greenmondays271008-De Profundis

Post on 10-Jun-2015

122 views 1 download

Tags:

description

SWACDeprofundisSea water air conditioningventure

Transcript of greenmondays271008-De Profundis

Sea Water Air Conditioning

Using deep sea water for ecological and affordable cooling solutions

Deprofundis

A new solution for middle sized structures

Baptiste BassotPresentation to Green Mondays27/10/2008

Cold generation 101

Necessary for Modern SocietyProcessesConfort

How do we produce cold?Force the opposite of a natural phenomenon

High costsEnergy intensiveGas

A sucessful approach: SWAC systems

In Toronto, Lake Ontario waters cooling 51 high-rise buildings, using 10% of conventional systems energy

Curaçao, Netherlands Antilles, Evelop Crp:90% electricity and CO2 emissions saved

Still in infancy, yet showing potential: OTEC systems

Ocean Thermal Energy Conversion

The opposite of a conventional a/c system!

Like all geothermal energy sources

Back to SWAC: Energy gains

Cooling power

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200Water flow (m³/s)

Co

olin

g P

ow

er

(kW

ce)

0

5

10

15

20

25

Te

mp

erat

ure

(°C

)

Energy savedWater arrival temperature

The cavitation problem

Cavitation in water phase diagram Cavitation damages on a pump

P

Cavitation

Boil

Ice

Liquid water

Steam

Cavitation and suction limit speed

Maximum speed in suction

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Pipe outside diameter (m)

Ma

xim

um

cir

cu

lati

on

sp

ee

d

(m/s

)

Max speed in suction

Energy balance

Energy balance

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200Water flow (m³/h)

Po

wer

(kW

)

Total pumping energyEnergy savedBalance

P1 : Maximum succion point

P2 : Energy optimal point

Our solution

Classical SWAC system Deprofundis closed loop

Final energy balance

Energy balance : classical system and closed loop

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200Water flow (m³/h)

Po

wer

(kW

)

Balance (open loop)Balance (closed loop)

P1 : Maximum succion point

P2 : Energy optimal point

P3 : Closed loop optimal point

Immersed heat exchanger

Geometry Massively parallel

Size 6 modules 3m x 3m x3m (400 Kg) each

Environmental topics

• Radius of 5 km of a depth of – 600m (in tropical waters)

• Material used (PEHD used for pipes, titanium for heat exchanger): no exchange with the environment for decades. Able to be re-used indefinitely + recycled

Advantages

Thin pipes Available in rolls Easy to handle Easy to deploy

Suitable for remote locations

Closed loop Control on the

circulating water No end-pipe filter No risk of aspirating

sea material Easy maintenance

A special offer

• location (distance and relief) options (PV / wind solutions for the pump) electricity costs subventions

ROI 5 years in average, for a solution least 20 years.

Parameters of a characteristic site for the study:

Intake depth : 800m (5°C) - output water 14°C

Pipe of 2150 m in PEHD : diameter 150-123mm

Open Topics for Q&A:

• Tap into different energy sources• Cold generation• Sea Water energy systems• Energy ventures

• Interesting?• Interested?• Sleepy/Hungry?

Thank you for your attention