Analog Filters: Biquad Circuits

Post on 06-Jan-2016

145 views 3 download

description

Analog Filters: Biquad Circuits. Franco Maloberti. Introduction. Active filters which realize the biquadratic transfer function are important building blocks (biquad). w p. w 0.  p. Introduction. Biquads can build high-order filters. Poles and zeros are Real or complex conjugate. - PowerPoint PPT Presentation

Transcript of Analog Filters: Biquad Circuits

Analog Filters: Biquad Circuits

Franco Maloberti

Franco Maloberti Analog Filters: Biquad Circuits 2

Introduction

Active filters which realize the biquadratic transfer function

are important building blocks

(biquad)

p

p

0

H(s) =a2s

2 +a1s+a0

(s−sp)(s−sp*)

ω02 =σ p

2 +ωp2

ω0

Q=−2σ p

Franco Maloberti Analog Filters: Sensitivity 3

Introduction

Biquads can build high-order filters

H(s) =P(s)Q(s)

=(s−si )1

n∏(s−sj )1

m∏Poles and zeros areReal or complex conjugate

H(s) =(s−sz,1)(s−sz,1

* )(s−sp,1)(s−sp,1

* )⋅(s−sz ,2)(s−sz,2

* )(s−sp,2)(s−sp,2

* )⋅(s−sz ,3)(s−sz,3

* )(s−sp,3)(s−sp,3

* )⋅K

s or 1/s

B1 B2 B3

Problem: how to properly pair poles and zeros

Franco Maloberti Analog Filters: Sensitivity 4

Single Amplifier Configurations

RC A+

-

RC A+

-

RR(k-1)

RC A+

-

RR(k-1)

Enhanced positive or negative feedback

Franco Maloberti Analog Filters: Sensitivity 5

Sallen-Key Biquad

R1 R2

C1 C2

E1 E2

E1 =E2(1+sR1C1)(1+sR2C2)

Only real poles (or zeros)

C1 C2

E1 E2

The feedback permits us to achieve complex poles

Franco Maloberti Analog Filters: Sensitivity 6

Sallen-Key Biquad (ii)

C1

C2

E1 E2

R1 R2

RbRa

E3E4

E2

E1

=

μR1R2C1C2

s2 +(1R1C1

+1

R2C1

+1−μR2C2

)s+μ

R1R2C1C2

ω0 =1

R1R2C1C2

Q=

1

R1R2C1C2

1R1C1

+1

R2C1

+1−μR2C2

G=μ

Franco Maloberti Analog Filters: Sensitivity 7

Sallen-Key Biquad (ii)

Five design elements, two properties (G is not important)

ω0 =1

R1R2C1C2

Q=

1

R1R2C1C2

1R1C1

+1

R2C1

+1−μR2C2

G=μ

Case 1: C1=C2; R1=R2=R

R=1/ 0 =3-1/QCase 2: C1=C2; Ra=Rb

R1=Q/ 0 R2=1/Q 0 Case 3: R1=R2; =1

C1=2Q/ 0 C2=1/2Q 0

Case 4: C1=31/2Q C2; =4/3

R1=1/Q0 R2=1/31/20

Franco Maloberti Analog Filters: Sensitivity 8

Sallen-Key Biquad (iii)

Sensitivities

ω0 =1

R1R2C1C2

Q=

1

R1R2C1C2

1R1C1

+1

R2C1

+1−μR2C2

G=μ

SR1

ω0 =SR2

ω0 =SC1

ω0 =SC2

ω0 =−12

SR1

Q =−12

+QR2C2

R1C1

SR2

Q =−12

+QR1C2

R2C1

+(1−μ)R1C1

R2C2

⎝ ⎜

⎠ ⎟

SC1

Q =−12

+QR1C2

R2C1

+R1R2C1

R2C2

⎝ ⎜

⎠ ⎟

SC2

Q =−12

(1−μ)QR1C1

R2C2

K

Franco Maloberti Analog Filters: Sensitivity 9

Sallen-Key High- and Band-pass

R1 R2

C1 C2

E1 E2

R1 R2C1

C2

E1 E2

R1

R2C1

C2

E1 E2

C1 C2

LP

HP

BP

Franco Maloberti Analog Filters: Sensitivity 10

Generic Sallen-Key

E2

E1

=VoutVin

=Z1

'Z2'

(Z1+Z2 +Z2' )Z1

' +Z1Z2

Franco Maloberti Analog Filters: Sensitivity 11

Sallen-Key: finite op-amp gain

The inverting and non-inverting terminals are not virtually shorted

C1

C2

E1 E2

R1 R2

RbRa

E3E4

E4 =E2

Ra +RbRa +

E2

A0

Franco Maloberti Analog Filters: Sensitivity 12

Sallen-Key in IC

C1

C2

E1 E2

R1 R2

RbRa

E3E4

C1

C2

E1 E2

R1 R2

E3E4

Franco Maloberti Analog Filters: Sensitivity 13

LP Sallen-Key with real op-amp

H(s) =1+as+bs2

α+βs+γs2 +δs3

a=2Cgm

b=RC2

gm

α=1+1A0

β=2RC+R0C0 +2R0C+4RC

A0

γ=2R2C2+4RR0C(C+C0)+R2C2

A0

δ=2R2C2

C0

gm

Franco Maloberti Analog Filters: Sensitivity 14

LP Sallen-Key with real op-amp (ii)

The transfer function has two zeros and three poles.If k = Rgm >> 1 the zeros are practically complex conjugates and are located at

The extra-pole is real and is located around the GBW of the op-amp.

H(s) =1+as+bs2

α+βs+γs2 +δs3

ω0,p =gm

2RC2 =ωpK

Franco Maloberti Analog Filters: Sensitivity 15

LP Sallen-Key with real op-amp (iii)

Possible responses

Franco Maloberti Analog Filters: Sensitivity 16

Sallen-Key IC Implementations

Y(s) =sC/R

sinh sRC

Yp (s)=Y(cosh(sRC−1))

Franco Maloberti Analog Filters: Sensitivity 17

Band-reject Biquad

A band-reject response requires zeros on the immaginary axis

It can be obtained with the generic SK implementation

Another option is to use a twin-T network

R1R1R2C1C2C2 R1R1R2C1C2C2

Franco Maloberti Analog Filters: Sensitivity 18

Band-reject Biquad (ii)

Using complementary valuesRRR/22CCCE1E2

E2

E1

=μ s2 +

1

R2C2

⎝ ⎜

⎠ ⎟

s2 +4(1−μ)

RCs+

1

R2C2

Q =1

4(1−μ)

Franco Maloberti Analog Filters: Sensitivity 19

Use of Feed-forward

P(s)Q(s)+k

E2

E1

=P(s) + kQ(s)

Q(s)

Assume

P(s) = a1s

Q(s) = s2 + b1s+ b0

k = −b1 /a1

E2

E1

= −k(s2 + b0)

s2 + b1s+ b0

High-pass Band-pass

Franco Maloberti Analog Filters: Sensitivity 20

Infinite-Gain Feedback Biquad

Sallen-Key architectures require input common mode range.

Input parasitic capacitance of the op-amp can affect the filter response

Keep the inputs of the op-amp at ground or virtual ground

A-

+

Franco Maloberti Analog Filters: Sensitivity 21

Infinite-Gain Multi-Feedback Biquad

A conventional op-amp amplifier is not able to realize complex-conjugate poles

Two or more feedback connections achieve the result

A-

+

Z1Z2

A-

+

Z2Z3Z1Z4

Franco Maloberti Analog Filters: Sensitivity 22

Low-Pass MFB

A-

+

C2R2R1C1R3E2E1

E2

E1

=−

1

R1R3C1C2

s2 +1

R1

+1

R2

+1

R3

⎝ ⎜

⎠ ⎟s+

1

R2R3C1C2

Q =C1

C2

1

R2R3

R1

+R3

R2

+R2

R3

ω0 =1

R2R3C1C2

G = −R2

R1

Franco Maloberti Analog Filters: Sensitivity 23

Design and Sensitivity

Five elements and three equations

“Arbitrarily choose two of them and determine the remaining three parameters

Assess the “quality of design” Sensitivity on relevant design element Spread of components Cost of the implementation

Linearity of components

Franco Maloberti Analog Filters: Sensitivity 24

High-pass and Band-pass

A-

+

C2R2R1C1C3E1A-

+

C2R2R1C1E1E2E2

E2

E1

= −

C1

C2

s2

s2 +C1 +C2 +C3

R1C1C2

s+1

R1R2C2C3

E2

E1

= −

1

R1C2

s

s2 +1

R2C1

+1

R2C2

⎝ ⎜

⎠ ⎟s+

1

R1R2C2C3

Franco Maloberti Analog Filters: Sensitivity 25

Two-Integrators Biquad

Use of state-variable method Derive the block diagram Translate the block diagram into an active

implementation Addition or subtraction Integration Dumped integration (integration plus addition)

Franco Maloberti Analog Filters: Sensitivity 26

Basic BlocksA-

+

V1V2-K1Σ-K2A-

+

V1A-

+

V1Σ-1/s-1/sK1-1/( +s K1)VoutVoutVout

−K1V1 −K2V2 =Vout

−sVout =V1

−(s+K1)Vout1 =V1

Franco Maloberti Analog Filters: Sensitivity 27

State Variables

The state variable are relevant voltages of the network

E2

E1

=Ga0

s2 + b1s+ b0

E2

a0

s2 + b1s+ b0( ) =GE1

E6 s2 + b1s+ b0( ) = E5

H(s)E1 E2

H’(s)E1 E2

E5

G a0

E6

E6 s2 + b1s( ) = E4

E4 + E6b0 = E5

ΣH”-b0

E5 E6

E4

Franco Maloberti Analog Filters: Sensitivity 28

State Variables (ii)

E6 s2 + b1s( ) = E4

E3 −s−b1( ) = E4

E3 = −sE6

Σ-1/sb1

-1/s

E4E3

E3 E6

Σ-1/sb1-1/sΣ-b0Ga0E1E5E6E2E3E4

Franco Maloberti Analog Filters: Sensitivity 29

State Variables (iii)

E6 s2 + b1s( ) = E4

E6 −s−b1( ) = E3

E4 = −sE3Σ-1/sb1

-1/s

E3E6

E4 E3

Σ-1/sb1-1/sΣ-b0Ga0E1E5E6E3E4

Franco Maloberti Analog Filters: Sensitivity 30

State Variables (iv)

E2

E1

=Ga2s

2 + a1s+ a0

s2 + b1s+ b0

E2'

E1

=G1

s2 + b1s+ b0

E2' a2s

2 + a1s+ a0( ) = E2

E3 = −sE2'

E7 = s2E2'

Σ-1/sb1-1/sΣ-b0GE1E5E’2E3E4

+a2

-a1

a0

E2

Franco Maloberti Analog Filters: Sensitivity 31

Implementations

Kervin-Huelsman-Newcomb Tow-Thomson Fleischer-Tow …. Fleischer-Laker

Franco Maloberti Analog Filters: Sensitivity 32

Implementations (ii)Σ-1/sb1-1/sΣ-b0Ga0E1E5E6E3E4