Bengt-Johan Skrifvarsusers.abo.fi/.../FPK_II_2018/2_Ash_and_Ash_Deposition_FPK_II_2018.pdf · size...

Post on 15-Dec-2018

216 views 0 download

Transcript of Bengt-Johan Skrifvarsusers.abo.fi/.../FPK_II_2018/2_Ash_and_Ash_Deposition_FPK_II_2018.pdf · size...

Ash and ash deposition for solid fuels

Bengt-Johan Skrifvars

FPK II, ÅA, 2018

Ash and ash deposition for solid fuels

Content

1. Ash related problems

Principles

Facts

2. Co-firing

3. Corrosion

4. Summary

Ash related problems

Why?

• Slagging, fouling and corrosion

most important single reason

for unscheduled shut downs of boilers

• Fireside deposits on heat exchanger tubes

- decreased heat transfer to steam/water side

- increased pressure drop in fluegas channel

- corrosion of heat exchanger tubes

• Emission problem

Trace elements, health risk

Amager Power Station:

Pendant SH after 1 week of Coal-Firing

/F.Frandsen DTU Ash Chemistry Course, October 1998/

• Depend on

- fuel ash content and type

- boiler type and operation

• Fireside deposits and corrosion

- all types of boilers

• Bed agglomeration

- fluidized bed boilers

• Trace emissions

- all types of boilers

Ash related problems

Ash and ash deposition for solid fuels

Content

1. Ash related problems

Principles

Facts

2. Co-firing

3. Corrosion

4. Summary

Bottom

ash

Pathways of ash forming elements entering a boiler

Transportation,

transformation,

reactions

Release of ash

forming elements

Slagging,

foulingFly ash

separation

Fuel

Air

Additives

Formation of a troublesome deposit:

Fuel

Formation of ash particles

Transportation of ash particles to a surface

Adhesion of ash particles to a surface

Densification of ash particles on a surface

Formation of a troublesome deposit:

Fuel

Formation of ash particles

Transportation of ash particles to a surface

Adhesion of ash particles to a surface

Densification of ash particles on a surface

• Ash = incombustible rest

• Quality & quantity depends on fuel

• Major elements:

Si, Al, Fe, Ti, Ca, Mg, Mn, P, Na, K, S, Cl

• Minor elements (trace elements, EU heavy metals):

As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V

Ash-forming elements in a fuel

• Expressed often as weight-% oxides in ash

Si SiO2 Mn MnO

Al Al2O3 P P2O5

Fe Fe2O3 Na Na2O

Ti TiO2 K K2O

Ca CaO S SO3

Mg MgO Cl Cl

• Elements as oxides in ash is an assumption

everything in the fuel has oxidized

• If all elements have been analyzed

oxide sum = 100 %

Ash-forming elements in a fuel

Ash-forming elements in a fuel

• Minerals:

- included minerals

- excluded minerals

- Si, Al, Fe, Ca, Mg, Na, K, S

• Organically associated:

- Ca, Mg, K, Na, S

• Water soluble:

- Na, K, S, Cl

O

Na+O-

Included

mineals

Excluded

minerals

Org S

H2O-soluble

salts

Summary

FUEL ORGANICALLY MINERAL

ASSOCIATED PART

Brown coal 30 % 70 %

Bit. coal 15 % 85 %

Antrasite 5 % 95 %

Wood 100 % 0 %

Bark 98 % 2 %

Annual biom. 98 % 2 %

Oil 100 % 0 %

Waste derive 2-100 % 100-2 %

Ash-forming elements in a fuel

Formation of a troublesome deposit:

Fuel

Formation of ash particles

Transportation of ash particles to a surface

Adhesion of ash particles to a surface

Densification of ash particles on a surface

Formation of fly ash from coal /Flagan & Seinfield 1988/

Convective

transport

Pyrolysis Char burning and

fragmentation

Vaporization

Homogeneous

nucleation

Coagulation

Heterogeneous

condensation

Fly ash

0.1 -1 mm

Fly ash

1 - 100 mm

Mineral

inclusions

Excluded

minerals

Mineral

coalescence and

fragmentation

Mass-size distribution of fly ash from PC coal combustion/Flagan & Seinfield 1988/

0.1 10

Particle size dp

Ma

ss c

on

ce

ntr

atio

n fre

qu

en

cy

dm

/d(lo

gd

p)

Particles condensed

from gas phase

(aerosols)

Minerals

10.01

0.4

0.8

1.2

1.6

2.0

2.4

100

g

m3

mm

Mass concentration frequency, dm/d(logdp) ??

g/m3 ???

40

80

120

160

200

Particle size, mm

Num

ber

frequency

10 20 30 40 50

/Hinds, W: Aerosol technology 2nd Ed. Wiley & Sons, 1999/

1000 particles

0 – 50 mm

size nbr

0 - 4 mm 104

4 - 6 mm 160

6 - 8 mm 161

8 - 9 mm 75

9 - 10 mm 67

10 - 14 mm 186

14 - 16 mm 61

16 - 20 mm 79

20 - 35 mm 90

35 - 50 mm 18

S 1000

Num

ber

frequency

Let’s consider:

1000 particles

0 – 50 mm

nbr

size nbr size

0 - 4 mm 104 26

4 - 6 mm 160 80

6 - 8 mm 161 80.5

8 - 9 mm 75 75

9 - 10 mm 67 67

10 - 14 mm 186 46.5

14 - 16 mm 61 30.5

16 - 20 mm 79 19.7

20 - 35 mm 90 6

35 - 50 mm 18 1.1

S 1000

20

40

60

80

100

Particle size, mm

Num

ber

frequency/s

ize

10 20 30 40 50

mm-1

1000 particles

0 – 50 mm

nbr nbr fract

size nbr size size

0 - 4 mm 104 26 0.026

4 - 6 mm 160 80 0.080

6 - 8 mm 161 80.5 0.0805

8 - 9 mm 75 75 0.075

9 - 10 mm 67 67 0.067

10 - 14 mm 186 46.5 0.0465

14 - 16 mm 61 30.5 0.0305

16 - 20 mm 79 19.7 0.0197

20 - 35 mm 90 6 0.006

35 - 50 mm 18 1.1 0.0011

S 1000

0.02

0.04

0.06

0.08

0.1

Particle size, mm

Num

ber

fraction/s

ize

10 20 30 40 50

mm-1

dN/d(dp) = f(dp)

1000 mg of particles

0 – 50 mmmass mass mass fract

size (mg) size size

0 - 4 mm 104 26 0.026

4 - 6 mm 160 80 0.080

6 - 8 mm 161 80.5 0.0805

8 - 9 mm 75 75 0.075

9 - 10 mm 67 67 0.067

10 - 14 mm 186 46.5 0.0465

14 - 16 mm 61 30.5 0.0305

16 - 20 mm 79 19.7 0.0197

20 - 35 mm 90 6 0.006

35 - 50 mm 18 1.1 0.0011

S 1000

0.02

0.04

0.06

0.08

0.1

Particle size, mm

Ma

ss f

ractio

n/s

ize

10 20 30 40 50

1/mm

dm/d(dp) = f(dp)

1000 mg/Nm3 of particles

0 – 50 mm

conc conc/size

size (mg/Nm3) (mg/Nm3/mm)

0 - 4 mm 104 26

4 - 6 mm 160 80

6 - 8 mm 161 80.5

8 - 9 mm 75 75

9 - 10 mm 67 67

10 - 14 mm 186 46.5

14 - 16 mm 61 30.5

16 - 20 mm 79 19.7

20 - 35 mm 90 6

35 - 50 mm 18 1.1

S 1000

20

40

60

80

100

Particle size, mm

Co

ncen

tration

fre

qu

en

cy/s

ize

10 20 30 40 50

mg/(Nm3·mm)

dc/d(dp) = f(dp)

Mass-size distribution of fly ash from PC coal combustion/Jokiniemi & Kauppinen, 1995/

0.1 10

Particle size dp

Ma

ss c

on

ce

ntr

atio

n fre

qu

en

cy

dm

/d(lo

gd

p)

10.01

1000

2000

3000

4000

5000

6000

100

mg

Nm3

mm

Mass concentration frequency, dm/d(logdp) =

- average mass of particles within a certain particle size range

- particle size range expressed on a log-scale

- may be treated mathematically as a frequency function

for ex. total mass concentration = total area under the curve

mass concentration within a certain range

f(log(dp)d(log(dp)))

g/m3 =

- should actually be

g/m3/1

since the term log(dp) is in the denominator

∫0

log(dp)

Mass-size distribution of fly ash from PC coal combustion/Jokiniemi & Kauppinen, 1995/

0.1 10

Particle size dp

Ma

ss c

on

ce

ntr

atio

n fre

qu

en

cy

dm

/d(lo

gd

p)

10.01

1000

2000

3000

4000

5000

6000

100

mg

Nm3

mm

Stk =

~10 µm

Particle size-distribution measurements

with a low-pressure cascade impactor

••

/Berner 1972/

rp C(dp) v dp2

9 m W

rp: particle density

C(dp): Cunningham slip factor

function

v: jet velocity

dp: particle diameter

m: gas viscosity

W: jet diameter

~10 nm

Number-size and mass-size distribution of fly ash

from PC coal combustion /Jokiniemi & Kauppinen, 1995/

0.1 10

Particle size dp

Nu

mb

er

co

nce

ntr

atio

n fre

qu

en

cy

dN

/d(lo

gd

p)

10.01

1E+04

1E+05

1E+06

1E+07

1E+08

100

1

cm3

mm

Ma

ss c

on

ce

ntra

tion

freq

ue

ncy

dm

/d(lo

gd

p)

1000

2000

3000

4000

5000

6000

mg

Nm3

Particle size plots

- number-size distribution, mass-size distribution,

or concentration-size distribution

- expressed often as a frequency-per-size function

- x-axis particle size range often expressed on a log-scale

- y-axis numbers do not express directly number-, mass-,

or concentration values.

Particle size measurements

- Low pressure cascade impactor useful

- Gives mass vs size or number vs size information

~10 nm – 10 mm

Ash formation from other fuels,

indications from coal:

• High amount of organically associated minerals

a lot of sub-micron sized fly ash particles

• High amount of excluded minerals

a lot of larger fly ash particles

Formation of ash particles

Formation of a troublesome deposit:

Fuel

Formation of ash particles

Transportation of ash particles to a surface

Adhesion of ash particles to a surface

Densification of ash particles on a surface

Transport of ash particles to a surface

Diffusion

small particles

(< 0.5 - 5 mm)

Impaction

large particles

(> 0.5 - 5 mm)

/Hedley et al., Samms et al. 1966/

Transport of ash particles to a surface

• Diffusion- small particles (< 0.1 mm)- diffusion in direction of concentration gradient

(Fick´s law)

• Thermophoresis- small particles (< 5 mm)- diffusion in direction of temperature gradient

• Inertial impaction- large particles (> 5 mm)- dependent on gas velocity- angle of impact

The physics of thermophoresis

small

ash particle

Tem

pera

ture

Part

icle

net m

ovem

en

tgas molecule movements

gas molecule movements

Transport of ash particles in a boiler

Large particles

Small particles

Summary

• Diffusion- small particles (< 0.1 mm)- diffusion down the concentration gradient(Fick´s law)

- “Termophoresis” one diffusion mechanism in heat gradient direction

• Impaction- large particles (> 5 mm)- dependent of gas velocity & particle mass

Transport of ash particles to a surface

Formation of a troublesome deposit:

Fuel

Formation of ash particles

Transportation of ash particles to a surface

Adhesion of ash particles to a surface

Densification of ash particles on a surface

2-component phase diagram

600

700

800

900

5000 10050

NaCl Na2SO4

T0

T100Liquid

NaCl(s)+ L Na2SO4(s)+L

NaCl(s)+Na2SO4(s)

mol-%

oC

“Lever-rule”

600

700

800

900

5000 10050

NaCl Na2SO4

T0

T100

Liquid

NaCl(s)+ LNa2SO4(s)+L

NaCl(s)+Na2SO4(s)

A BC

Amount of melt =

Amount of solid =

A - BC - B

A - CC - B

x 100 %

x 100 %

Bulk composition = A

Liquid composition = C

Solid composition = B

mol-%

oC

Amount of melt vs temperature

100

80

60

40

20

0500 600 700 800 900

Temperature, (°C)

Am

ou

nt

of

me

lt, w

-%

85 mol-% Na2SO4

15 mol-% NaCl

450oC

Tsteam

Tsticky

Tfluegas1000oC

Deposit at its initial growth

Tsticky , “sticky temperature”

• silicates, “glas, slag”:

viscosity < 105 dPa s/Walsh et al 1990/

• low-viscous melt:

melt amount > 15 %/Backman et al 1987/

450oC

Tsteam

Tflow

Tfluegas1000oC

Deposit at its “equilibrium thickness”

Tflow , “flow temperature”

• silicates, “glas, slag”:

viscosity < 105 dPa s/Walsh et al 1990/

• low-viscous melt:

melt amount > 70 %/Backman et al 1987/

0

10

20

30

40

50

60

70

80

90

100

500 550 600 650 700 750 800 850 900 950 1000

Temperature, oC

Am

ou

nt

of

me

lt, w

-%

Melting behavior of different alkali salts

T15

T70

600 700 800 900 1000

10

8

6

4

2

0

Temperature, oC

Dep

os

it t

hic

kn

es

s,

mm

T15 T70

Deposit equilibrium thickness

600 700 800 900 1000 600 700 800 900 1000 600 700 800 900 1000

T15 = 530oC, T70 = 690oC

10

8

6

4

2

0

Temperature, oC

De

po

sit

th

ick

ne

ss

, m

m

T15 = 850oC, T70 = 900oC T15 = 710oC, T70 = 830oC

Deposit equilibrium thicknesses

for various compositions

• Amount of melt dominating reason for

- large impacting particles (> 10 mm)

- front side of tubes (wind side)

• Physical & physico-chemical forces important for

- small particles (< 1 mm)

- electrostatic forces, van der Waal’s forces

- around the tube (both wind & lee)

• Chemical reactions in the deposit sometimes

important

- Ca particles reactive with SO2 & CO2

Adhesion of ash particles to a surface

Formation of a troublesome deposit:

Fuel

Formation of ash particles

Transportation of ash particles to a surface

Adhesion of ash particles to a surface

Densification of ash particles on a surface

Densification of ash particles

Sintering

- small amount of “freezing” melt,

partial melting

- slow flowing of amorphous “glas”-phase

viscous flow sintering

- chemical reactions between particles and gas

- solid particles “growing” together

solid state sintering

Summary

Large effect from

• used fuel (what is fed into the boiler)

• ash composition (how the feed behaves thermally)

• flow field (where the particles go)

• temperature (amount of melt)

Ash related problems

- Principles -

Ash and ash deposition for solid fuels

Content

1. Ash related problems

Principles

Facts

2. Co-firing

3. Corrosion

4. Summary

“Opportunity fuels”

Annual biomasses

Forrest residues & prunings

Agricultural rests, -shells

Olive residues

Sorted wastes

Sludges

Coal slurry, pet coke

Others

MBM (meat and bone meal)

Solid animal excrement

ÅA fuel database

Analyzed per 2006

18 wood bark fuels

46 wood based fuels

(trunk, forest residues, construction residues)

11 annual biomass fuels

18 peats

15 coals

37 other

(sorted wastes, sludges, biomass-

based wastes, chicken litter)

TOT 145 fuels

Analyzing ash forming elements in a fuel

Conventional

- done on the ash of the fuel

- ashing + element analysis from ash

- all other elements except S & Cl

- ashing affects the analysis

Advanced

- done directly on fuel

- dissolving of fuel + element analysis of solution

- all elements

- no ashing

For ex.

selective leaching (=chemical fractionation)

various microscopic methods (SEM/EDS, CCSEM)

others

/Benson & Holm 1985, Baxter 1994, Zevenhoven 2001/

Water leachible

- alkali sulfates/carbonates/chlorides

Buffer solution leachible

- organically associated

Acid leachible

- carbonates/sulfates

Rest

- silicates, unsoluble rest

Total mineral matter

- all major ash-forming elements

H2O

NH4Ac

HCl

Stepwise leaching

/Benson & Holm 1985, Baxter 1994, Zevenhoven 2001/

Water leachible

- alkali sulfates/carbonates/chlorides

Buffer solution leachible

- organically associated

Acid leachible

- carbonates/sulfatesRest

- silicates, unsoluble rest

Total mineral matter

All major ash-forming elements

Stepwise leaching

Easily soluble

Mineral part

Stepwise leaching

Coal Peat Bark Wood AB Other0

20

40

60

80

100

120

140

Ash

fo

rmin

g e

lem

en

ts, g

/kg

dry

fu

el

Leached in H2O

Leached in Acetate

Leached in HCl

Rest fraction

Untreated fuel

267 g/kg 312 g/kg

/ÅA fuel database, 2006/

0

5

10

15

20

25

30

Ash

-fo

rmin

g e

lem

en

ts, w

eig

ht-

% d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Ash-forming elements in fuels

Ash

fo

rmin

g e

lem

en

ts, g

/kg

d.b

.

0

50

100

150

200

250

300

0

5

10

15

20

25

30

Ash

-form

ing e

lem

ents

, w

eig

ht-

% d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Ash-forming elements in fuels

Ash-forming elements,

easily soluble

Ash-forming elements,

mineral part

Ash

fo

rmin

g e

lem

en

ts, g

/kg

d.b

.

0

50

100

150

200

250

300

0

2000

4000

6000

8000

10000

12000

14000

16000

18000S

ulp

hu

r in

fuel, m

g/k

g d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Sulphur in fuels

0

2000

4000

6000

8000

10000

12000

14000

16000

18000C

hlo

rine in fuel, m

g/k

g d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Chlorine in fuels

0

2000

4000

6000

8000

10000

12000

14000

16000

18000P

ota

ssiu

m in fuel, m

g/k

g d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Potassium in fuels

Potassium,

easily soluble

Potassium,

mineral part

0

2000

4000

6000

8000

10000

12000

14000

16000

18000S

odiu

m in fuel, m

g/k

g d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Sodium in fuels

Sodium,

easily soluble

Sodium,

mineral part

0

10000

20000

30000

40000

50000

70000

80000

90000

100000

60000

Ca

lciu

m in fuel, m

g/k

g d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Calcium in fuels

Calcium,

easily soluble

Calcium,

mineral part

0

10000

20000

30000

40000

50000

70000

80000

90000

100000

60000

Sili

co

n in fuel, m

g/k

g d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

Silicon in fuels

Silicon,

easily soluble

Silicon,

mineral part

0

2000

4000

6000

8000

10000

12000

14000

16000

18000E

U h

eavy m

eta

ls in fuel, m

g/k

g d

.b.

Wood Forest

res.

Bark Const

res.

An.

biom.

Peat Coal Others

/ÅA fuel database, 2006/

EU heavy metals in fuels

Summary

”Opportunity fuels”

• challenging, from an ash point-of-view

• don not necessarily increase the ash amount

• increase clearly ash aggressiveness

High Chlorine, Alkali (Na, K), Calcium

• sulphur, silicon as in conventional fuels

• heavy metals higher than

in conventional fuels

Opportunity fuels

( )

Ash and ash deposition for solid fuels

Content

1. Ash related problems

Principles

Facts

2. Co-firing

3. Corrosion

4. Summary

Contractual fuels in the large FBC

deliveries 2001-2002

• Wood based 16/23

• Peat 10/23

• Coal 8/23

• Sludges 8/23

• Pet Coke 4/23

Co-firing vs single-fuel-firing 20 vs 3

/Hupa 2003; FBC plenary session/

Co-firing, effect on slagging & fouling

Sla

gg

ing &

Fou

ling

Fuel A 50% Fuel B

/Hupa 2003; FBC plenary session/

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

Bark share in rice husk, weight-%

3h10h

Depositio

n,

g/m

2h

/Skrifvars et al 2004; Energy & Fuels/

Co-firing, effect on slagging & fouling

Deposit probe measurements

Full-scale BFB

0

10

20

30

40

50

60

70

80

90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Thermal share

Depositio

n,

g/m

2h

Full-scale deposit probe measurements

- Deposition vs fuel mix -

Biomass Peat or Coal

/ÅA deposit probe measurements, 2006/

Peat/straw co-firing

lab-scale drop-tube tests

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

Share of straw in peat, weight-%

Depositio

n,

g/m

2h)

/Theis 2006; Dr thesis /

Peat Straw

72

Cl & S in fuel vs deposition

- lab-tests -

2 KCl + SO2 + ½ O2 + H2O K2SO4 + 2 HCl

0

20

40

60

80

100

120

140

160

0.0 0.1 0.2 0.3 0.4 0.5

Molar ratio of Cl/S in fuel

Depositio

n,

g/m

2h Peat-straw

Peat-bark

/Theis 2006; Dr thesis /

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Thermal shareBiomass Peat or coal

0

5

10

15

20

25

30

35

40

Cl in

deposit,

weig

ht-

%

Wind

Lee

Full-scale deposit probe measurements

- Cl i deposit vs fuel mix -/ÅA deposit probe measurements, 2006/

Summary

• seldom a linear ash behavior

• co-firing worse than single-fuel-firing if fuel ashes

cause a melt when mixed together

• silicate-based ashes may function

as “cleaning agents”, through an erosive effect

• sulphur may stop chlorine from getting into deposits

Co-firing

Ash and ash deposition for solid fuels

Content

1. Ash related problems

Principles

Facts

2. Co-firing

3. Corrosion

4. Summary

Compact steel-oxide layer

- protects from further oxidation

- requires the presence of oxygen

Steel

Traditional corrosion protection of steel

Does not work if

- the steel-oxide layer breaks

- oxygen is abscent

- the steel-oxide layer is porpous

Steel

Traditional corrosion protection of steel

Usually handleled by materials people only

Novel thinking needed

- challenging interface, steel-deposit-gas

- chemistry-physics-engineering

Traditional corrosion protection of steel

Carburization

Mo

lten

sa

lts

co

rros

ion

Su

lfid

ati

on

Low melting

compounds

Molten

salts

Carb

on

Oth

er

low

me

ltin

g

co

mp

ou

nd

s

(Ni-

P,

V2O

5,

Mo

O3,

etc

.)

Sulfur

OXYGEN

O2

CO/CO2

H2/H2O

/Salmenoja 2001, Dr Thesis/

High-temperature corrosion mechanisms

Fe Cl S

Corrosion caused by Chlorine

/Salmenoja 2001, Dr Thesis/

ÅA, laboratory-scale corrosion tests

Before

Heat treatment After

Heat treatment

For SEM-

analysis

/Westen-Karlsson 2008, Lic. Thesis/

Cross-section, mm

Co

rro

sio

n la

ye

r

thic

kn

es

s, (µ

m)

0

200

0 5 10 15

100

Mean, median,

most frequent, max

ÅA, laboratory-scale corrosion tests

- SEM analysis -

/Westen-Karlsson 2008, Lic. Thesis/

Synthetic

ash

T0 = 834oC

0% Cl

10% K

0

20

40

60

80

100

120

140C

orr

os

ion

la

ye

r th

ick

ne

ss

, m

m

ÅA, laboratory-scale corrosion tests

(Na, K)2 SO4 + 0.0 p-% Cl

/Skrifvars et al, Corr. Sci. 2008/

0

20

40

60

80

100

120

140 Synthetic

ash

T0 = 526oC

0.2% Cl

10% K

ÅA, laboratory-scale corrosion tests

(Na, K)2 SO4 + 0.2 p-% Cl

/Skrifvars et al, Corr. Sci. 2008/

Co

rro

sio

n la

ye

r th

ick

ne

ss

, m

m

0

20

40

60

80

100

120

140 Synthetic

ash

T0 = 522oC

1.2% Cl

10% K

ÅA, laboratory-scale corrosion tests

(Na, K)2 SO4 + 1.2 p-% Cl

/Skrifvars et al, Corr. Sci. 2008/

Co

rro

sio

n la

ye

r th

ick

ne

ss

, m

m

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700

Probe surface temperature, oC

Cl in

de

posit,

weig

ht-

%Deposit probe measurements, full-scale boilers

- Cl in deposit vs probe surface temperature-

Wind

Lee

?

/ÅA deposit meaurements database, 2006/

Summary

• alkali chlorides enhance corrosion strongly

• already a small amount of Cl increases corrosion

• sulphur may stop chlorine to get into the deposit

• increase of steam temperature very challenging

Corrosion

Ash and ash deposition for solid fuels

Content

1. Ash related problems

Principles

Facts

2. Co-firing

3. Corrosion

4. Summary

Strong influence of

• fuel fired (what is fed into the boiler)

• ash composition (how the element react to ash in the boiler)

• flow fields (where the ash particles flow/impact)

• temperature (amount of melt in the ash/deposit)

Summary 1(4)

From ash-forming elements to deposits

• challenging, from an ash point-of-view

• don not necessarily increase the ash amount

• increase clearly ash agressiveness

High Chlorine, Alkali (Na, K), Calcium

• sulphur, silicon as in conventional fuels

• heavy metals higher than

in conventional fuels

New fuels, ”Opportunity fuels”

( )

Summary 2(4)

Summary 3(4)

Co-firing

• seldom a linear ash behavior

• co-firing worse than single-fuel-firing if fuel ashes

cause a melt when mixed together

• silicate-based ashes may function

as “cleaning agents”, through an erosive effect

• sulphur may stop chlorine from getting into deposits

Corrosion

• alkali chlorides enhence corrosion strongly

• already a small amount of Cl increases corrosion

• sulphur may stop chlorine to get into the deposit

• increase of steam temperature very challenging

Summary 4(4)

Dr. Mischa Theis

@Bayer, Germany

Ms. Micaela Westén-Karlsson

@Finnsementti

Assoc. Prof. Flemming Frandsen,

@Technical University of Denmark

Prof. Rainer Backman

@ University of Umeå

Acknowledgments

Prof. Mikko Hupa

Mr. Tor Laurén

Mr. Linus Silvander

Dr. Johan Werkelin

Dr. Patrik Yrjas

Dr. Maria Zevenhoven

@Åbo Akademi University