Genetic and Phenetic Dynamics of Steelhead Recolonization Above Dams: Green River Study

Post on 21-Jan-2016

33 views 0 download

Tags:

description

Genetic and Phenetic Dynamics of Steelhead Recolonization Above Dams: Green River Study. Gary Winans CB Division Jon Baker, Frank Orth Assoc. (Formerly, CB Div.). We are interested in Resident fish. and the potential “hybridization” of Resident trout and Anadromous Steelhead. - PowerPoint PPT Presentation

Transcript of Genetic and Phenetic Dynamics of Steelhead Recolonization Above Dams: Green River Study

Genetic and Phenetic Dynamics of Steelhead Recolonization Above

Dams: Green River Study

Gary Winans CB DivisionJon Baker, Frank Orth Assoc. (Formerly, CB Div.)

We are interested in Resident fish

and the potential “hybridization” of Resident trout and Anadromous Steelhead

Our Research Interests: Character evolution in isolated populations

• Non-smolting lifestyle (PSL, behavioral, & metabolic)

• Body and fin designs

• Body coloration

• Evolutionarily-neutral genetic markers

During their 90 years of isolation, REZ fish will be different…due to

• natural selection (non-smolting physiology, non-downstream behavior, growth, time of spawning, etc.)

• random genetic changes

• outplanting

NOAA is interested in mykiss populations sequestered behind

dams

• O. mykiss is endangered under the ESA • When dams are removed, what will be the role

of Resident trout?• Who will produce naturally occurring recruits?

Our Research Interests: Character evolution in isolated populations

• Non-smolting lifestyle (PSL, behavioral, & metabolic)

• Body and fin designs

• Body coloration

• Evolutionarily-neutral genetic markers

N

Green River

Rm 68 Rm 84

HH Dam

hatchery

wildresidual

RBT

RBT

RBT

RBT

RBT

N

Green River-Genetic data

Rm 68 Rm 84

HH Dam

Hatchery= 50 + 50

Wild=77 Residents=81

Calif. Trout= 50 + 50

Cedar R. Wilds = 50

N

Green River-Genetic data

Rm 68 Rm 84

HH Dam

Hatchery= 50 + 50

Wild=77 Residents=81

Calif. Trout= 50 + 50

Cedar R. Wilds = 50

“NearestNeighbor”

“Hatchery Outplants”

mSAT Loci

• Ocl1

• Ogo4

• Omy7 INRA

• One14

• Ots100

• Ots4

• Oke4

• Oki23

• Omy1011

• Omy77

• Ssa289

• Ssa407

• Ssa408

Microsatellite markers—simple sequence repeats

CA CA CA CA CA CA CA CA CA CA CA

CA CA CA CA CA CA CA CA CA CA

CA CA CA CA CA CA CA CA

CA CA CA CA CA CA

“102”

“100”

“96”

“94” CA

- Allele designations typically related to fragment size

0.65 0.70 0.75 0.80 0.85Mean Heterozygosity

8

9

10

11

12

13

Mea

n N

o. o

f Alle

les

per

Locu

s

3=Hatchery2=Native1=Resident

Diversity at 13 mSAT loci

0

5

10

15

Me

an

No

. of A

llele

s p

er

Lo

cus

4=Cal. Trout3=Hatchery2=Native1=Resident

0.50 0.63 0.73 0.90

0.1

Cal Trout 1Cal Trout 2

Cedar RiverHatch 2Hatch 1Resident 1

Native 1

Native 2

Resident 2

Resident 3

Nei’s D

N

Green River-Morphology data

Rm 68 Rm 84

HH Dam

Hatchery= 20 + 20

Wild=20 Residents=20

Calif. Trout

Cedar R. Wilds

“Hatchery outplants”

“NearestNeighbor”

Thin Plate Spline/Relative Warps

• Each fish is represented by a set of landmarks

• Each fish is compared to a consensus outline; a similarity value generated

• A similarity matrix is assesed by a PCA

• Producing the relative warps (RWs)

-0.05-0.04

-0.03-0.02

-0.010.00

0.010.02

0.030.04

0.05

RW1

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05R

W4

3=Native2=Hatchery1=Resident

-0.05-0.04

-0.03-0.02

-0.010.00

0.010.02

0.030.04

0.05

RW1

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05R

W4

2=Below1=Above

RW Analysis of Body Shape

Neg RW1; elongate nose, deeper head; deeper trunk; v. shortened CP

Shape differences: resident vs. consensus Resident

Head LLDorsalSplit

Mid LLDorsalSplit

TailDorsalSplit

Resident

0 1 2 3 4 5

MID_D_PARR

0

1

2

3

4

5

6

7

8

Cou

nt

0.0

0.1

0.2

0.3

0.4

Proportion per B

ar

Hatchery 1

0 1 2 3 4 5

MID_D_PARR

0

5

10

15

Cou

nt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Proportion per B

ar

Hatchery 2

0 1 2 3 4 5

MID_D_PARR

0

5

10

15

Cou

nt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Proportion per B

ar

Native

0 1 2 3 4 5

MID_D_PARR

0

5

10

15

Cou

nt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Proportion per B

ar

-2 -1 0 1 2 3 4 5PCA1

-2

-1

0

1

2

3P

CA

3

3=hatchery2=wild1=residents

Parr Mark Analysis

-2 -1 0 1 2 3 4 5PCA1

-2

-1

0

1

2

3P

CA

3

2=below1=above

t=4.16, P=0.0

1

7

8

9

10

11

121315

2

7

8

9

10

11

121315

5

7

8

910

11

12

13

15

6

7

8

9

10

11121315

7

7

8

9

1011

121315

Below-Elwha Dam Above-Elwha Dam

Lateral Line Parr

Above 9.9 vs.Below 9.1 ***

Mean=9.15

Mean=8.95

Mean=9.6 Mean=10.5

Mean=9.4

Further Analyses• Hardy-Weinberg• Disequilibrium• Bootstrap D values• Rare alleles• F statistics• Contingency tables• PCA of allele frequencies• MM--ontogenetic influences• MM--PCA of truss-network characters

• Resident fish above the dam are not genetically dissimilar from “Native” late-run fish below the dam

• Resident fish are different from hatchery fish

• Juvenile resident fish have different body shapes and parr mark patterns

• Did we find a unique gene pool (a Gem) above the HH dam?

• Is there evidence that there is a population of ‘residualized’ steelhead above HH dam?

• Can we use these mSATs to recognize resident x steelhead crosses?

•Is there a general pattern in genetic and phenetic variability in resident fish vs. downstream steelhead?

Green River: (Internal Grant seed money)Elwha River: (NOAA Restoration $)Lewis River: PacifiCorp $

Elwha Dam

Glines Canyon Dam

Neg RW2