Energy Pathways for Sustainable Development in the MENA Region · MENA SELECT \ MOROCCO\2016 4...

Post on 06-Jul-2020

7 views 0 download

Transcript of Energy Pathways for Sustainable Development in the MENA Region · MENA SELECT \ MOROCCO\2016 4...

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 27

MiddleEastNorthAfricaSustainableElectricityTrajectories

EnergyPathwaysforSustainableDevelopmentintheMENARegion

Summaryofworkshopresults:Scenariodevelopmentandmulti-criteriaanalysisforMorocco’sfutureelectricitysystemin2050

Authors

MarinaBerg(Europa-UniversitätFlensburg)SönkeBohm(Europa-UniversitätFlensburg)ThomasFink(WuppertalInstitute)MurielHauser(WuppertalInstitute)NadejdaKomendantova(InternationalInstituteforAppliedSystemsAnalysis)OleSoukup(WuppertalInstitute)

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 2

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 3

Theenergyandenvironmentalmanagement(EEM)departmentatEuropa-UniversitätFlensburghastwocorefieldsofresearchactivityaimingatasustainabledevelopmentofenergysystems:thedevelopmentoflocalandregionalclimateprotectionschemesandtheanalysisanddevelopmentofenergysystemsgoing100%renewable.EEMispartoftheinterdisciplinarycross-universityCentreforSustainableEnergySystems(ZNES).

InternationalInstituteforAppliedSystemsAnalysis(IIASA)conductspolicy-orientedresearch,basedonintegratedsystemsanalysisofnatural,technologyandinfrastructureandhumanandsocialsystemstodevelopsolutionsforsustainabilitytransformations.TheGovernanceinTransitionresearchthemewithintheRiskandResilienceprogramanalyzeshowgovernancestructuresshapedecisionsandsubsequentoutcomesbybuildingonandcontributingtoresearchondecision-makingprocesses,publicacceptance,riskperception,cognitivebiases,andculturalperspectives,aswellasparticipatorygovernancedesign.

TheWuppertalInstituteundertakesresearchanddevelopsmodels,strategiesandinstrumentsfortransitionstoasustainabledevelopmentatlocal,nationalandinternationallevel.SustainabilityresearchattheWuppertalInstitutefocusesontheresources,climateandenergyrelatedchallengesandtheirrelationtoeconomyandsociety.Theresearchgroup“FutureEnergyandMobilityStructures”involvedinthisprojectisworkingonthesequestionsfromatechnicalandsystemsanalyticalpointofview.

Projectpartners

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 4

SUMMARYInthescopeoftheMENASELECTresearchproject,aworkshopwasconductedinRabat,Morocco,from23to24May2016.Duringtheworkshop,stakeholdersfromdifferentnationalsocietalgroupsdiscussedanddevelopedfuturesettingsofMorocco’spowersupplywiththehelpofanadvancedspreadsheetmodel,accompaniedbyanevaluationofthedevelopedscenarios.Inthispaper,theresultsoftheworkshoparesummarized.

Inthefirstpartoftheworkshop,theparticipantswereintroducedtothemodelingapproach.Centralinputparameters,proceduresandassumptionswerepresented.ThisformedthebasisforthesubsequentdevelopmentofscenariosonMorocco’spowersupplyuntil2050.Withthehelpofthespreadsheetmodel,fourconsistentscenariosweredeveloped,reachingrenewableenergysharesrangingfromapproximately60to100percent.

Inthesecondpartoftheworkshop,theworkshopparticipantsweightedthedevelopedscenarios.Forthispurposeamulti-criteriaanalysiswasconducted,whichincludedquantitativeandqualitativecriteriaforfossilfuelsandrenewableenergytechnologies.Theparticipantsweightedtheselectedcriteriaagainsteachotheraccordingtothepreferencesoftherespectiveinstitutionstheyrepresented.Incombinationwiththecriteriaperformanceforeachtechnologyarankingofthedevelopedelectricityscenariostookplaceresultinginthefactthattheworkshopparticipantswouldacceptthescenariowiththehighestshareofrenewableenergiesin2050most.

TheworkshopsuccessfullyillustratedthatitwaspossibletodevelopoptionsofMorocco’sfuturepowersupplybycombiningtechnicalandeconomicparametersthatwereacceptabletotheworkshopparticipants.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 5

CONTENTS

1 Introduction .......................................................................................................................................................71.1 TheMENASELECTresearchproject.....................................................................................................71.2 Workshopobjectives....................................................................................................................................81.3 Workshopparticipants................................................................................................................................82 Modellingelectricitysystems.......................................................................................................................92.1 Fundamentalsofmodelling.......................................................................................................................92.2 Inputandoutputparameters................................................................................................................112.3 ScenariosofMorocco’selectricityfuturein2050........................................................................123 Multi-criteriaanalysis..................................................................................................................................153.1 Background ................................................................................................................................................153.2 Stakeholdergroupidentificationandweightingprocess.........................................................153.3 Discussionandresultsoftheweightingprocesses......................................................................163.4 Findingaconsensus...................................................................................................................................173.5 Rankingofthescenarios..........................................................................................................................183.6 Conclusion ................................................................................................................................................194 Resultsofworkshopdiscussions.............................................................................................................195 Conclusion&Recommendations.............................................................................................................216 Nextsteps ....................................................................................................................................................227 Sources ....................................................................................................................................................238 Annex ....................................................................................................................................................24

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 6

ABREVIATIONS

AHP AnalyticalhierarchyprocessCAPEX CapitalexpendituresCO2 CarbondioxideCSP Concentratedsolarpowercts MoroccanDirhamcentsEUF Europa-UniversitätFlensburgIIASA InternationalInstituteofAppliedSystemsAnalysisLCOE LevelizedcostofelectricityMCA Multi-criteriaanalysisMENA MiddleEastandNorthAfricaMENARES MENARenewablesandSustainabilityNGO Non-governmentalorganizationO&M OperationandmaintenanceOPEX OperationalexpendituresPV PhotovoltaicsRENPASS RenewableEnergyPathwaySimulationSystemRES RenewableenergysourcesSTEP Pumped-storagehydroelectricity(StationdeTransfer

d’ÉnergieparPompage,pompage-turbinage)WACC WeightedaveragecostofcapitalWI WuppertalInstitutWP Workingpackages

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 7

1 Introduction1.1 TheMENASELECTresearchproject

TheMiddleEastandNorthAfricanregion(MENA)currentlyfacesanumberofchallenges,suchasgrowingelectricitydemand,depletingfossilfuelresourcesandgeopoliticalrisksaswellasavolatilityofenergyprices.Severaloptionsexisttosatisfythegrowingelectricitydemand,includingscalinguprenewableenergysources(RES),fossilfuels(coal,gasandoil)andnuclearpower.Large-scaledeploymentofanyoftheseoptionscanleadtoatransitionoftheenergysystemand,consequently,toasocietaltransformation.Involvingprinciplesofdemocraticgovernanceinthisprocesswouldallowtoaddressrisksofconflictingopinionsandviewsamongstakeholdersoftheprocess.Despiteexistingscientificevidenceabouttechnicalandeconomiccapacitiesandcapabilitiesforsuchtransitionsoftheenergysystemandofsociety,theknowledgeabouthumanfactorsinfluencingtheseprocessesiscomparablysmallatlargeandalmostnon-existentfortheMENAregion.TheMENASELECTresearchprojectaddressestheperceptionsandviewsofdifferentstakeholdergroupsaboutthebenefitsandcostsofdifferentelectricitypathways,whichwillallowthesustainabledevelopmentofcommonsolutionsforthefuture.Thecombinationofquantitativeandqualitativemethodsofanalysis,includingthedevelopmentandimplementationofmodellingtoolssuchasscenariomodelling,amulti-criteriaanalysisaswellasthestakeholders’viewsgoesfarbeyondtraditionalmethodsofstakeholderinvolvement.Thisworkactivelyinvolvesthestakeholdersinframesofso-calledparticipatorymodelling,allowingextensiveinclusionofthestakeholders’feedback.TheMENASELECTprojectisfinancedbytheGermanFederalMinistryofEconomicCooperationandDevelopment.TheprojectconsortiumconsistsoftheBonnInternationalCenterforConversion(BICC),Europa-UniversityFlensburg(EUF),Germanwatch,InternationalInstituteforAppliedSystemsAnalysis(IIASA)andWuppertalInstitute(WI).Theprojecthasbeensubdividedintofourworkpackages(WP)thatareledbythedifferentprojectpartners:

/ WP1(IIASAandEUF)dealswiththetechno–economicmodellingofdifferentelectricitypathwaysupto2050basedonparticipatoryworkshopswithnationalstakeholders.

/ WP2(Germanwatch,IIASAandBICC)analysesthesocial,political,economicandecologicaleffectsofdifferenttechnologiestogetherwithlocalstakeholders.

/ WP3(WI)combinestheresultsofbothWP1and2toevaluatethedevelopedscenariosbasedonpredefinedcriteriawithhelpofamulti-criteriaanalysis.

/ WP4includesthedisseminationofresultsbyallprojectpartners.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 8

1.2 Workshopobjectives

ToinvolvelocalstakeholdersintheworkoftheMENASELECTresearchproject,theresearchteamconductedaworkshopwithrepresentativesfromdifferentsocietalgroups.Theworkshop“ElaborationetévaluationdesdifférentsscénariosdumixélectriquefuturduMaroc”tookplaceattheLaTourHassanhotelinRabat,Morocco,on23and24May2016.ItwasorganizedjointlybyEUF,IIASAandWIaswellasbythelocalpartnerMENARES.

Theresearchprojectconsistsofseveralworkpackages(WPs).Theworkshopcoveredquestionsaddressingtwoofthem.ItsaimswerethecommondevelopmentofconsistentscenariosofMorocco’spowerfuture(WP1oftheproject)andanassessmentofthesescenarios(WP3).Duringthefirstdayoftheworkshop,theworkshopparticipantsdevelopedconsistentscenariosofMorocco’sfuturepowersystemupto2050.Onthesecondday,thestakeholdersweightedcriteriadescribingdifferentimpactsofthepowersystemandrankedscenariosaccordingtotheirpreferences.

Theworkshopwasalsointendedtoactasaplatformforknowledgetransfer,anexchangeofideasanddiscussionsbetweenthedifferentstakeholdergroups.Theworkshopbenefitedfromintenseandprofounddiscussionsontechnical,economicandsocialaspectsofdifferentscenariosettings.

EUF,IIASAandWIaredeeplygratefultoProfessorDrissZejli,ProfessorTouriaBarradiandDrMostafaJameafromMENARESforalltheircontributionstotheorganizationoftheworkshopaswellasfortheirenthusiasminconductingtheworkshopandalltheireffortsleadingtoasuccessfulperformanceoftheresearchtasks.MENARESisaresearchinstitutionlocatedinCasablanca,whichhasstrongexpertiseintheareaofgreeneconomy,climatechangeandsustainability

1.3 Workshopparticipants

Theworkshopwasattendedbyapproximately20participants(seephotograph)representingdifferentsectors.

WorkshopparticipantsandorganizersPhoto:SafaaElAlami

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 9

Besidesrepresentativesfromacademiaandtheprivatesector,thefollowingparticipantsfromthepublicsector,NGOs,civilsocietyandyoungleaderstookpartintheworkshop.

\ Publicsector:• MEMEE(Ministèredel’Energie,desMines,del’Eauetde

l’Environnnement)• ONEE(OfficeNationaldel'Electricitéetdel'EauPotable)• AdminstrationoftheSousMassaregion

\ Academia:• UniversitéChouaibDoukkali,FacultédesSciencesElJadida• UniversitéIbnZohr,FacultédesSciencesAgadir• ENSAKénitra(EcoleNationaledesScienceAppliquéesKénitra)• ENSRabat(EcoleNormaleSupérieureRabat)

\ Privatesector:• SociétéEuroSolMaroc• SMAEE(SociétéMarocained’AuditEfficacitéEnergétique)• ClusterSolaire• INJAZAl-Maghrib• SaharaWind• Oussama• Uplinegroup• SuperCerame

\ Civilsociety:• AMADES-Morocco(MoroccanAssociationofSolidWaste)• AssociationFemmedBladi• ClubEnvironnement-AssociationRibatAlFath• AssociationActionCitoyenneetEcologique

2 Modellingelectricitysystems2.1 Fundamentalsofmodelling

ScenarioswithintheMENASELECTprojectcanbecalculatedwiththehelpoftheRENPASSmodeldevelopedbytheEuropa-UniversitätFlensburg.RENPASSisanopensourcemodelthatisfreelyavailableandusesopendata.Duringtheworkshop,asimplifiedspreadsheetmodelwasappliedthatincorporatedthemainfeaturesoftheRENPASSmodel.Withthis,mostrelevantinputparameterscouldeasilybeadjustedandresultswereobtainedinstantly.ThebasicstructureoftheRENPASSmodelandthespreadsheetmodelisillustratedinFigure1.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 10

Figure1BasicstructureoftheRENPASSmodel

Centralinputdatatothemodelincludemeteorologicaldatasuchassolarradiation,precipitationandwindspeedsinahightemporalandspatialresolution,technicalparametersofdifferenttypesofpowerplantsandthetransmissiongrid,financialparameterssuchascapitalandoperationalexpenditures.Themaindriverofthemodelistheelectricitydemand,representedbytheloadcurve.

ItwasassumedthatMorocco’s2050powerdemandshouldbecoveredwithdomesticgeneration,andpowertransmissionoptionswithneighbouringcountriesweredisregarded.Thisapproachensuredthedevelopmentofaconsistentsystem.Anyothersystemsettingincludingcross-bordertransmissioncapacitywouldalsowork.

Thefluctuatingelectricityproductionofwindandphotovoltaics(PV)isbasedonthemeteorologicalinputdata.Subtractingthisenergyproductionfromthehourlyloadresultsintheso-calledresidualload,Apositiveresidualloadrequiresadditionalpowergenerationfromothersources,anegativeresidualloadreflectssurplusenergyinthesystemthatneedstobehandled,forexamplestored.Inthemodelapproach,apositiveresidualloadcausesdispatchabletechnologiesinthesystemtooperate.Theirorderofutilizationisbasedonthemeritorder,whichmeansthetechnologywiththelowestmarginalcostsproducesfirst.Inthespreadsheetmodel,theorderofutilizationofdispatchabletechnologieswaspre-defined.

Basedontheutilizationofpowerplants,themodelcalculatesthesystemcostsperkWh,i.e.LCOEoftheindividualtechnologies,ofapotentialgridexpansionandofstorage.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 11

2.2 Inputandoutputparameters

Thefirstpartoftheworkshopmainlyfocussedonadjustingthecapacityneededfor2050toachieveaconsistentscenariowithaworkingsystem.Itwasalsopossibletoadjustseveralotherinputparametersinthemodel.Themodellinginputsintroducedduringtheworkshopcouldbegroupedintoloaddata,meteorologicaldata,technologydataandeconomicdata,accompaniedbyfurtherinputs,e.g.ontheregionalsplitintodefinedregions.Allinputparameterswerebasedonliteratureresearchandinsightsgainedduringtheworkshop.

Duringtheworkshop,themodelallowedparticipantstocalculatescenariosofMorocco’sfuturepowersupply.Inallcalculations,anhourlyresolutionofthetargetyear2050andthedevelopmentuntilthisyearincludingintermediateinstallationtargetsof2030weretakenintoaccount(cf.Schinkeetal.2016).

TheloadcurveappliedwasderivedfromONEE(2016)andpreparedforafullyear.Inthemodel,itwasscaledwiththeexpectedpowerdemandin2050andsplitintoregionaldemandaccordingtotheregionsizeandpopulationdensity.Duringtheworkshoptheparticipantsdiscussedpossiblefuturedevelopmentsoftheloaduntil2050andtheirrespectivedrivers.Forthecalculations,itwasagreedtoassumeanannualpowerdemandof173TWhin2050(cf.Triebetal.2015).Thiscorrespondstoafive-foldincreaseofMorocco’spowerdemandof2014,basedonanassumedsteadygrowthwithoutasaturationeffectbefore2050.

Inthemodel,relevantenergytechnologies,i.e.renewableandconventionalgeneration,storageoptionsandthetransmissiongrid,withtheirtechnicalandeconomiccharacteristicsandtheiroperationalbehaviourweretakenintoaccount.Thedispatchabletechnologiesweredefinedwiththeirinstalledcapacity,theirrampingdurationandminimumdowntimes.Additionally,efficienciesandfuelinputsweretakenintoaccountinthemodel.

Forthecalculations,Moroccowassplitintofourregionsbasedondifferencesinwindspeedconditionsandsolarradiation.Duringthecalculations,allcapacityinstalledwassplituporallocatedtotheregionsdefinedtomodelregion-specificproduction.Foreachoftheregions,onerepresentativemeasuringpointanditsrespectivewindspeedandsolarradiationdata(cf.NASA2016)wasapplied.

Theunderlyingwindspeedswereutilizedforthecalculationoftheelectricityproductionfromwindpower.ForthemodellingofPVandconcentratedsolarpower(CSP),solarradiationdatawerepre-processed,andregion-specificnormalizedproductioncurvesasmodelledwiththeSAMsoftware(cf.NREL2016)wereutilizedinthespreadsheetmodel.Economicdataincludedcapitalexpenditures(CAPEX)andoperationalexpenditures(OPEX)thatwerealsodependentonthetechnologies’servicelifeandinterestrates(weightedaveragecostofcapital,WACC)andwereassumedtodecreaseovertime.

ThetransmissiongridbetweentheregionswasbasedonfigurespresentedinONEE2016.Inthemodel,theresidualloadwascalculatedforthemodelregions.Forthescenariosmodelled,potentiallynecessarytransmissiongridenhancementswerederivedfromexcesspowerandpowershortagesintheregions,relatedtotheexisting

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 12

transmissioncapacity.Thisneedstoberegardedasanapproximationtorealityasthefuturetransmissionrequirementwillheavilydependontheverylocationoftheinstalledcapacity.

Pumpedhydropowerplants(STEP)wereassumedtobetheonlystorageoptioninthesystem.Inthemodel,existingstoragecapacitywastakenintoaccountandwasadjustableinthescenarios.

Thespreadsheetmodeldeliveredseveraloutputsthatwerefedintothesuccessivemulti-criteriaanalysis(MCA,cf.Chapter3).Firstofall,theenergyamountsproducedinthetargetyear2050andtheirsharesintheinstalledproductioncapacityandgeneratedelectricitywerecalculatedforalltechnologies.Moreover,thefuelinputforconventionalpowergenerationwascalculatedandtheresultingdirectCO2emissionswerederivedfromthis.

Additionally,thespecificcostin2050wascalculated.Forthiscalculation,allCAPEXoftheinstalledcapacityin2050wasannuitized.SupplementedbytheOPEXand,ifnecessary,fuelcostin2050,thetotalannualcostwasdividedbytheelectricityproducedandlevelizedcostofelectricity(LCOE)ofthesystemresulted.Thisapproachwasalsoappliedtostorageandpotentiallynecessarygridenhancements.

2.3 ScenariosofMorocco’selectricityfuturein2050

Withthespreadsheetmodelintroduced,theworkshopparticipantsdevelopedfourconsistentscenariosofMorocco’s2050powersupply.Thescenarioscorrespondedtothestakeholders’preferencesvoicedatthebeginningoftheworkshop.Theworkshopparticipantsstatedthatlowelectricitycost,highsharesofrenewableenergies,lowimportsandlowCO2emissionswerethemostimportantissuesforthem.

Itbecameevidentthatinstallationtargetsof2030wouldnotcoverMorocco’spowerdemandin2050.Thatiswhytheinstalledcapacityneededtobeadjustedtofindoptionstocoverthedemandin2050foreveryhouroftheyear.Theworkshopparticipantsthereforediscussedandalteredtheinstalledcapacityinthemodelaccordingtotheirpreferences.Whenaworkingscenariowascompleted,themodelwasresetandtheworkshopparticipantsadjustedtheinstalledcapacityagain.AfulllistofthemainscenarioresultscanbefoundinTable1.

Theloadandproductioninthescenariosdevelopedisexemplarilyillustratedforthefirstweekof2050inFigure1oftheAnnex.

Inthefirstscenariodeveloped(scenarioA),windpowerwasincreasedto35GWandPVto15GWin2050.Alltheotherenergysourcesdidnotdiffersubstantiallyfromthe2030targets.Thescenariowascharacterizedbyashareof2/3ofthetotalinstalledcapacityprovidedbytechnologiesusingintermittentenergysources.Forthescenario,thepumpingcapacityofpumpedstorage(Stationsdetransfertd'énergieparpompage,STEP)wasincreasedto9GW,anditsturbinecapacitywasincreasedto9.6GW.ThecalculationsresultedinCO2emissionsof18.5Mtin2050.Insum,theLCOEofthesystemwas93.7cts/kWh.Thisscenariowascalled“Mix1”asitimpliedavarietyofenergysourcesinstalledin2050.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 13

Inthesecondscenariodeveloped(scenarioB),windpowerwasfurtherincreasedto45GWandPVto30GWin2050.Allconventionalpowergenerationwasassumedtobetakenoutofoperationby2050.Withthissystemsetting,itwasonlypossibletocovertheloadineveryhouroftheyearwithanincreaseinSTEPcapacity(pumps:10GW,turbines:17.9GW)andanincreaseintheamountofstorableenergy(2000GWh).Withthisscenariosetting,itwaspossibletocoverapproximately100percentofMorocco’spowerdemandin2050byrenewableenergyproduction.Intermittentcapacitywas78%ofthecapacityinstalled.Withnoconventionalpowergenerationinthesystem,CO2emissionswerereducedtozero.TotalLCOEwas106.4cts/kWh,thushigherthaninscenarioA.Thescenariowascalled“100%RES”asitsinstalledgenerationtechnologyin2050consistedentirelyofrenewableenergytechnologies.

Inthethirdscenariodeveloped(scenarioC)thefocuswassetonsolarPVwithaninstalledcapacityof50GWin2050.Windpower(10GW)andconventionalpowergenerationremainedatacomparablylowlevel.Duetoenergysurplusesduringsunshinehours,asubstantiallyhighSTEPpumpcapacityof23.9GWwasnecessarytohavetheloadcoveredineveryhouroftheyear.Insum,theshareofrenewableenergiesintheenergyproducedwasapproximately60percent.LCOEwasfoundtobe103.3cts/kWh,thusbetweenscenarioAandscenarioB.TheresultingCO2emissions(29Mt),however,weresubstantiallygreaterthaninscenarioA.

Inthefourthscenario(scenarioD),windpowercapacitywasincreasedto40GWandPVto10GW.SimilartoscenarioA,conventionalpowergenerationwasnotsubstantiallyalteredcomparedtothe2030targets.ThecapacityofSTEPwasincreasedto10GW(pumps)and7.5GW(turbines),respectively.Withthiscombinationofcapacity,ashareofRESof78.4percentwasreachedin2050.Duetothepowerproductionfromconventionaltechnologies,CO2emissionsof19Mtresulted.LCOEwasslightlyhigherthaninscenarioA(94.2cts/kWh).

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 14

Table1

Centralresultsofthescenariosdeveloped

A:Capacitiesandenergyamounts

Scenario A B C D

Name Mix1 100%RES PV Mix2

Capacity(MW)

Energy(TWh/a

Capacity(MW)

Energy(TWh/a)

Capacity(MW)

Energy(TWh/a)

Capacity(MW)

Energy(TWh/a)

Windpower 35,000 98.4 45,000 126.6 10,000 28.1 40,000 112.5

PV 15,000 21.8 30,000 43.6 50,000 72.7 10,000 14.5

Hydropower 3,100 2.6 3,100 1.0 3,100 5.2 3,100 2.5

Biomass 3,000 20.4 5,000 20.0 0 0.0 3,000 19.0

CSP 2000 4.2 2,000 2.4 1,300 2.6 1,500 3.1

Coal 5000 26.6 0 0.0 4,937 35.0 6,000 28.9

Oil 741 4.2 0 0.0 741 5.5 741 4.0

Gas 500 11.5 0 0.0 6,172 37.2 6,172 9.2

TOTAL 69,341 189.7 85,100 193.7 76,250 186.7 70,513 193.9

B:Storage,emissions,cost

Scenario A B C D

Name Mix1 100%RES PV Mix2

STEP(energy) GWh 702 2,000 702 702

STEP(pump) MW 9,000 10,000 23,906 10,000

STEP(turbine) MW 9,635 17,926 14,283 7,511

CO2emissions Mt 18.5 0.0 29.3 19.1

LCOE cts/kWh 93.7 106.4 103.3 94.2

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 15

3 Multi-criteriaanalysis3.1 Background

Aspartoftheprocess,allstakeholderswereintroducedtotheMCAcarriedoutontheseconddayoftheworkshop.Theanalysisaimedatobtainingaweightingofasetofcriteria(Figure2)thathadbeencompiledfromdataprovidedbyworkpackages1and2.ThemathematicalmethodologyAHP(analyticalhierarchyprocess)wasappliedtocalculatetheweightingbasedonapairwisecomparisonofthecriteria.ThedefinitionsofallcriteriatakenintoaccountcanbefoundinTable2oftheAnnex.

Figure2

Thecriteriasetinhierarchicalorder

3.2 Stakeholdergroupidentificationandweightingprocess

Thecriteriacategoriesatthehighestlevelofthehierarchy(techno–economic,environmental,societal)includingashortdescriptionofsub-criteriawerepresented.Allstakeholderswereaskedtojoinoneofthefourfollowinggroupsaccordingtothepreferencesandvaluesoftheirinstitutions:

/ Techno–economicgroup:Higherpreferencefortechno–economiccriteria;/ Ecologicalgroup:Higherpreferenceforenvironmentalcriteria;/ Societalgroup:Higherpreferenceforsocietalcriteria;/ Equalpreferencegroup:Equalpreferencesamongthethreecategoriesofcriteria.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 16

Assoonasthefourgroupswereformed,theactualweightingprocessstarted.Forthisprocess,anindividualquestionnairewashandedouttoeachstakeholder,andeachgroupreceivedanadditionalgroupquestionnaire.Tounderstandthecriteriacorrectly,asheetwithcriteriadescriptionswasdistributedamongthestakeholders.Theparticipantswereaskedtofirstfillouttheirindividualquestionnaire,thenannouncetheirchoicestotheothergroupmembersandfinallydiscussanddecideonagroupweightingthatallgroupmemberscanidentifywith.

3.3 Discussionandresultsoftheweightingprocesses

Eachstakeholdergroupwasaskedtobrieflydescribehowtheyexperiencedtheweightingprocessintheirgroup,whetherdifferencesbetweentheindividualandthegroupweightingsexisted,andwhichcriteriawerefinallydiscussedmost.

Here,themajorityofthestakeholdergroupsstatedthattherewereonlysmalldifferencesbetweentheirindividualweightings.Wheneverdivergingopinionswereidentifiedwithinagroup,theparticipantsdiscussedthesedifferencesandfinallyagreedonaconsensus.Theecologicalgroupreporteddifficultiesfindinganappropriateweightingforthecomparisonbetweensafetyandairpollution(health)astheycouldnotagreewhichonewasmoreimportantfromtheirpointofview.

TheresultsoftheweightingsofeachgroupaswellasthemathematicalaverageweightingofallgroupsaredisplayedinTable2.

Table2Groupweightingsandthemathematicalaverageweightingacrossallgroupsinpercentagepoints Techno-

economicgroupEcological

groupSocialgroup

Equalpreferencegroup

Mathematicalaverage

Systemcost 15.6 0.7 13.5 20.1 9.4

Systemflexibility 4.8 2.3 5.8 9.6 6.3

Energyindependence 51.1 7.5 52.2 41.7 38.5

CO2emissions 1.0 6.1 0.7 1.3 1.9

Landrequirements 0.9 2.6 1.2 0.7 1.5

Waterrequirements 5.9 39.3 6.2 9.2 13.6

Hazardouswaste 6.4 15.8 6.2 3.1 8.5

On-sitejobcreation 2.6 1.1 0.6 1.6 1.8

Domesticvaluechainintegration

7.7 5.6 3.1 7.8 7.9

Safety 2.0 2.7 3.0 2.2 3.5

Airpollution(health) 2.0 16.5 7.5 2.6 7.1

Total 100 100 100 100 100

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 17

Mostofthegroupsweightedenergyindependenceasthemostimportantcriterionbyfar.Theothercriteriaobtainedarelativelylowweightingcomparedtoenergyindependence.Onlytheecologicalgroupdevelopedastructurallydifferentweighting,resultinginwaterrequirementsasthemostimportantcriterion—followedbyhazardouswasteandairpollution(health).

3.4 FindingaconsensusAfterdiscussingthemathematicalaverageweighting,thestakeholdersweregiventhechancetochangetheweightingincaseitdidnotreflecttheirjudgment.TheConsensus1weightinginTable3showstheseadjustmentsmade.Theenergyindependencelostonimportance,butremainedthemostimportantcriterion.Itwasarguedthatjobcreationandtheestablishmentofdomesticindustrywouldbecrucialforachievingenergyindependence.Thecriteriadomesticvaluechainintegrationandon-sitejobcreationthereforereceivedahigherweighting.Theweightingforthecriterionsystemcostincreasedaswell.Itwassaidtobeanimportantcriterion,especiallyforadevelopingcountrylikeMorocco,asenergypricesneedtobelowtobeaffordableforthepeople.Theweightingofthecriterionsystemflexibilitywasalsoincreased.However,itwasdiscussedthatthiscriterionwouldprobablybemoreimportantfromtheproducer’spointofviewthanfromtheconsumer’spointofview.TheworkshopparticipantsfurtherdiscussedthattheweightingofthecriterionwaterrequirementsshouldstayinthesamerangeasMoroccoisfacingseverewaterscarcity.Inturn,theydecidedtolowertheweightingofthecriterionhazardouswaste.AccordingtoanumberofstakeholdersitisunlikelythattherewillbeanuclearpowerplantbuiltinMorocco.Theythereforeconcludedthatthiscriterionisnotasimportantasothers.

Table3

Themathematicalaverageweightingcomparedtothefirstandsecondconsensusweightinginpercentagepoints. Mathematicalaverage Consensus1 Consensus2

Systemcost 9 12 16

Systemflexibility 6 12 12

Energyindependence 38 29 25

CO2emissions 2 4 4

Landrequirements 1 1 1

Waterrequirements 14 12 12

Hazardouswaste 8 4 4

On-sitejobcreation 2 6 6

Domesticvaluechainintegration

8 11 11

Safety 3 3 3

Airpollution(health) 7 6 6

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 18

TheresultsforConsensus2reflecttheweightingaftertheclarificationofamisunderstandingonthedefinitionofsystemcoststhathasbeenfacedbyveryfewparticipantsandwasexpressedonlyaftertheagreementonConsensus1.Theparticipantsweregiventhechancetorevisetheconsensusinlightoftheclarifications.Thisresultedinminorchangesinfavourofthecriterionsystemcost,butdidnotincludesubstantialchangestotheconsensus.Consensus2canfinallyberegardedasacommonagreementofallworkshopparticipantsconcerningtheimportanceoftheelevencriteriaunderstudyforthedevelopmentoftheMoroccanelectricitysystem.

3.5 RankingofthescenariosThedifferentweightingsofcriteriawerecombinedwiththefourscenariosdevelopedonthepreviousday(seepart1oftheworkshopsummary).Thisallowedtorankthescenariosaccordingtothestakeholder’spreferenceselaboratedthroughtheweightingprocess.AspresentedinTable4,thedifferentweightingsallleadtothesamerankingexceptasmallalternationintheconsensus2weighting:Thescenariofeaturing100%Renewablesrankedfirst,followedbyscenario“Mix2”and“Mix1”(invertedorderofMix2and1inconsensus1)andscenario“PV”wasleastpreferredacrossallscenarios.

Table4

Therankingofthefourscenariosaccordingtothedifferentweightings

Techno–economic

group

Ecologicalgroup

Socialgroup

Equalpreference

group

Groupaverage

Consensus1 Consensus2

100%renewable

1 1 1 1 1 1 1

Mix2 2 2 2 2 2 2 3

Mix1 3 3 3 3 3 3 2

PV 4 4 4 4 4 4 4

Theidenticalrankingcanbeexplainedbythesimilarweightingpatterns.Asdiscussedearlier,inmostweightings,theenergyindependencewasbyfarconsideredthemostimportantcriterion.Astheenergyindependenceishighestinthe100percentrenewableenergyscenario(cf.Table4),itisrankedfirstplace.Theecologicalgroupwastheonlyoneweightingwaterrequirementsasthemostimportantcriterionandairpollutionandhazardouswasteassecondmostimportantcriteria.Asthe100percentrenewableenergyscenarioachievesthebestscoresforthesecriteriaaswell,italsoranksfirstplacewhentheecologicalgroupweightingisapplied.TheexactindicatorvaluesforeachscenariocanbefoundinTable1oftheAnnex.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 19

3.6 ConclusionAsaresult,thescenariorankingobtainedbymeansofaMCAturnsouttoberobustwithregardtothepreferencesofallstakeholdergroupsinvolvedintheworkshop.The100percentrenewableenergyscenarioperformsbestinthosesubjectareasthathavebeenidentifiedasmostrelevantforallparticipants(especiallyenergyindependenceandwaterconsumption).ThisscenariothereforeranksfirstplaceinthefinalrankingthatresultsfromtheMCAofworkshopdaytwo.Achievingtheoutlinesofthisscenarioin2050wouldresultinanenergysystemsolelybasedonrenewableenergieswherebythemajorityoftheenergywouldbeproducedbywindandsolarpowerplants.

4 ResultsofworkshopdiscussionsTheresultsofalldiscussionsandresultsduringtheworkshoparegroupedintodifferenttopics.

/ UseoftechnologiesTheworkshopparticipantsagreedonthegoaltoexpandrenewableenergytechnologiesinMoroccointhefutureandtoreduceorminimizeinvestmentsinconventionalpowerplants.Fortheyear2030,nationaltargetshavebeensetbythenationalgovernmentthatcorrespondtoashareofinstalledrenewablecapacityofabout52percent.Anincreaseininstalledcapacityofconventionalpowerplantsafter2030wasnotdesiredbytheworkshopparticipants.Thestakeholdersfurthermoreagreedthattheuseofgeothermalpowerplants,nuclearpowerplantsandoffshorewindfarmswouldnotberequiredtosatisfytheelectricitydemandin2050.Thesetechnologieshavenotbeenincludedinthenationaltargetsfor2030.TheuseofnuclearenergyhasbeensubjectofanintensediscussioninMoroccoforalongtime,andapotentialsiteforaplanthasalreadybeenidentified.However,theworkshopparticipantsagreedthatnuclearenergywouldnotbeanoptionforMorocco’sfuturepowersupplyduetosafetyreasonsandduetotheunansweredquestionofthedisposalofnuclearwaste.Itwasalsoagreedtoincludeasubstantialshareofgaseousbiomassasanotherenergysourceinthescenarioscalculated.BiomasshasnotbeenincludedinMorocco’s2030targets.Althoughuntilnowonlyfew,andmostlysmall,biogaspowerplantshavebeeninoperationinMorocco,thistechnologyseemedtobeoneoptiontoreduceMorocco’sincreasingquantitiesofdomesticandagriculturalwaste.

/ Electricitycost

Duringtheworkshop,severalparticipantsstronglyemphasizedthatlowelectricitycostperkilowatthourwouldbethekeyaspectinMorocco’senergyfuture.Thisviewwasinteraliabasedontheenvisagedaffordabilityofelectricityinthecountry.Recently,theelectricitypriceinMoroccohasbeenrelativelylowduetostipulationbypublicauthorities,andpriceswerefoundtobebelowactualcostofgenerationandtransmission.Expectationsforthefutureareaimingatanintensifieduseof

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 20

domesticresources,suchasrenewableenergies,whichcanreduceorlimitgenerationcostaswellasincreasethenation’senergeticindependence.

/ Securityandindependenceofsupply

TheparticipantsagreedthatanincreasingenergeticindependenceofMoroccoshouldbeenvisaged.ThishowevercannotonlybeachievedbytheimportofrenewabletechnologybutitalsorequiresaprofoundknowledgetransfertoMorocco.Bydoingso,morenationalproductioncouldbeestablished,i.e.morepartsofthevaluechainofproductionprocesseswouldbeavailableinMorocco,whichagainwouldincreasethenationaladdedvalueandjobcreation.Theworkshopparticipantsassessedthatinthecaseofwindpowersuchatransformationhasproventobedoableandhasalreadybeensuccessfullyongoinginthecountry.Itwasmentionedthatnearly70percentoftheaddedvaluefromwindpowerwouldremaininthecountryandthatMoroccohasdecreaseditsdependenceontheimportoftechnologycomponents.Moreover,theworkshopparticipantsbelievedthatMoroccoshouldnotbaseitspowersystemononesingletechnologyandtheyidentifiedaneedtoexplorethedomesticpotentialofdifferentrenewableenergysources.Thiscouldincreaseandguaranteethesecurityaswellastheindependenceofsupply.

/ Landandwateruse

TheworkshopparticipantsconsideredthefundamentalfactthatsufficientspaceisavailableinMoroccofortheinstallationofsubstantialamountsofrenewablecapacity.However,theyshowedgreatconcernregardingthefutureuseofimportantagriculturalareasassitesofnewpowerplants.Otherthanspace,Moroccoisfacedwiththeproblemofwaterscarcity.Thefreshwaterdemandhascontinuouslyincreasedwithinthelastyears,andresourceshaverunshort.Thischallengecouldbetackledbyproducingcheapelectricityfromrenewableenergyresourcesforlargescaleseawaterdesalination.SeawateriscomparablyeasytoaccessduetoMorocco’slongcoastline.Giventhechallengeofwaterscarcity,mostoftheworkshopparticipantsagreedonnotexpandingtheutilizationofconcentratedsolarpower(CSP)plantsonalargescaleassumingthatCSPcanrequiresubstantialamountsofcoolingwater.

Inadditiontotheaforementionedaspects,theworkshopparticipantsagreedonthegoalthatMoroccoshouldbecomeanelectricityexportinginsteadofanelectricityimportingnation.Duetohighpotentialsofdifferentrenewableenergyresources,Moroccocouldproduceenoughelectricityforitsnationaluseaswellasforexportpurposes.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 21

5 Conclusion&RecommendationsFromtheworkshopresultsdescribedabove,thefollowingsummaryofexpectationsandpreferencesoftheworkshopstakeholders,i.e.aheterogenicgrouprepresentinglargesharesoftheMoroccanpopulation,canbegleaned.

/ NuclearpowerhasbeenregardedasanunpopulartechnologyoptioninMorocco’sfuturepowersupply.

/ Workshopparticipantshavenotbeeninfavouroftheexpansionofconventionalpowergenerationcapacity.

/ Theexpansionofcapacityofrenewableenergytechnologieshasbeendesiredthemost,particularlydiversetypesofenergysources.

/ TheuseofbiogasplantsonalargescalewasregardedtobenotjustanoptionofasustainableelectricityproductionbutalsoasanoptiontoreducewasteinMorocco.

/ Theneedtogenerateandprovideelectricityatlowcostshasbeenemphasized.Ifthiscannotbeachieved,theMoroccanpopulationcannotpayforandusetheelectricity.

Basedontheseinsightsgainedduringtheworkshop,wepresentthefollowingrecommendationsforthelong-termdevelopmentoftheMoroccanpowersector:

/ Toachieveahighlevelofenergyindependence,Moroccoshouldfocusinparticularonrenewableenergysourcesforitsfuturepowersupply.Sustainablebiomasstechnologiesbasedonresidualmaterialflowsshouldbeconsideredinthenationallong-termgoals.Conventionalgenerationshouldplayaminorrole.

/ RepresentativesofthepopulationneedtobeincludedinthediscussiononMorocco’sfutureelectricitysupplytoincreasethepublicsupportofthenationaltargets.Thereshouldbeastrategytoassurethatallsocietalgroupsareenabledtoparticipateinthisprocess.

/ Opportunitiesshouldbeinvestigatedtoestablishanelectricitysystembasedon100percentrenewableenergywhilesimultaneouslylimitingtherequiredcapacitiesforelectricitygenerationandstorage.Theseopportunitiesmayincludethecombinationofrenewabletechnologieswithdifferentfeed-inprofilesorbalancingofsupplyanddemandwiththehelpofdifferentflexibilityoptions.

/ ApplicationpotentialsofadditionalstoragetechnologiesapartfromSTEPshouldbeidentifiedtoreducethedependencyofelectricitystorageontheavailabilityofwaterresources.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 22

6 NextstepsThescenariosdevelopedwiththespreadsheetmodelduringtheworkshopwillbeutilizedasinputstotheRENPASSmodeldevelopedbyEUF.TheRENPASSmodel,again,willbeprovidedtointerestedparties.Anotherworkshopisexpectedtotakeplacebytheendof2016inMoroccoinwhichinterestedpartieswillbetrainedintheutilizationofthemodel.

Moreover,otherpublicationsareplannedtoprovidefurtherdetailsconcerningthemodellingapproach,theinputandoutputparametersaswellastheMCAmethodologyapplied.

WithintheframeworkoftheMENASELECTresearchprojectandapartfromtheworkshopactivitiesinMorocco,furtherresearchworkandworkshopswithlocalstakeholderswillbeconductedinthestateofJordan.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 23

7 SourcesHamane,T.(2016,January).Trends,visionandchallengesforthepowersector–

MoroccanElectricalSystem.Presentationbyatthe5thGeneralConferenceofArabUnionElectricityinMarrakesh.

NationalAeronauticsandSpaceAdministration(NASA).GoddardSpaceFlightCenter.(2016).Modern-EraRetrospectiveanalysisforResearchandApplications,Version2(MERRA-2).Washington,DCRetrievedfromhttp://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

NationalRenewableEnergyLaboratory(NREL).(2016).SystemAdvisorModel(SAM).Golden,CO.Retrievedfromhttps://sam.nrel.gov/

Schinke,B.,Klawitter,J.,Zejli,D.,Barradi,T.,Garcia,I.,&Leidreiter,A.(2016).Backgroundpaper:CountryfactsheetMorocco.Energyanddevelopmentataglance2016.Bonn:Germanwatch,BICC.

Trieb,F.,Hess,D.,Kern,J.,Fichter,T.,Moser,M.,Pfennig,U.,Caldez,N.,...Lilliestam,J.(2015).BETTER–BringingEuropeandthirdcountriesclosertogetherthroughrenewableenergies.WP3:NorthAfricacasestudy.Finalreport.Stuttgart:GermanAerospaceCenter(DeutschesZentrumfürLuft-undRaumfahrt,DLR),IntelligentEnergyEurope(IEE).

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 24

8 AnnexFigure1

Exemplaryloadandproductioninthescenariosdeveloped(week1in2050)

Scenario1:

Scenario2:

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 25

Scenario3:

Scenario4:

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 26

Table1

Exactvaluesofeachcriterionforeachscenario

Techno–économic Social Ecologique

Critères

Coû

tsdusystèm

e

Flex

ibilitédu

systèm

e

Indé

pend

ance

én

ergé

tique

Sécu

rité

Pollu

tionde

l’air

loca

le(san

té)

Con

tributionà

l'éco

nomielo

cale

Emission

sCO2

Déc

hetssolides

dang

ereu

x

Con

sommation

d’espa

ce

Con

sommation

d’ea

u

Créationd’em

ploisdirects

Intégrationindu

strie

lle

DhCt/kWh

Échelle1-5

Échelle1-5

Nombrededécès(E-10)

MtÉchelle1-5

Échelle1-5

MtÉchelle1-5

ha m3

Mix1 93.3 2.41 3.66 10 0.25 2.27 3.08 18.47 1.91 61,312 24,277,572

100% 106.0 2.09 4.40 10 0.03 2.49 3.33 0.00 1.01 106,150 2,296,987

PV 102.9 2.25 3.20 5 0.52 2.66 3.14 29.26 2.42 150,539 39,264,302

Mix2 93.9 2.40 3.68 11 0.24 2.16 3.04 19.05 1.88 47,056 24,421,041

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 27

Table2

Criteriadefinition

Techno-economiccriteria Thesecriteriaanalyzethetechnicalandeconomiccharacteristicsoftheelectricitysystem.Theytakeelectricityproductioncosts,dependencyonenergyimportsandproductionvolatilityintoconsideration.

Environmentalcriteria Thesecriteriaanalyzetheenvironmentalcharacteristicsoftheelectricitysystem.Theytakewaterconsumption,landuse,CO2emissionsandmanagementofhazardouswasteintoconsideration.

Societalcriteria Thesecriteriaanalyzethesocio-economiccharacteristicsoftheelectricitysystem.Theytakethesystem’seffectsonpublichealth,theriskofseriousincidentsandthepromotionoflocaleconomyintoconsideration.

Systemcosts Thecostsoftheelectricitysystemincludeproduction,gridextensionandstoragecosts.

Systemflexibility Theelectricitysystem’scapacitytoreactrapidlyandflexiblytochangesinelectricitydemand.

Energyindependence Futurecapacityofthescenariostomakeuseoflocalresourcesinordertoreduceenergydependency.

CO2emissions DirectCO2emissionsofallpowerplantsduringtheobservationperiod.

Landuse Soiloccupationcausedbytheoperationofallpowerplants(on-site).

Waterconsumption Directfreshwaterconsumptionduringtheoperationofallpowerplants(cooling,steamcycle,cleaning).

Hazardouswaste Quantityandqualityofhazardouswasteproducedbyallpowerplants.

Contributiontolocaleconomy

Thescenarios’capacitytointegratethelocaleconomyintotheelectricitysystem.

Safety Thenumberoffatalitiesasaresultofseriousaccidentsduringtheoperationandmaintenanceofpowerplants.

Airpollution(health) Airqualitydeteriorationresultingfromatmosphericpollutantsthatcanbringabouthealthrisks.

On-sitejobcreation Thescenarios’capacitytocreateon-sitejobsduringtheconstructionandoperationofpowerplants.

Domesticvaluechainintegration

Thescenarios’capacitytoencouragetheemergenceand/ordevelopmentofnationalindustriesandofindirectjobsduringtheentirelifecycleofpowerplants.

WORKSHOPSUMMARY\BERG,BOHM,FINK,HAUSER,KOMENDANTOVA,SOUKUP

MENASELECT\MOROCCO\2016 28

bicc\InternationalesKonversionszentrumBonnBonnInternationalCenterforConversionGmbHPfarrer-Byns-Straße1,53121Bonn,Germany+49(0)22891196-0,Fax-22,bicc@bicc.dewww.bicc.dewww.facebook.com/bicc.de

DirectorforResearchProfessorDrConradSchetter

DirectorforAdministrationMichaelDedek

AUTHORS

MarinaBergisResearchAssociateatEuropa-UniversitätFlensburgSönkeBohmisResearchAssociateatEuropa-UniversitätFlensburgThomasFinkisaresearchfellowattheWuppertalInstitute(researchgroup“FutureEnergyandMobilityStructures”)MurielHauserisamasterstudentinEnergyScienceandTechnologyatETHZurichwithafocusonrenewableenergytechnologies,itspoliciesandeconomics.SheparticipatedintheprojectasaninternattheWuppertalInstituteDrNadejdaKomendantevaisaresearchscholarandcoordinatorofGovernanceinTransitionthemeattheInternationalInstituteforAppliedSystemsAnalysis(IIASA)OleSoukupisaresearchfellowattheWuppertalInstitute(researchgroup“FutureEnergyandMobilityStructures”)

Theresponsibilityforcontentsandviewsexpressedinthispublicationliesentirelywiththeauthors.

COPYEDITORHeikeWebb

DATEOFPUBLICATION01September2016

Withfinancialsupportfrom

Exceptwhereotherwisenoted,thisworkislicensedunder: cf.creativecommons.org/licenses/by-nc-nd/3.0/