GEOSEMINAR GEOLOGI Full Tensor Gravity Gradiometry (FTG ...

Post on 17-Oct-2021

3 views 0 download

Transcript of GEOSEMINAR GEOLOGI Full Tensor Gravity Gradiometry (FTG ...

Full Tensor Gravity Gradiometry(FTG): an Overview

Hendra GrandisTeknik Geofisika - FTTM ITB

Hendra Grandis

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Introduction

• Basic Concepts

• Simulation

• Advanced Processing

• Applications

• Summary

Outline

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• What is FTG stands for?

→ Full Tensor Gradiometry

→ Full Tensor Gradiometry of Gravity

→ Full Tensor of Gravity Gradiometry

• Tensor is just another name for ‘physical quantity’ described by defining a coordinate system, represented as matrix

→ Scalar ~ 0th order tensor, matrix 1 × 1

→ Vector ~ 1st order tensor, matrix 1 × 3

→ Tensor ~ 2nd order tensor, matrix 3 × 3

Introduction

in Cartesian coordinate system

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Gradiometry ~ Gradient measurement(airborne or shipborne)

• Gradient

→ Spatial rate of change of anomaly

→ Enhances anomalous source boundaries

→ Enhances high-frequency anomalies, i.e.shallow sources, noise

→ Mathematically represented by derivatives

∂gz ∂gz ∂gzꟷꟷꟷ ; ꟷꟷꟷ ; ꟷꟷꟷ …∂x ∂y ∂z

Introduction

(Grandis et al, 2018)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Gradiometry ~ Gradient measurement(airborne or shipborne)

• Gradient

→ Spatial rate of change of anomaly

→ Enhances anomalous source boundaries

→ Enhances high-frequency anomalies, i.e.shallow sources, noise

→ Mathematically represented by derivatives

∂gz ∂gz ∂gzꟷꟷꟷ ; ꟷꟷꟷ ; ꟷꟷꟷ …∂x ∂y ∂z

Introduction

(Grandis et al, 2018)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Gradiometry ~ Gradient measurement(airborne or shipborne)

• Gradient

→ Spatial rate of change of anomaly

→ Enhances anomalous source boundaries

→ Enhances high-frequency anomalies, i.e.shallow sources, noise

→ Mathematically represented by derivatives

∂gz ∂gz ∂gzꟷꟷꟷ ; ꟷꟷꟷ ; ꟷꟷꟷ …∂x ∂y ∂z

Introduction

(Grandis et al, 2018)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Loránd Eötvös and torsion balance (1890)

Introduction

(Szabó, 2016)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Loránd Eötvös and torsion balance (1890)

Introduction

(Szabó, 2016)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Loránd Eötvös and torsion balance (1890)

Introduction

Szabo´

(Szabó, 2016)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Conventional gravity measures only one vertical component (Gz)

• Full tensor gravity gradiometry measurement results in all curvature components of G

• Only 5 components of G are independent

→ Gxy = Gyx, Gxz = Gzx, Gyz = Gzy

due to G = 0

→ Gxx, Gyy or Gxx, Gzz or Gzz, Gyy

due to Laplace's equation for potential field, Gxx + Gyy + Gxx = 0

Basic Concepts

Gz

Gx

Gy

Gzz

Gzy

Gzx

Gyz

Gyy

GyxGxz

Gxy

Gxx

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Gravity

→ 1 Gal = 1 cm/sec2

→ 1 mGal = 10-3 cm/sec2 = 10-5 m/sec2 ~ 10-6 g

• Gravity gradient

→ 1 Eötvös = 10-9/sec2

→ 1 Eötvös = 10-1 mGal/km

• Gravity and gravity gradient are very small quantities

→ Difficult to observe or to measure

→ Interpretation should be done with care

11

Basic Concepts

GEOSEMINAR

PUSAT SURVEI GEOLOGI

Basic Concepts

(Evstifeev, 2017)

• Application of Gravity Gradiometry

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Airborne FTG by Bell Aerospace

Basic Concepts

(Veryaskin, 2018)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Gravity Field and Ocean Circulation Explorer (GOCE) satellite launched in 2009 by European Space Agency (ESA)

14

Basic Concepts

(Veryaskin, 2018)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Tensor of gravity gradient

∂Gx ∂Gx ∂Gxꟷꟷꟷ ꟷꟷꟷ ꟷꟷꟷ∂x ∂y ∂z

∂Gy ∂Gy ∂GyG = [Gij ] = ꟷꟷꟷ ꟷꟷꟷ ꟷꟷꟷ

∂x ∂y ∂z

∂Gz ∂Gz ∂Gzꟷꟷꟷ ꟷꟷꟷ ꟷꟷꟷ∂x ∂y ∂z

Gxx Gxy Gxz

= Gyx Gyy Gyz

Gzx Gzy Gzz15

Simulation of FTG

Gz

Gx

Gy

Gzz

Gzy

Gzx

Gyz

Gyy

GyxGxz

Gxy

Gxx

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Fourier Transform pairs (Mickus & Hinojosa, 2001)

∂Gx ∂Gzꟷꟷꟷ -i kx G'x ; G'x = F(Gx) ꟷꟷꟷ -i kx G'z ; G'z = F(Gz)∂x ∂x

∂Gx ∂Gzꟷꟷꟷ -i ky G'x ꟷꟷꟷ -i ky G'z∂y ∂y

∂Gx ∂Gzꟷꟷꟷ |k| G'x ꟷꟷꟷ |k| G'z∂z ∂z

|k| G'x = -i kx G'z ; G'x = -i kx |k|-1G'z

∂Gx ∂Gx ∂Gxꟷꟷꟷ -kx2 |k|-1G'z ; ꟷꟷꟷ -ky kx |k|-1G'z ; ꟷꟷꟷ -i kx G'z∂x ∂y ∂z

16

Simulation of FTG

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Tensor of gravity gradient

-kx2 -kx kyꟷꟷꟷ ꟷꟷꟷꟷꟷ -i kx |k| = (kx2 + ky2)1/2|k| |k|

-ky2 = -i kzG = [Gij ] = F -1 G'z ꟷꟷꟷ -i ky|k|

|k|

→ Tensor components of FTG can be calculated from observed gravity data Gz

→ Simulated FTG for preliminary analysis

17

Simulation of FTG

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• 3D forward modelling of a simple box model with density contrast 0.5 gr/cm3

→ Gravity anomaly Gz

→ Gravity gradient tensor G

18

Simulation of FTG

mGal

mGal/km

(Grandis & Dahrin, 2014)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• 3D forward modelling of a simple box model with density contrast 0.5 gr/cm3

→ Gravity anomaly Gz

→ Gravity gradient tensor G

• Gravity gradient tensor G from Gz by using FFT

→ Without and with 5% Gaussian noise

→ Comparison with analytically calculated G

19

Simulation of FTG

mGal

mGal/km

(Grandis & Dahrin, 2014)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• 3D forward modelling of a simple box model with density contrast 0.5 gr/cm3

→ Gravity anomaly Gz

→ Gravity gradient tensor G

• Gravity gradient tensor G from Gz by using FFT

→ Without and with 5% Gaussian noise

→ Comparison with analytically calculated G

20

Simulation of FTG

mGal

mGal/km

(Grandis & Dahrin, 2014)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• 3D forward modelling of a simple box model with density contrast 0.5 gr/cm3

→ Gravity anomaly Gz

→ Gravity gradient tensor G

• Gravity gradient tensor G from Gz by using FFT

→ Without and with 5% Gaussian noise

→ Comparison with analytically calculated G

21

Simulation of FTG

mGal

mGal/km

(Grandis & Dahrin, 2014)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Spectral analysis based filtering similar to conventional gravity data Gz

• Parameters extracted from gravity gradient tensor that can be related to structures (Pedersen & Rasmussen, 1990; FitzGerald & Holstein, 2005; 2006)

→ Invariants

→ Determinant

→ Eigen values

→ Strike angle

→ Curvature magnitude

→ Azimuth of maximum curvature

→ etc.

22

Advanced Processing

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• FTG is not a stand-alone technology

→ FTG surveys complement airborne gravity surveys

→ To resolve ambiguity in subsurface structural and stratigraphic 2D/3D seismic interpretation

→ 3D forward modelling with integration with seismic and log data to improve interpretation accuracy and risk reduction

• Subsurface imaging

→ Complex salt geometry, top and base salt

→ Basalt geometry and characterisation

→ Sub basalt, sub-basalt sediments and basement geometry

Applications

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• High frequency ~ high resolution

• Amplitude decays

Gravity Gravity gradient

Gz ~ r-2 ~ z -2 Gzz ~ r-3 ~ z-3

→ Gradiometer is more detail than gravity for shallow < 2 km to 3 km depths, usually with more complex geology

→ Gravity has better resolution for structures > 2 to 3 km in depth

Applications

(Stadtler et al, 2014)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

Applications

(Stadtler et al, 2014)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

(Carlos et al, 2013)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

(Carlos et al, 2013)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

a) Gzx, b) Gzy, c) Gzz, d) Adaptive tilt angle,

e) Depth colour map of the Vinton Salt Dome (USA)

Applications

(Salem et al, 2013)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

Applications

(Salem et al, 2013)

a) Gzz, b) Adaptive tilt angle,

c) Depth colour map of Faeroe-Shetland Basin (UK)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

(a) (b)

a) Gzz from FTG

b) Gzz derived from airborne gravity

c) Gzz from FTG filtered with 5 km low-pass filter

(c)

(Barnes, 2013)

GEOSEMINAR

PUSAT SURVEI GEOLOGI

• Full Tensor Gradiometry measures gravity gradient along all cartesian coordinate axes

→ High frequency ~ high resolution ~ shallow

→ Prospect scale, salt / sub-salt imaging

→ Detailed structures of a basin, basal / sub-basalt

• Preliminary modelling / processing with existing data or synthetic data

→ Target confirmation and survey design

• Advanced data processing of FTG data

→ Based on directional and "matrix" properties of the tensor

→ Extract more information, i.e. structural and depth delineation

31

Summary

GEOSEMINAR

PUSAT SURVEI GEOLOGI