Euler formula for intersecting sets Newton binomial ... fileEuler formula for intersecting sets...

Post on 17-Aug-2019

235 views 0 download

Transcript of Euler formula for intersecting sets Newton binomial ... fileEuler formula for intersecting sets...

Euler formula for intersecting sets Newton binomial, asymptotic combinatorial identities

Theorem 1

If 𝑛 β‰₯ 6 𝑛

3

𝑛

< 𝑛! < 𝑛

2

𝑛

Proof

Prove by induction on n the upper estimate.

Assume that 𝑛! ≀ 𝑛

2

𝑛

then

𝑛 + 1

2

𝑛+1

=

𝑛+1

2

𝑛 𝑛 + 1

2=

𝑛

2

𝑛

1 +1

𝑛

𝑛 𝑛 + 1

2

β‰₯ 𝑛! 1 + 1 + 𝑛2

𝑛2+ β‹― +

𝑛𝑛

𝑛𝑛

𝑛 + 1

2> 𝑛! βˆ™ 2 βˆ™

𝑛 + 1

2= 𝑛 + 1 !

Similarly prove the lower estimate

Let us assume that 𝑛! β‰₯ 𝑛

3

𝑛

then considering 𝑛! β‰₯ 2π‘›βˆ’1 if 𝑛 β‰₯ 2

𝑛 + 1

3

𝑛+1

=

𝑛+1

3

𝑛 𝑛 + 1

3=

𝑛

3

𝑛

1 +1

𝑛

𝑛 𝑛 + 1

3

≀

𝑛! 1 + 1 + 𝑛2

𝑛2 + 𝑛3

𝑛3 + β‹― +𝑛𝑛

𝑛 !𝑛𝑛 𝑛 + 1

3

<𝑛! 1 + 1 +

𝑛2

2!𝑛2 +𝑛3

3!𝑛3 + β‹― +𝑛𝑛

𝑛 !𝑛𝑛 𝑛 + 1

3

<𝑛! 1 + 1 +

1

21 +1

22 + β‹― +1

2π‘›βˆ’1 𝑛 + 1

3< 𝑛 + 1 !

QED

Theorem 2

If 𝑛 β‰₯ 1 𝑒 βˆ™ 𝑛

𝑒

𝑛

≀ 𝑛! ≀ 𝑛𝑒 βˆ™ 𝑛

𝑒

𝑛

Proof

When n=1, 2 we can verify the inequality by substitution of these values of n. Further it is easy

to see if kβ‰₯2 for ln k

ln π‘₯ 𝑑π‘₯ < ln π‘˜ < ln π‘₯ 𝑑π‘₯ π‘˜+1

π‘˜

π‘˜

π‘˜βˆ’1 (2.1)

therefore

ln π‘₯ 𝑒𝑑π‘₯ < ln 𝑛! < ln π‘₯ 𝑑π‘₯𝑛+1

2

𝑛

1 (2.2)

Transform the right-hand inequality (2.2) given that 𝑛 β‰₯ 3

ln 𝑛! < ln π‘₯ 𝑑π‘₯ = π‘₯𝑙𝑛 π‘₯ βˆ’ π‘₯ |2𝑛+1 = 𝑛 + 1 ln 𝑛 + 1 βˆ’ 𝑛 + 1 βˆ’ 2𝑙𝑛2 + 2

𝑛+1

2

= 𝑛 + 1 𝑙𝑛𝑛 + 1

π‘’βˆ’ 2𝑙𝑛2 + 2

= 𝑛 + 1 ln𝑛

𝑒+ 𝑛 + 1 ln 1 +

1

𝑛 βˆ’ 2𝑙𝑛2 < 𝑛 + 1 ln

𝑛

𝑒+ 2

Hence

𝑛! < 𝑛𝑒 < 𝑛

𝑒

𝑛

QED

Lemma 1

If π‘˜ β‰₯ 2

ln π‘₯ 𝑑π‘₯ + ln 2π‘˜ βˆ’ ln 2π‘˜ βˆ’ 1 ≀ ln π‘˜ ≀ ln π‘₯ 𝑑π‘₯ +1

2(ln π‘˜ βˆ’ ln(π‘˜ βˆ’ 1))

π‘˜

π‘˜βˆ’1

π‘˜

π‘˜βˆ’1

Proof

The image below shows the part of the graph of the function ln x between points x=k-1 and x=k

It can be seen that ln π‘₯ 𝑑π‘₯π‘˜

π‘˜βˆ’1 exceeds the difference between the values ln k and the area of

a triangle, which is bounded by a segment b and straight lines x = k-1 and y = ln k. Thus

ln π‘₯ 𝑑π‘₯ β‰₯ ln π‘˜ βˆ’1

2(ln π‘˜ βˆ’ ln(π‘˜ βˆ’ 1))

π‘˜

π‘˜βˆ’1

It is also can be seen, that ln π‘₯ 𝑑π‘₯π‘˜

π‘˜βˆ’1 does not exceed the area of the trapezoid, which is

bounded by a line a and lines x=k-1, x=k and y=0. As the area of the trapezoid is equal to the

multiplication of the mean line, which is equal to ln(π‘˜ βˆ’1

2) and the height, which is equal to

one, then

ln π‘₯ 𝑑π‘₯ ≀ ln π‘˜ βˆ’1

2 = ln π‘˜ + ln 1 βˆ’

1

2π‘˜ = ln π‘˜ βˆ’ ln 2π‘˜ + ln 2π‘˜ βˆ’ 1 .

π‘˜

π‘˜βˆ’1

Using these inequalities we estimate ln k

ln π‘₯ 𝑑π‘₯ + ln 2π‘˜ βˆ’ ln 2π‘˜ βˆ’ 1 ≀ ln π‘˜ ≀ ln π‘₯ 𝑑π‘₯ +1

2(ln π‘˜ βˆ’ ln(π‘˜ βˆ’ 1))

π‘˜

π‘˜βˆ’1

π‘˜

π‘˜βˆ’1

.

QED

Theorem 3

0.8 βˆ™ 𝑒 𝑛 𝑛

𝑒

𝑛

≀ 𝑛! ≀ 𝑒 𝑛 𝑛

𝑒

𝑛

Proof

It is sufficient to sum the inequalities from the previous lemma with π‘˜ ∈ [2, 𝑛]

Sum the right inequalities

ln π‘˜ ≀ ln π‘₯ 𝑑π‘₯ +1

2(ln 𝑛 βˆ’ ln 1) = 𝑛 ln 𝑛 βˆ’ 𝑛 + 1 +

1

2ln 𝑛 .

𝑛

1

𝑛

π‘˜=2

Hence 𝒏! < 𝒆 𝒏 𝒏

𝒆

𝒏

To estimate the sum of the left inequalities assume that

π‘Ž1 = (ln 2π‘˜ βˆ’ ln 2π‘˜ βˆ’ 1 ), π‘Ž2 = (ln 2π‘˜ + 1 βˆ’ ln(2π‘˜)).

𝑛

π‘˜=2

𝑛

π‘˜=2

It can be seen that π‘Ž1 + π‘Ž2 = ln(2𝑛 + 1) βˆ’ ln 3

Since π‘Ž1 > π‘Ž2

π‘Ž1 >1

2ln 2𝑛 + 1 βˆ’

1

2ln 3 >

1

2ln 𝑛 βˆ’

1

2ln

3

2.

ln π‘˜ > 𝑛 ln 𝑛 βˆ’ 𝑛 + 1 +1

2ln 𝑛 βˆ’

1

2ln

3

2.

𝑛

π‘˜=2

Note that 2

3> 0.8

Hence 𝑛! > 0.8 βˆ™ 𝑒 βˆ™ 𝑛 𝑛

𝑒

𝑛

QED

Lemma 2

sin2𝑛 𝑑π‘₯ = 2𝑛 βˆ’ 1 2𝑛 βˆ’ 3 βˆ™ … βˆ™ 3 βˆ™ 1

2𝑛(2𝑛 βˆ’ 2βˆ™ … 4 βˆ™ 2

πœ‹

2

0

βˆ™πœ‹

2=

2𝑛 βˆ’ 1 β€Ό

2π‘›β€Όβˆ™πœ‹

2

sin2𝑛+1 𝑑π‘₯ =2𝑛 2𝑛 βˆ’ 2 βˆ™ … 4 βˆ™ 2

2𝑛 + 1 2𝑛 βˆ’ 1 βˆ™ … βˆ™ 3 βˆ™ 1

πœ‹

2

π‘œ

=2𝑛‼

2𝑛 + 1 β€Ό

Proof

Denote sin𝑛 𝑑π‘₯ = πΌπ‘›πœ‹

20

then

𝐼𝑛 = βˆ’ sinπ‘›βˆ’1 𝑑 cos π‘₯ = βˆ’ sinπ‘›βˆ’1 π‘₯ cos π‘₯ β”‚0

πœ‹

2

πœ‹

2

π‘œ

+ cos π‘₯ 𝑑 sinπ‘›βˆ’1 π‘₯

πœ‹

2

0

= 𝑛

βˆ’ 1 cos2 π‘₯ sinπ‘›βˆ’2 π‘₯ 𝑑π‘₯

πœ‹

2

0

= 𝑛 βˆ’ 1 1 βˆ’ sin2 π‘₯ sinπ‘›βˆ’2 π‘₯ 𝑑π‘₯ = 𝑛 βˆ’ 1 πΌπ‘›βˆ’2 βˆ’ 𝐼𝑛

πœ‹

2

0

Hence

𝐼𝑛 =π‘›βˆ’1

π‘›βˆ™ πΌπ‘›βˆ’2

Consistently applying it to the integrals 𝐼2π‘›π‘Žπ‘›π‘‘ 𝐼2𝑛+1

𝐼2𝑛 = 2π‘›βˆ’1 2π‘›βˆ’3 βˆ™β€¦βˆ™3βˆ™1

2𝑛 2π‘›βˆ’2 βˆ™β€¦4βˆ™2βˆ™ 𝐼0

𝐼2𝑛+1 =2𝑛 2𝑛 βˆ’ 2 βˆ™ … βˆ™ 4 βˆ™ 2

2𝑛 + 1 2𝑛 βˆ’ 1 βˆ™ … βˆ™ 3 βˆ™ 1βˆ™ 𝐼1

As 𝐼0 =πœ‹

2π‘Žπ‘›π‘‘ 𝐼1 = 1

Substituting these values into the above expression obtain the required equality

QED

Lemma 3

22𝑛

πœ‹π‘›π‘’βˆ’

1

4𝑛 ≀ 2𝑛𝑛

≀22𝑛

πœ‹π‘›

Proof

As sin x varies from 0 to 1 between 0 and Ο€/2, then

sin2𝑛+1 π‘₯ ≀ sin2𝑛 π‘₯ ≀ sin2π‘›βˆ’1 π‘₯ , π‘₯ ∈ [0,πœ‹

2]

Hence

sin2𝑛+1 π‘₯ 𝑑π‘₯ ≀ sin2𝑛 π‘₯ 𝑑π‘₯ ≀ sin2π‘›βˆ’1 π‘₯ 𝑑π‘₯

πœ‹

2

0

πœ‹

2

0

πœ‹

2

0

Using lemma 2

2𝑛‼

2𝑛 + 1 ‼≀

2𝑛 βˆ’ 1 β€Ό

2π‘›β€Όβˆ™πœ‹

2≀

2𝑛 βˆ’ 2 β€Ό

2𝑛 βˆ’ 1 β€Ό

2𝑛‼ βˆ™ 2𝑛‼

2𝑛 + 1 β€Ό βˆ™ 2𝑛 βˆ’ 1 ‼≀

πœ‹

2≀

2𝑛‼ βˆ™ 2𝑛 βˆ’ 2 β€Ό

2𝑛 βˆ’ 1 β€Ό βˆ™ 2𝑛 βˆ’ 1 β€Ό

1

2𝑛 + 1βˆ™

2𝑛‼

2𝑛 βˆ’ 1 ‼≀

πœ‹

2≀

1

2π‘›βˆ™

2𝑛‼

2𝑛 βˆ’ 1 β€Ό

Divide all members of the resulting inequalities on 2n!! and πœ‹

2 and multiply it on (2n-1)!! and

22𝑛

1

1+1

2𝑛

βˆ™22𝑛

πœ‹π‘›β‰€ 22𝑛 βˆ™

2π‘›βˆ’1 β€Ό

2𝑛‼≀

22𝑛

πœ‹π‘› (*)

Note that

2𝑛 βˆ’ 1 β€Ό

2𝑛‼=

2𝑛 βˆ’ 1 β€Ό βˆ™ 2𝑛!!

2𝑛‼ βˆ™ 2𝑛‼=

(2𝑛)!

22𝑛 βˆ™ 𝑛! βˆ™ 𝑛!=

2𝑛

𝑛 βˆ™ 2βˆ’2𝑛

Given that if 0 < π‘₯ < 1 π‘’βˆ’π‘₯ ≀ 1/(1 + π‘₯) substitute the last equality in (*)

and obtain the required estimates for 2𝑛𝑛

QED

Theorem 4

2πœ‹π‘› βˆ™ 𝑛

𝑒

𝑛

π‘’βˆ’1/4𝑛 ≀ 𝑛! ≀ 2πœ‹π‘› βˆ™ 𝑛

𝑒

𝑛

𝑒1/4𝑛

Proof

As 2𝑛𝑛

= 2𝑛!

𝑛 ! βˆ™π‘›!=

2𝑛 2π‘›βˆ’1 βˆ™β€¦βˆ™(𝑛+1)

𝑛 !, it can be seen that 𝑛! = 2𝑛 2𝑛 βˆ’ 1 βˆ™ … βˆ™ (𝑛 + 1)/ 2𝑛

𝑛

Estimate the logarithm of 2𝑛 2𝑛 βˆ’ 1 βˆ™ … βˆ™ (𝑛 + 1)

We will use

ln π‘˜ β‰₯ ln π‘₯ 𝑑π‘₯ + ln 2π‘˜ βˆ’ ln(2π‘˜ βˆ’ 1)π‘˜

π‘˜βˆ’1 (1)

ln π‘˜ ≀ ln π‘₯ 𝑑π‘₯ +1

2 (ln π‘˜ βˆ’ ln π‘˜ βˆ’ 1 )

π‘˜

π‘˜βˆ’1 (2)

from lemma 1

Summing the inequalities (2) for π‘˜ ∈ [𝑛 + 1, 2𝑛]

ln π‘˜ ≀ ln π‘₯ 𝑑π‘₯2𝑛

𝑛

+

2𝑛

π‘˜=𝑛+1

1

2 ln 2𝑛 βˆ’ ln 𝑛

= ln π‘₯ 𝑑π‘₯ +1

2ln 2 = 𝑛 ln 𝑛 + 2𝑛 ln 2 βˆ’ 𝑛 +

1

2ln 2

2𝑛

𝑛

To estimate the sum of inequalities (1) assume

π‘Ž1 = (ln 2π‘˜ βˆ’ ln(2π‘˜ βˆ’ 1)) , π‘Ž2 = (ln 2π‘˜ + 1 βˆ’ ln(2π‘˜))

2𝑛

π‘˜=𝑛+1

2𝑛

π‘˜=𝑛+1

π‘Ž1 + π‘Ž2 = ln 4𝑛 + 1 βˆ’ ln(2𝑛 + 1)

As π‘Ž1 > π‘Ž2 then

π‘Ž1 >1

2ln 4𝑛 + 1 βˆ’

1

2ln 2𝑛 + 1 =

1

2ln 2 βˆ™

2𝑛+1

2

2𝑛+1 =

1

2ln 2 +

1

2ln 1 βˆ’

1

4𝑛+2 β‰₯

1

2ln 2 βˆ’

1

4𝑛.

Thus

ln π‘˜ > 𝑛 ln 𝑛 + 2𝑛 ln 2 βˆ’ 𝑛 +1

2ln 2 βˆ’

1

4𝑛

2𝑛

π‘˜=𝑛+1

Hence

2 𝑛

𝑒

𝑛

22π‘›π‘’βˆ’1

4𝑛 ≀ 2𝑛 2𝑛 βˆ’ 1 βˆ™ … βˆ™ 𝑛 + 1 ≀ 2 𝑛

𝑒

𝑛

22𝑛

From lemma 3

πœ‹π‘›

22𝑛≀

1

2𝑛𝑛

≀

πœ‹π‘›

22𝑛 𝑒

1

4𝑛

Term by term, we multiply the last inequalities

2πœ‹π‘› βˆ™ 𝑛

𝑒

𝑛

π‘’βˆ’1

4𝑛 ≀ 𝑛! ≀ 2πœ‹π‘› βˆ™ 𝑛

𝑒

𝑛

𝑒1

4𝑛

QED

Theorem 5

If min π‘˜, 𝑛 βˆ’ π‘˜ β†’ ∞

𝑛

π‘˜ =

2𝑛𝐻 π‘˜

𝑛

2πœ‹π‘˜ π‘›βˆ’π‘˜

𝑛

(1 + π‘œ 1 )

Proof

Using Stirling’s formula

𝑛

π‘˜ =

𝑛!

π‘˜! 𝑛 βˆ’ π‘˜ ! ~

2πœ‹π‘›

2πœ‹π‘˜ βˆ™ 2πœ‹(𝑛 βˆ’ π‘˜)βˆ™

𝑛

𝑒

𝑛

π‘˜

𝑒

π‘˜

π‘›βˆ’π‘˜

𝑒

π‘›βˆ’π‘˜

=1

2πœ‹π‘˜ π‘›βˆ’π‘˜

𝑛

βˆ™π‘›π‘›

π‘˜π‘˜ 𝑛 βˆ’ π‘˜ π‘›βˆ’π‘˜=

1

2πœ‹π‘˜ π‘›βˆ’π‘˜

𝑛

βˆ™ π‘˜

𝑛

βˆ’π‘˜

βˆ™ 1 βˆ’π‘˜

𝑛

βˆ’ π‘›βˆ’π‘˜

=1

2πœ‹π‘˜ π‘›βˆ’π‘˜

𝑛

βˆ™ 2𝑛𝐻 π‘˜

𝑛

QED

Theorem 6

If 𝑛 β†’ ∞ π‘Žπ‘›π‘‘ 𝑑 = π‘œ(𝑛2

3) then

𝑛𝑛

2βˆ’π‘‘

=2π‘›π‘’βˆ’

2𝑑2

𝑛

πœ‹π‘›

2

1 + π‘œ 1 = 𝑛

𝑛

2 π‘’βˆ’

2𝑑2

𝑛 1 + π‘œ 1 .

Proof

With the use of the previous theorem we transform the exponent on the right part of its

equality

𝐻

𝑛

2βˆ’ 𝑑

𝑛 = 𝐻

1

2 1 βˆ’

2𝑑

𝑛

= βˆ’1

2 1 βˆ’

2𝑑

𝑛 log2

1

2 1 βˆ’

2𝑑

𝑛

βˆ’1

2 1 +

2𝑑

𝑛 log2

1

2 1 +

2𝑑

𝑛

= 1 βˆ’1

2 1 βˆ’

2𝑑

𝑛 log2(1 βˆ’

2𝑑

𝑛) + 1 +

2𝑑

𝑛 log2 1 +

2𝑑

𝑛

Using (3)

βˆ’ 1 βˆ’2𝑑

𝑛 log2 1 βˆ’

2𝑑

𝑛 βˆ’ 1 +

2𝑑

𝑛 log2 1 +

2𝑑

𝑛 = βˆ’

4𝑑2

𝑛2+ π’ͺ

𝑑3

𝑛3 log2 𝑒.

so

𝑛𝐻

𝑛

2βˆ’ 𝑑

𝑛 = 𝑛 1 βˆ’

1

2 4𝑑2

𝑛2 + π’ͺ 𝑑3

𝑛3 log2 𝑒 = 𝑛 βˆ’

2𝑑2

𝑛+ π’ͺ

𝑑3

𝑛2 log2 𝑒.

Substituting this equality in equality from theorem 5, taking into account 𝑑 = π‘œ(𝑛2

3) we will

have

𝑛

𝑛

2βˆ’ 𝑑

=2𝑛𝑒

βˆ’2𝑑2

𝑛+π’ͺ

𝑑3

𝑛2

2πœ‹ 𝑛

2βˆ’π‘‘

𝑛

2+𝑑

𝑛

1 + π‘œ 1 =2π‘›π‘’βˆ’

2𝑑2

𝑛

πœ‹π‘›

2

1 + π‘œ 1 .

QED

Theorem 7

If 𝑛 β†’ ∞ π‘Žπ‘›π‘‘ π‘˜ = π‘œ(𝑛2

3) then

𝑛

π‘˜ =

π‘›π‘˜π‘’βˆ’π‘˜2

2𝑛

π‘˜! (1 + π‘œ 1 )

Proof

Using Stirling’s formula, equality 1 + π‘₯ 𝑛 = π‘›π‘˜ π‘₯π‘˜π‘›

π‘˜=0 and π‘˜ = π‘œ(𝑛2

3)

𝑛

π‘˜ =

𝑛!

π‘˜! (𝑛 βˆ’ π‘˜!) ~

2πœ‹π‘›

2πœ‹(𝑛 βˆ’ π‘˜)βˆ™

𝑛

𝑒

𝑛

π‘˜! π‘›βˆ’π‘˜

𝑒

π‘›βˆ’π‘˜

=π‘›π‘˜

π‘˜!βˆ™

π‘’βˆ’π‘˜

1 βˆ’π‘˜

𝑛

βˆ™ 1 βˆ’π‘˜

𝑛

π‘˜βˆ’π‘›

~π‘›π‘˜π‘’βˆ’π‘˜

π‘˜!βˆ™ 𝑒

π‘˜βˆ’π‘› ln 1βˆ’π‘˜

𝑛

=π‘›π‘˜π‘’βˆ’π‘˜

π‘˜!βˆ™ 𝑒

π‘˜βˆ’π‘› βˆ’π‘˜

π‘›βˆ’

π‘˜2

2𝑛2βˆ’π’ͺ π‘˜3

𝑛3 =

π‘›π‘˜π‘’βˆ’π‘˜

π‘˜!βˆ™ 𝑒

π‘˜βˆ’π‘˜2

2π‘›βˆ’π’ͺ

π‘˜3

𝑛2

=π‘›π‘˜π‘’βˆ’

π‘˜2

2𝑛

π‘˜! 1 + π‘œ 1 .

QED

Theorem 8

If 1 ≀ πœ‘ 𝑛 ≀ 𝑛

2 then

π‘›π‘˜ ≀

2π‘›βˆ’3

πœ‘(𝑛)

𝑛

2βˆ’ π‘›πœ‘ 𝑛

π‘˜=0

Proof

We estimate the sum of the binomial coefficients, the lower index of which differs from 𝑛

2 more

than on t units.

π‘›π‘˜

π‘˜ : 𝑛

2βˆ’π‘˜ >𝑑

=

𝑛

2βˆ’ π‘˜

2

𝑛

2βˆ’ π‘˜

2 π‘›π‘˜

π‘˜ : 𝑛

2βˆ’π‘˜ >𝑑

≀1

𝑑2

𝑛

2βˆ’ π‘˜

2

π‘›π‘˜ ≀

1

𝑑2

π‘˜ : 𝑛

2βˆ’π‘˜ >𝑑

𝑛

2βˆ’ π‘˜

2

π‘›π‘˜

𝑛

π‘˜=0

(4)

Find the sum of the right side of the inequality

π‘›π‘˜

𝑛

2βˆ’ π‘˜

2

= π‘›π‘˜

𝑛2

4βˆ’ π‘›π‘˜ + π‘˜2 =

𝑛2

4

π‘›π‘˜ βˆ’

π‘›π‘˜ 𝑛 βˆ’ π‘˜ π‘˜.

𝑛

π‘˜=0

𝑛

π‘˜=0

𝑛

π‘˜=0

𝑛

π‘˜=0

The first sum of the right side is equal to 𝑛22π‘›βˆ’2, now find the second sum

𝑛 βˆ’ π‘˜ π‘˜ π‘›π‘˜

𝑛

π‘˜βˆ’0

= 𝑛 βˆ’ π‘˜ π‘˜ π‘›π‘˜

π‘›βˆ’1

π‘˜=1

= 𝑛 βˆ’ π‘˜ π‘˜π‘›!

𝑛 βˆ’ π‘˜ ! π‘˜!

π‘›βˆ’1

π‘˜=1

= 𝑛 𝑛 βˆ’ 1 𝑛 βˆ’ 2 !

𝑛 βˆ’ π‘˜ βˆ’ 1 ! π‘˜ βˆ’ 1 != 𝑛 𝑛 βˆ’ 1

𝑛 βˆ’ 2 π‘˜

= 𝑛 𝑛 βˆ’ 1 2π‘›βˆ’2

π‘›βˆ’2

π‘˜=0

π‘›βˆ’1

π‘˜=1

From the two previous inequalities

π‘›π‘˜

𝑛

2βˆ’ π‘˜

2

= 𝑛22π‘›βˆ’2 βˆ’ 𝑛 𝑛 βˆ’ 1 2π‘›βˆ’2 = 𝑛2π‘›βˆ’2

𝑛

π‘˜=0

Substitute this equality into the right side of (4) and assume 𝑑 = π‘›πœ‘ 𝑛

π‘›π‘˜ ≀

𝑛2π‘›βˆ’2

π‘›πœ‘ 𝑛 =

2π‘›βˆ’2

πœ‘(𝑛)π‘˜ :

𝑛

2βˆ’π‘˜ > π‘›πœ‘ 𝑛

QED

Theorem 9

If 1 ≀ 𝑑 ≀𝑛

2 then

π‘›π‘˜ ≀ 2𝑛𝐻

𝑑

𝑛

𝑑

π‘˜=0

Proof

Assume 0 < π‘₯ < 1

π‘›π‘˜ ≀ π‘₯π‘˜βˆ’π‘‘

π‘›π‘˜ =

1

π‘₯𝑑 π‘₯π‘˜

π‘›π‘˜ ≀

1

π‘₯𝑑 π‘₯π‘˜

π‘›π‘˜ =

1 + π‘₯ 𝑛

π‘₯𝑑

𝑛

π‘˜=0

𝑑

π‘˜=0

𝑑

π‘˜=0

𝑑

π‘˜=0

Differentiate the function 𝑓 π‘₯ = 1+π‘₯ 𝑛

π‘₯ 𝑑 on x

1 + π‘₯ 𝑛

π‘₯𝑑

β€²

=𝑛 1 + π‘₯ π‘›βˆ’1

π‘₯π‘‘βˆ’

𝑑 1 + π‘₯ 𝑛

π‘₯𝑑+1=

1 + π‘₯ π‘›βˆ’1

π‘₯𝑑+1 𝑛π‘₯ βˆ’ 𝑑 1 + π‘₯

Its derivative between 0 and 1 has the only root π‘₯0 =𝑑

π‘›βˆ’π‘‘

As f(x) increases without limit as x tends to 0 on the right and 𝑓 1 = 2𝑛 then on the interval

(0, 1) f(x) reaches its minimum value at π‘₯0

π‘›π‘˜ ≀

𝑑

𝑛 βˆ’ 𝑑

βˆ’π‘‘

1 +𝑑

𝑛 βˆ’ 𝑑

𝑛

= 𝑑

𝑛 βˆ’ 𝑑

βˆ’π‘‘

𝑛

𝑛 βˆ’ 𝑑

𝑛

= 𝑑

𝑛

βˆ’π‘‘

𝑛

𝑛 βˆ’ 𝑑

π‘›βˆ’π‘‘π‘‘

π‘˜=0

= 𝑑

𝑛

βˆ’π‘‘

1 βˆ’π‘‘

𝑛

βˆ’ π‘›βˆ’π‘‘

= 𝑑

𝑛

βˆ’π‘‘

𝑛

1 βˆ’π‘‘

𝑛

βˆ’ 1βˆ’π‘‘

𝑛

𝑛

= 2𝑛𝐻 𝑑

𝑛

QED

Theorem 10

If 𝟎 ≀ 𝒕 ≀𝒏

𝟐

π‘›π‘˜ ≀ 2π‘›π‘’βˆ’

2𝑑2

𝑛

𝑛

2βˆ’π‘‘

π‘˜=0

Proof

From theorem 9 and

π‘›π‘˜ 𝑀 ≀ 2

𝑛𝐻

𝑛2

βˆ’π‘‘

𝑛

≀ 2𝑛𝐻

1

2 1βˆ’2𝑑𝑛

≀ 2(𝑛(1βˆ’1/2( 1βˆ’2𝑑

𝑛 log 2 1βˆ’

2𝑑

𝑛 + 1+

2𝑑

𝑛 log 2 1+

2𝑑

𝑛 ))

𝑛

2βˆ’π‘‘

π‘˜=0

𝐻 𝑛

2βˆ’π‘‘

𝑛 = 1 βˆ’ 1/2( 1 βˆ’

2𝑑

𝑛 log2 1 βˆ’

2𝑑

𝑛 + 1 +

2𝑑

𝑛 log2 1 +

2𝑑

𝑛 ). (5)

To estimate exponent on the right side of the inequality show that

𝑓 π‘₯ = 1 βˆ’ π‘₯ ln 1 βˆ’ π‘₯ + 1 + π‘₯ ln 1 + π‘₯ βˆ’ π‘₯2 β‰₯ 0

π‘₯ ∈ (βˆ’1,1)

f(x) is an even function, so we can prove it only for [0,1) and as 𝑓 0 = 0 it is enough to prove

that on this interval derivative of a function f(x) is non-negative.

𝑓 β€² π‘₯ = βˆ’1 βˆ’ π‘₯

1 βˆ’ π‘₯βˆ’ ln 1 βˆ’ π‘₯ +

1 + π‘₯

1 + π‘₯+ ln 1 + π‘₯ βˆ’ 2π‘₯ = ln 1 + π‘₯ βˆ’ ln 1 βˆ’ π‘₯ βˆ’ 2π‘₯

𝑓 β€² 0 = 0

𝑓 β€²β€² π‘₯ =1

1 + π‘₯+

1

1 βˆ’ π‘₯βˆ’ 2 =

2

1 βˆ’ π‘₯2βˆ’ 2

These derivatives are non-negative on the interval 0,1 hence

1 βˆ’ π‘₯ ln 1 βˆ’ π‘₯ + 1 + π‘₯ ln 1 + π‘₯ β‰₯ π‘₯2for all π‘₯ ∈ (βˆ’1, 1)

Hence

βˆ’ 1 βˆ’2𝑑

𝑛 log2 1 βˆ’

2𝑑

𝑛 βˆ’ 1 +

2𝑑

𝑛 log2 1 +

2𝑑

𝑛 ≀ βˆ’

4𝑑2

𝑛2 log2 𝑒

Substitute this inequality into (5)

π‘›π‘˜ ≀ 2

𝑛 1βˆ’1

2βˆ™4𝑑2

𝑛2 βˆ™log 2 𝑒 = 2𝑛

𝑛

2βˆ’π‘‘

0

π‘’βˆ’2𝑑2

𝑛

QED

Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°:

А.Π’. Чашкин β€œΠ›Π΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎ дискСтной матСматикС”

A First Course in Discrete Mathematics 2nd ed

Discrete Mathematics for Computing