Eligheor2

Post on 02-Jul-2015

62 views 0 download

description

Eligheor2

Transcript of Eligheor2

   Por  el  mΓ©todo  de  las  secciones:    Dibujaremos  el  diagrama  de  cuerpo  libre  para  hacer  el  calculo  de  las  reacciones  en  los  apoyos:    

 Aplicando  las  ecuaciones  de  equilibrio  obtenemos  que:    

𝐹! = 0:    π‘…!! = 0    

𝐹! = 0:      

𝑅!! +  π‘…!! βˆ’ 1π‘˜π‘  βˆ’ 2π‘˜π‘ βˆ’ 2π‘˜π‘ βˆ’ 2π‘˜π‘ βˆ’ 1π‘˜π‘ = 0  

1!!"!

2!!"!

2!!"! 2!!"!

1!!"!

!!! !!!

!!!

!!

!! !! !! !! !!

!!

!! !!

!!

2,4!!! 2,4!!! 2,4!!! 2,4!!!

2,62!!!

0,46!!! COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

 π‘…!! +  π‘…!! = 8  π‘˜π‘  

   

   Con  los  datos  del  dibujo  podemos  sacar:    

𝛼 =   tan!!2,169,6 = 12,68Β°  

                                   

2,16!!!

0,46!!!

9,6!!!

2,62!!! !

Si  se  conoce  la  inclinaciΓ³n  de  la  armadura,  podemos  encontrar  la  medida  que  poseen  verticalmente  los  elementos  DC,  FE  y  HG    

 π·πΆ = 𝑦! +  π΄π΅  

 πΉπΈ = 𝑦! +  π΄π΅  

 π»πΊ = 𝑦! +  π΄π΅  

 Donde  tenemos:                                                              π‘¦! =  π΄πΆ tan𝛼    ,                        π‘¦! =  π΄πΈ tan𝛼  ,                      π‘¦! =  π΄πΊ tan𝛼                                                                          π΄πΆ =  2,4  π‘š    ,                        π΄πΈ =  4,8  π‘š  ,                      π΄πΊ =  7,2  π‘š                                                                                                          π΄π΅ =  0,46  π‘š    ,                      π›Ό =  12,68Β°    Por  lo  tanto    

𝐷𝐢 = 𝑦! +  π΄π΅ = 2,4 tan 12,68 + 0,46 = 1  π‘š    

𝐹𝐸 = 𝑦! +  π΄π΅ = 4,8 tan 12,68 + 0,46 = 1,54  π‘š    

𝐻𝐺 = 𝑦! +  π΄π΅ = 7,2 tan 12,68 + 0,46 = 2,08  π‘š    

!! !! !! !! !!

!!

!! !!

!! !!

!!

!!

!!

Aplicando  las  ecuaciones  de  equilibrio  obtenemos  que:    

𝑀! = 0:        

βˆ’2,4 2 βˆ’  4,8 2 βˆ’ 7,2 2 βˆ’ 9,6 1  + 9,6(𝑅!!) = 0      

𝑅!! =  2,4 2 + 4,8 2 + 7,2 2 + 9,6 1

9,6 = 4  π‘˜π‘  

 Luego  tenemos  que:    

𝑅!! = 8π‘˜π‘ βˆ’ 𝑅!! = 8  π‘˜π‘ βˆ’ 4π‘˜π‘ = 4  π‘˜π‘    Calcularemos  el  valor  de  cada  componente  de  las  reacciones,  por  lo  cual,  se  seccionarΓ‘  la  armadura  en  los  elementos  CE,  DE  y  DF    

   

𝛽 =   tan!!2,41 = 67,38Β°  

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

!! !! !!

!!

!!

!!

4!!"!

2!!"!

1!!"!

!

2,4!!! 2,4!!!

!!"

!!"

!!"

Aplicando  las  ecuaciones  de  equilibrio  obtenemos  que:    

𝑀! = 0:        

1 𝐹!"  βˆ’  2,4 4π‘˜π‘ +  2,4 1π‘˜π‘ = 0      

𝐹!" =  2,4 4π‘˜π‘ βˆ’  2,4 1π‘˜π‘

1 = 7,2  π‘˜π‘        π‘»    π‘’𝑙  π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘π‘œ  πΆπΈ  π‘’π‘ π‘‘π‘Ž  π‘’𝑛  π‘‘π‘Ÿπ‘Žπ‘π‘π‘–Γ³π‘›      

𝑀! = 0:        βˆ’4,8 4π‘˜π‘ + 4,8 1π‘˜π‘ + 2,4 2π‘˜π‘ βˆ’ 1 cos 12,68 (𝐹!")βˆ’ 2,4 sin 12,68 (𝐹!") = 0    

𝐹!" =  4,8 4π‘˜π‘ βˆ’ 4,8 1π‘˜π‘ βˆ’ 2,4 2π‘˜π‘1 cos 12,68 +  2,4 sin 12,68 = βˆ’6,34  π‘˜π‘  

   

∴ 𝐹!" =  6,34  π‘˜π‘        π‘ͺ      π‘’𝑙  π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘π‘œ  π·πΉ  π‘’π‘ π‘‘π‘Ž  π‘’𝑛  π‘π‘œπ‘šπ‘π‘Ÿπ‘’𝑠𝑖ó𝑛      

𝑀! = 0:        

2,4 1π‘˜π‘ βˆ’ 2,4 4π‘˜π‘ + 1 634π‘˜π‘ βˆ’ 1 sin 67,38 (𝐹!") = 0    

𝐹!" =  βˆ’2,4 1π‘˜π‘ + 2,4 4π‘˜π‘ βˆ’ 1 634π‘˜π‘

1 sin 12,68 = βˆ’0,93  π‘˜π‘  

   

∴ 𝐹!" =  0,93  π‘˜π‘        π‘ͺ      π‘’𝑙  π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘π‘œ  π·πΈ  π‘’π‘ π‘‘π‘Ž  π‘’𝑛  π‘π‘œπ‘šπ‘π‘Ÿπ‘’𝑠𝑖ó𝑛              

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή