1

dt= 0 ⇒ a1S1 E0

(1) − C1( ) = (d1 + k1)C1

⇒ C1 =E0

(1)S1

KM(1) + S1

, KM(1) =

d1 + k1

a1

dC2

dt= 0 ⇒ C2 =

E0(2)S2

KM(2) + S2

, KM(2) =

d2 + k2

a2

Steady state:

k1C1 = k2C2

dC1

dt= 0 ⇒ a1S1 E0

(1) − C1( ) = (d1 + k1)C1

⇒ C1 =E0

(1)S1

KM(1) + S1

, KM(1) =

d1 + k1

a1

dC2

dt= 0 ⇒ C2 =

E0(2)S2

KM(2) + S2

, KM(2) =

d2 + k2

a2

⇒k1E0

(1)S1

KM(1) + S1

=k2E0

(2) Stot − S1( )KM

(2) + Stot − S1

Steady state:

k1C1 = k2C2

dC1

dt= 0 ⇒ a1S1 E0

(1) − C1( ) = (d1 + k1)C1

⇒ C1 =E0

(1)S1

KM(1) + S1

, KM(1) =

d1 + k1

a1

dC2

dt= 0 ⇒ C2 =

E0(2)S2

KM(2) + S2

, KM(2) =

d2 + k2

a2

⇒k1E0

(1)S1

KM(1) + S1

=k2E0

(2) Stot − S1( )KM

(2) + Stot − S1

Quadratic equation for S1

Solution:

S1 =

v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟−κ 2

κ1

κ 2

+v1

v2

⎝ ⎜

⎠ ⎟+

v1

v2

−1−κ 2

κ1

κ 2

+v1

v2

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

2

+ 4κ 2

v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟v1

v2

⎝ ⎜

⎠ ⎟

2v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟

v1 = k1E0(1), v2 = k2E0

(2), κ1 = KM(1)

Stot, κ 2 = KM

(2)

Stotwhere

Solution:

S1 =

v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟−κ 2

κ1

κ 2

+v1

v2

⎝ ⎜

⎠ ⎟+

v1

v2

−1−κ 2

κ1

κ 2

+v1

v2

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

2

+ 4κ 2

v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟v1

v2

⎝ ⎜

⎠ ⎟

2v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟

v1 = k1E0(1), v2 = k2E0

(2), κ1 = KM(1)

Stot, κ 2 = KM

(2)

Stotwhere

S1,1-S1

Solution:

S1 =

v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟−κ 2

κ1

κ 2

+v1

v2

⎝ ⎜

⎠ ⎟+

v1

v2

−1−κ 2

κ1

κ 2

+v1

v2

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

2

+ 4κ 2

v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟v1

v2

⎝ ⎜

⎠ ⎟

2v1

v2

−1 ⎛

⎝ ⎜

⎠ ⎟

v1 = k1E0(1), v2 = k2E0

(2), κ1 = KM(1)

Stot, κ 2 = KM

(2)

Stotwhere

S1,1-S1

Sharp switching forsmall κ