Interpolated and Warped 2-D Digital Waveguide Mesh...

Post on 21-Jul-2020

7 views 0 download

Transcript of Interpolated and Warped 2-D Digital Waveguide Mesh...

Välimäki and Savioja 2000 1

HELSINKI UNIVERSITY OF TECHNOLOGY

Interpolated and Warped 2-D Di gitalInterpolated and Warped 2-D Di gitalWaveguide Mesh Al gorithmsWaveguide Mesh Al gorithms

Vesa Välimäki 1 and Lauri Savioja 2

Helsinki University of Technology1Laboratory of Acoustics and Audio Signal Processing

2Telecommunications Software and Multimedia Lab.

(Espoo, Finland)

DAFX’00, Verona, Italy, December 2000

Välimäki and Savioja 2000 2

HELSINKI UNIVERSITY OF TECHNOLOGY

Outline➤ Introduction

➤ 2-D Digital Waveguide Mesh Algorithms

➤ Frequency Warping Techniques

➤ Extending the Frequency Range

➤ Numerical Examples

➤ Conclusions

Interpolated and Warped 2-D Di gitalInterpolated and Warped 2-D Di gitalWaveguide Mesh Al gorithmsWaveguide Mesh Al gorithms

Välimäki and Savioja 2000 3

HELSINKI UNIVERSITY OF TECHNOLOGY

•• Digital waveguidesDigital waveguides for physical modeling of musicalinstruments and other acoustic systems (Smith, 1992)

•• 22-D digital waveguide mesh-D digital waveguide mesh (WGM) for simulation ofmembranes, drums etc. (Van Duyne & Smith, 1993)

•• 3-D digital waveguide mesh3-D digital waveguide mesh for simulation of acousticspaces (Savioja et al., 1994)

- Violin body (Huang et al., 2000)

- Drums (Aird et al., 2000)

IntroductionIntroduction

Välimäki and Savioja 2000 4

HELSINKI UNIVERSITY OF TECHNOLOGY

• In the original WGM, wave propagation speed dependson direction and frequency (Van Duyne & Smith, 1993)

• More advanced structures ease this problem, e.g.,

––Triangular WGMTriangular WGM (Fontana & Rocchesso, 1995,1998; Van Duyne & Smith, 1995, 1996)

–– Interpolated rectangular WGMInterpolated rectangular WGM (Savioja & Välimäki,ICASSP’97, IEEE Trans. SAP 2000)

• Direction-dependence is reduced but frequency-dependence remains

⇒ DispersionDispersion

Sophisticated 2-D Wave guide StructuresSophisticated 2-D Wave guide Structures

Välimäki and Savioja 2000 5

HELSINKI UNIVERSITY OF TECHNOLOGY

Interpolated Rectan gular Wave guide MeshInterpolated Rectan gular Wave guide Mesh

Original WGMHypothetical8-directional

WGMInterpolated WGM

(Savioja & Välimäki,1997, 2000)

(Van Duyne & Smith,1993)

Välimäki and Savioja 2000 6

HELSINKI UNIVERSITY OF TECHNOLOGY

Wave Propa gation SpeedWave Propa gation Speed

Original WGMInterpolated WGM

(Bilinear interpolation)

Välimäki and Savioja 2000 7

HELSINKI UNIVERSITY OF TECHNOLOGY

Wave Propa gation Speed Wave Propa gation Speed (2)(2)

Original WGMInterpolated WGM

(Bilinear interpolation)

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

ξ1c

ξ2c

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

ξ1c

ξ2c

Välimäki and Savioja 2000 8

HELSINKI UNIVERSITY OF TECHNOLOGY

Wave Propa gation Speed Wave Propa gation Speed (3)(3)

Original WGM

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

ξ1c

ξ2c

Interpolated WGM(Quadratic interpolation)

Välimäki and Savioja 2000 9

HELSINKI UNIVERSITY OF TECHNOLOGY

Wave Propa gation Speed Wave Propa gation Speed (4)(4)

Original WGMInterpolated WGM

(Optimal interpolation)

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

ξ1c

ξ2c

(Savioja & Välimäki, 2000)

Välimäki and Savioja 2000 10

HELSINKI UNIVERSITY OF TECHNOLOGY

RFE in diagonaldiagonal and axialaxial directions:

(a) original and

(b) bilinearly

interpolated

rectangular WGM

0 0.05 0.1 0.15 0.2 0.25-10

-5

0

5(a)

0 0.05 0.1 0.15 0.2 0.25-10

-5

0

5(b)

NORMALIZED FREQUENCY

RE

LAT

IVE

FR

EQ

UE

NC

Y E

RR

OR

(%

)

Relative Frequency Error (RFE)Relative Frequency Error (RFE)

Välimäki and Savioja 2000 11

HELSINKI UNIVERSITY OF TECHNOLOGY

Relative Frequency Error (RFE)Relative Frequency Error (RFE) (2) (2)

RFE in diagonaldiagonal and

axialaxial directions:

Optimally interpolatedrectangular WG mesh(up to 0.25fs)

RE

LAT

IVE

FR

EQ

UE

NC

Y E

RR

OR

(%

)

Välimäki and Savioja 2000 12

HELSINKI UNIVERSITY OF TECHNOLOGY

Frequency Warpin gFrequency Warpin g

• Dispersion error of the interpolated WGM can bereduced using frequency warping because

– The difference between the max and min errorsis small

– The RFE curve is smooth

• Postprocess the response of the WGM using awarped-FIR filter warped-FIR filter (Oppenheim et al., 1971; Härmä etal., JAES, Nov. 2000)

Välimäki and Savioja 2000 13

HELSINKI UNIVERSITY OF TECHNOLOGY

Frequency Warpin g: Warped-FIR FilterFrequency Warpin g: Warped-FIR Filter

• Chain of first-order allpass filters

• s(n) is the signal to be warped

• sw(n) is the warped signal

• The extent of warping is determined by λ

AA((zz))AA((zz))AA((zz))

ss(0)(0) ss(1)(1) ss(2)(2) ss((LL-1)-1)

A zz

z( ) = +

+

1

11

λλ

δδ((nn))

ssww((nn))

Välimäki and Savioja 2000 14

HELSINKI UNIVERSITY OF TECHNOLOGY

Optimization of Warpin g Factor Optimization of Warpin g Factor λλ• Different optimization strategies can be used, such as

- least squares- minimize maximal error (minimax)- maximize the bandwidth of X% error tolerance

• We present results for minimax optimization

Välimäki and Savioja 2000 15

HELSINKI UNIVERSITY OF TECHNOLOGY

(a,b) Bilinearinterpolation

(c,d) Quadraticinterpolation

(e,f) Optimalinterpolation

(g,h) Triangularmesh

Välimäki and Savioja 2000 16

HELSINKI UNIVERSITY OF TECHNOLOGY

Higher-Order Frequency Warpin g?Higher-Order Frequency Warpin g?

• How to add degrees of freedom to the warping toimprove the accuracy?

– Use a chain of higher-order allpass filters?Perhaps, but aliasing will occur... No.

– Many 1st-order warpings in cascade?No, because it’s equivalent to a single warpingusing (λ1 + λ2) / (1 + λ1λ2)

• There is a way...

Välimäki and Savioja 2000 17

HELSINKI UNIVERSITY OF TECHNOLOGY

Multiwarpin gMultiwarpin g• Every frequency warping operation must be

accompanied by sampling rate conversion– All frequencies are shifted by warping, including

those that should not

• Frequency-warping and sampling-rate-conversionoperations can be cascaded

– Many parameters to optimize: λ1, λ2, ... D1, D2,...

Frequencywarp ing

Samp l i ngrate conv.

F requencywarp ing

Samp l i ngrate conv.

)(1 nx )(nyM

Välimäki and Savioja 2000 18

HELSINKI UNIVERSITY OF TECHNOLOGY

Reduced Relative Frequency ErrorReduced Relative Frequency Error

(a) Warping with

λ = –0.32

(b) Multiwarping with

λ1 = –0.92, D1 = 0.998

λ2 = –0.99, D2 = 7.3

(c) Error in eigenmodes

Välimäki and Savioja 2000 19

HELSINKI UNIVERSITY OF TECHNOLOGY

Computational complexityComputational complexity• Original WGM: 1 binary shift & 4 additions

• Interpolated WGM: 3 MUL & 9 ADD

• Warped-FIR filter: O(L2) where L is the signal length

• Advantages of interpolation & warping

– Wider bandwidth with small error: up to 0.25instead of 0.1 or so

– If no need to extend bandwidth, smaller mesh sizemay be used

Välimäki and Savioja 2000 20

HELSINKI UNIVERSITY OF TECHNOLOGY

Extendin g the Frequency Ran geExtendin g the Frequency Ran ge• It is known that the limiting frequency of the original

waveguide mesh is 0.25

– The point-to-point transfer functions on the meshare functions of z–2 , i.e., oversampling by 2

• Fontana and Rocchesso (1998): triangular WG meshhas a wider frequency range, up to about 0.3

• How about the interpolated WG mesh?

– The interpolation changes everything

– Maybe also the upper frequency changes...

Välimäki and Savioja 2000 21

HELSINKI UNIVERSITY OF TECHNOLOGY

Relative Frequency Error (RFE) Relative Frequency Error (RFE) (2)(2)

RE

LAT

IVE

FR

EQ

UE

NC

Y E

RR

OR

(%

)

RFE in diagonaldiagonal and

axialaxial directions:

Optimally interpolatedrectangular WG mesh

(up to 0.35fs)

Välimäki and Savioja 2000 22

HELSINKI UNIVERSITY OF TECHNOLOGY

Extendin g the Frequency Ran ge Extendin g the Frequency Ran ge (3)(3)

• The mapping of frequencies for various WGMs

0 0.50

0.1

0.2

0.3

0.4 (a)

NORMALIZED FREQUENCYM

ES

H F

RE

QU

EN

CY

0 0.50

0.1

0.2

0.3

0.4 (b)

NORMALIZED FREQUENCY

ME

SH

FR

EQ

UE

NC

Y

0 0.50

0.1

0.2

0.3

0.4 (c)

NORMALIZED FREQUENCY

ME

SH

FR

EQ

UE

NC

Y

0 0.50

0.1

0.2

0.3

0.4 (d)

λ = -0.32736

NORMALIZED FREQUENCY

WA

RP

ED

FR

EQ

UE

NC

Y

Upper frequency

limit always 0.3536

(a) Original

(b) Optimally interp.

up to 0.25

(c) Optimally interp.

up to 0.35

(d) Warped case b

Välimäki and Savioja 2000 23

HELSINKI UNIVERSITY OF TECHNOLOGY

Simulation ResultSimulation Result vs vs . Analytical Solution. Analytical SolutionMagnitude spectrum ofa square membrane(a) original(b) warped interpolated

(λ = –0.32736)(c) warped triangular

(λ = –0.10954)digital waveguide mesh

(with ideal response inthe background)

Välimäki and Savioja 2000 24

HELSINKI UNIVERSITY OF TECHNOLOGY

Error in Mode FrequenciesError in Mode Frequencies

Warped triangularWarped triangular

WGM WGM

Warped interpolatedWarped interpolated

WGM WGM

Original WGMOriginal WGM

Error in eigenfrequenciesof a square membrane

RE

LAT

IVE

FR

EQ

UE

NC

Y E

RR

OR

(%

)

Välimäki and Savioja 2000 25

HELSINKI UNIVERSITY OF TECHNOLOGY

Conclusions and Future WorkConclusions and Future Work

• Accuracy of 2-D digital waveguide mesh simulationscan be improved using

1) the interpolatedinterpolated or triangular WGM and

2) frequency warping frequency warping or multiwarpingmultiwarping• Dispersion can be reduced dramatically

• In the future, the interpolation and warpingtechniques will be applied to 3-D3-D WGM simulations

• Modeling of boundary conditions and losses mustbe improved