A 1.2MeV, 100mA Proton Implanter

Post on 09-Jan-2022

12 views 0 download

Transcript of A 1.2MeV, 100mA Proton Implanter

1

A 1.2MeV, 100mA Proton Implanter GeoffRyding,TedSmick,BillPark,JoeGillespie,PaulEide,

TakaoSakase,KanOta,RonHorner,DrewArnold

Abstract Ahighenergy,highcurrentprotonimplanterhasbeendevelopedforproducingthinlayersofc‐Si

crystallinesiliconwiththicknessesintherangeof5‐20µm.Theimplanterdescribedisdesignedtooperateatenergiesbetween0.4‐1.2MeVwithprotonbeamcurrentsupto100mA.ThissystemcanalsobeusedtoexfoliateothermaterialssuchasGaAsandSiC.

Introduction Thereisanincreasingdemandforrenewableenergyusingphotovoltaictechnology.Inparticular,

photovoltaiccellsarecommonlyfabricatedoncrystallinesiliconwaferswhichareconventionallyproducedbyslicinganingotofsinglecrystalsilicon.Thismethodofproducingphotovoltaiccellsaccountsforapproximately80%ofthepresentworldwideproductionofsolarcells.Unfortunately50%

ormoreofthesiliconislostasaresultofthekerfconsumedintheslicingprocess.Furthermore,theminimumwaferthicknessthatcanbeproducedbysawingorslicingis≥115µm,whichismuchthickerthanneededforoptimumphotovoltaicdevices(1).Thinnersiliconlaminacanbemadebyimplanting

hydrogenionstothedesireddepthbelowthesurfaceofthesiliconwafer.Afterasuitablenumberofionshavebeenimplanted,athinlayerofmicrobubblesisformedandonsubsequentheatingofthewafer,thetoplayerexfoliatestoproduceathinlayerofsiliconwithathicknesspreciselyequaltothe

depthoftheoriginalimplantedlayer(2).Usingthistechnique,asmanyas10ormorelayersofsiliconcanbepeeledfromastandardsiliconwafer,eachhavingtheidealthicknessforthefabricationofanefficientphotovoltaiccell.Inthiswaythecostofthesinglecrystalsiliconmaterial,whichisgenerallythe

dominantcostcomponentofthefinishedcell,canbereducedby80%.Anaddedbenefitisthefactthatthecellsmadefromthethinlaminaareflexible.

Inthelast3yearswehaveinvestigatedthepotentialadvantagesoflaminabasedphotovoltaiccellsindetail(1).EarlyworkwasbasedonanairinsulatedDCacceleratoroperatingwitharibbonbeamof

protonsintheenergyrangeof350‐420keVandbeamcurrentsof10‐75mA(3).Criticalprocessstepsincludinglighttrappingschemes,andmetalcontacttechniqueshavebeendevelopedusingthe4.5µmlaminaproducedbythismachine.Asthelaminathicknessincreasesthecellefficiencycanincreasebut

thecostofincreasingtheenergyandoperatingvoltageoftheacceleratoralsoincreases.Theimplanterdescribedhereoperatesroutinelyatenergiesbetween0.4‐1.2MVandbeamcurrentsupto100mA.Thesebasicparametersrepresentanoptimumcompromisebetweencellperformanceandtotal

implanteroperatingcost.

Anionimplantersuitableforsolarcellproductionofthetypedescribedhasthreeprimaryrequirements:anaccelerationschemewhichwillacceleratetheionstothevelocityrequiredforpenetrationtothe

appropriatedepthbelowthesurface,abeamcurrentintensitythatresultsintherequiredsystemproductivityandhighspeedwaferhandling.

2

Thenovelimplanterdescribedoperateswithprotoncurrentsupto100mAandenergiesupto1.2MeVandthewaferhandlingnon‐productivetimeis<8%ofthetotalcycletime.

System Architecture and performance targets Thehighbeampowerrequirementsoutlinedpresenttwoprimarychallenges.Firstthe120kWionbeam

mustbegeneratedwithreasonablepowerefficiencyandsecondtheprocesschambermustbecapableofabsorbingthispowerwithoutexcessiveheatingofthetargetwafers.

ThechallengeshavebeenmetbyadoptingthesystemarchitectureshowninFigure1whichidentifiesthemajorcomponentsoftheimplanter.Thereare4basictypesofionacceleratorstructuresthatcanbe

usedtoaccelerateionstotheMeVenergyrange:linearhighfrequency(LINAC),circularhighfrequency(Cyclotron,synchrotron),RFQ(RFquadrupoleaccelerators)andDC(SingleendedorTandem).Thepowerconversionefficiencyofthesesystemscanbedefinedastheratiooffinalbeampowertototal

inputpower.InthecaseofRFtypeacceleratorsthepowerefficiencyisgenerallylow(≤20%)asaresultoflossesintheamplifierandresonantcavitycomponents.ForthisreasonaDCapproachwasadoptedusingstandardcommercialhighvoltagepowersupplies

Figure 1  System architecture 

Theionsource,theaccelerationtubeandthehighvoltagegeneratorarecontainedwithinapressurevesselwithadiameterof2.1mandalengthof4.1m.ThevesselcontainscompressedSF6gasatapressureintherange50‐100psitofacilitateoperationatvoltagesupto1.2MV.Theionbeamwhich

emergesfromthisbeamgenerationsystemisfocusedbyamagneticquadrupolelensanddirectedintoamagneticscannersystemwhichdeflectsandscansthebeaminthehorizontalplaneasshown.The

3

scannedbeamisthendeflectedandanalyzedbyamagneticdipolemagnetwhichservestofilteroutunwantedionbeamsanddirectthecollimatedbeamontotheinsideofalargediameterrotating

processdrum.Thepseudo‐squaresiliconwafersaremountedontheinsideofthedrumduringimplantandbetweenimplants,highspeedrobotsareusedtoloadandunloadthesewafersthroughavacuumload‐locksystem.

ThebasicperformancetargetsforthesystemaresummarizedinTable1.

Table 1  Implanter design targets 

LaminaThickness 5‐20micronsLaminaProductionrate 150/hourSystemEnergyrequirements <2kWhrs/laminaIonBeamEnergy 0.4‐1.2MeVProtonbeamcurrent 100mAPowerefficiency(Beampower/totalpower) >40%Machineutilization >90%

Voltage Generator MosthighpowerDCionacceleratorshaveincorporatedsomeformofcascade‐rectifiervoltagemultiplierbasedontheconceptsofJohnCockroftandErnestWaltontogeneratethehighpotentials

requiredtoacceleratetheions(4).Theoutputofthegeneratorisconnectedtotheionsourceanddeterminesthefinalenergyoftheions.Ionsextractedfromthesourcepassintoanaccelerationtubeconsistingofseveralelectrodesandtheappropriatebiasvoltagesfortheseelectrodesisgenerally

derivedfrompotentialdividerresistorsconnectedtotheoutputofthehighvoltagegenerator.Asthebeamcurrentinsuchasystemisincreased,severaldifficultiescanbeencountered.ThetwoprimarychallengesaresummarizedinTable2.

Table 2  Fundamental challenges for high current, high voltage DC accelerators 

1.Highvoltagegenerationandpowerefficiency

Sincetheoutputpowermustflowthrougheachmultiplierstageinseries,theavailableoutputpower,thevoltageregulationandthesystemefficiencydeclinesasmorestagesareadded.

2.Productionofastableelectrostaticaccelerationfield

Smallbeamcurrentsinterceptingtheaccelerationelectrodescanresultinlargeperturbationsoftheacceleratingfieldwhichinturnleadstobreakdownandavalancheeffects.Theseinterceptedbeamsmayoriginateasaresultofsmallaberrationsorchargeexchangewithresidualgasmoleculesinthevacuumsystem.Attemptstominimizetheseeffectsbydecreasingthevalueofresistivedividersresultsinwastedpowerandfurtherlossofefficiency.

Wehavedevelopedanovelpowersupplysystemwhichovercomesthetwoprimarychallengesoutlinedabove.ThesystemconceptisshownschematicallyinFigure2.

4

Figure 2  Schematic of the high voltage generator concept 

Asystemisshownschematicallywithfiveelectricallyisolatedalternatorsmountedonacommon

insulatingdriveshaftwhichinturnisdrivenbyacommondrivemotor.Eachalternatorprovidesanelectricallyisolatedsourceofpowerforitscorrespondinghighvoltagepowersupply.Asshown,thesepowersuppliesareconnectedinserieswiththefinaloutputattachedtotheionsourceandeach

intermediateoutputisconnectedtothecorrespondingelectrodeoftheaccelerationtube.ThemainadvantagesofthisarchitecturearesummarizedinTable3.

Table 3  Advantages of the system architecture 

1 Theelectrostaticfieldintheacceleratortubeispreciselycontrolledbytheregulatedoutputsettingsoftheindividualpowersupplieswhicharecapableofregulatingvoltageoverawiderangeofcurrentloads.Theinfluenceofspuriousbeamstrikeorscatteredbeamandsecondaryparticlesisvirtuallyeliminated.

2 Fieldgradientsalongthetubecanbeeasilycontrolledtogiveoptimumionopticalpropertiessimplybyadjustingtheoutputsettingsofeachindividualpowersupply.

3 Individualsectionsoftheaccelerationtubecanbe‘voltageconditioned’withoutinfluencefromotherregionsofthetube.

4 Themaximumvoltageandcurrentcanbescaledbyselectingtheappropriatenumberofpowersuppliesandalternators.

5 Standardcommercialpowersuppliescanbeused

5

Thehighpowerimplanteritselfhasbeenconstructedusingthreehighvoltagegeneratorassembliesinsidethehighpressurecontainmenttank.Eachgeneratorstackconsistsofa100HP,3‐phaseAC

inductionmotorwithanefficiencyof94%,five12kVA,permanentmagnet,3‐phaseACalternatorsoperatingat80%efficiencyandfiveseriesCockroft‐Waltonpowersupplies(5)operatingatvoltagesupto80kV,currentsupto125mAandefficienciesof85%.

OneofthesegeneratorassembliesisshowninFigure3.

Figure 3  High voltage generator assembly 

AphotographofthecompletehighvoltagegeneratorsectionofthemachineisshowninFigure4.

6

Figure 4  The high voltage generator 

Inthisconfigurationthereare15isolatedalternatorsand15independenthighvoltagepowersupplies

connectedinserieswhichresultinamaximumcombinedcapabilityof1.2MVand125mA.

Ion Source and acceleration tube optics Theprotonbeamisdevelopedusingahighcurrentelectroncyclotronresonance(ECR)microwaveionsourcecoupleddirectlyintoaconventionalelectrostaticaccelerationcolumn.Figure5showsaschematicofthesourceandcolumn.

7

Figure 5 Schematic of ion source and acceleration column 

ThesourceconsistsofthreesolenoidelectromagnetssurroundingacircularplasmachamberfedwithH2

gas.Theplasmachamberisexcitedbyupto1kWof2.45GHzmicrowavesfedthroughathreelayervacuumwindow(6)intothechamber.Athreestubtunerandridgedtaperedwaveguidematchtheimpedanceofthemicrowavesystemtotheplasma.Thesourcearchitectureisbasedonpreviousion

sourcesdevelopedatChalkRiver(7)andLosAlamos(8).ThesourcecomponentsaredisplayedontheleftsideofFigure5.Themagneticfieldisadjustedsuchthatthefieldisslightlyaboveresonanceatthevacuumwindow,taperingtothe875Gresonantfieldtowardstheexitofthechamber.Theboundary

elementcodeLorentz‐3D(9)wasusedtomodelthesolenoidalfieldsandoptimizethedesigntoachievethedesiredfieldshape.

Figure 6  PBGUNS simulation of the beam extraction for a 70kV, 100mA beam 

ThebeamisextractedataDCvoltageofupto80kVatcurrentsupto125mA(powersupplylimited)usingatetrodeextractiongeometrywithelectrostaticsuppressionofbackstreamingelectrons.The2D

codePBGUNS(10)wasusedtomodeltheextractiongeometryandoptimizethebeamemittanceandcurrenttobefedintotheaccelerationcolumn.AscreenshotfromPBGUNSisshowninFigure6.

8

TheECRsourceprovidesmanyadvantagesoverconventionalionsourcesincludingahighprotonfractionof90%ormore,highcurrentdensityof200mA/cm2andabove,lowgasloadtothevacuum

system,andlongperiodsbetweenserviceswithnofilamentstowearout.Thehighprotonfractionallowsthebeamtobeinjecteddirectlyintotheaccelerationcolumnwithoutpre‐accelerationmagneticanalysis,greatlysimplifyingtheterminaldesign.

Theaccelerationcolumnconsistsof14accelerationstages(the15thbeingthesourceitself),each

capableofacceleratingthebeamupto80keVpersection.Sinceeachstageisdrivenbyanindependenthighvoltagepowersupply,thevoltageoneachelectrodecanbeeasilyadjustedtooptimizethetuneofthesystemandalsoaidintheinitialhighvoltageconditioningofthecolumn.Simulationofthecolumn

opticswereagainstudiedusingLorentz‐3D.Figure7showsaraytracingsimulationoftheaccelerationcolumnincludingspacechargeeffectfora1.2MeV,100mAprotonbeam.

Figure 7  Beam trajectories simulation for a 1.2 MeV, 100mA proton beam using Lorentz‐3D 

Thecolumnhasconsiderablevacuumpumpingareathroughoutitslengthwithameasuredconductanceinexcessof2000L/secforhydrogen.Thishighconductance,combinedwiththelowgasloadfromtheECRsourceallowstheentiresystemtobevacuumpumpedbyturbo‐molecularpumpsatground

potential.EliminatingvacuumpumpsintheSF6environmentatterminalpotentialgreatlysimplifiestheoverallsystem.Aluminaceramicbushingsareusedtofurtherreducethegasloadtothesystemcomparedwithepoxyresinbushings.

Thecentralportionofeachelectrodeismadeoftitaniumwitha100mmaperturetominimizebeam

strikeandprovidegoodpumping.Overlappingstainlesssteelstressringswithembeddedsamariumcobaltpermanentmagnetssurroundthecentralapertureandblockthelineofsightbetweenthebeamandthebushingstopreventcoatingandeventualshortingofthebushing.Theembeddedmagnets

suppressbackstreamingelectronsinthetubebylimitingthetotalenergygainedbyanelectrontooneortwogaps.Thisminimizesthebremsstrahlungradiationaswellastheloadonthehighvoltagesupplies.Themagneticfieldsrotate90degreesateachstagewithmagneticadjustmentsmadeatthe

entranceandexitsuchthatthebeamcenterlineremainsclosetothecolumnaxisthroughoutitslengthandexitsoncenterandparalleltotheaxis.Electrostaticsuppressionispresentattheexitofthecolumn

9

tofurthersuppresselectronsenteringthecolumnandprovideafieldfreeregionbeyondthecolumnforbeamneutralization.

Beam Scan System Themagneticscansystemperformstwokeyfunctions.Bymagneticallydeflectingthebeamthrough

approximately80degrees,unwantedspeciesandlowenergycontaminantsareremovedfromthebeampriortoimplant.Second,byincorporatingahighspeedoscillatingscannermagnet,thebeamisrepeatedlysweptacrossthewafersinacontrolledfashion,providingveryhighdoseuniformityforthe

implant(11).Asetofmagneticquadrupolescontroltheshapeofthebeamspotonwafertominimizeoverscan,instantaneousheating,andchanneling.ThemagneticscanningsystemisshownschematicallyinFigure8.

Figure 8  Magnetic scanning system 

Toavoidlargeinstantaneoustemperaturevariationsonthewafercausedbytheveryhighpowerbeam(upto135kWonwafer),thescanspeedcanbeincreasedupto2kHz,almostanorderofmagnitude

fasterthantypicalmagneticallyscannedimplanters..

Process chamber and wafer drum Thesiliconexfoliationprocessrequiresanimplanttemperatureintherange30‐140°Cwithatemperaturevariationacrossthewaferoflessthan20°C.Controlofwafertemperatureinthisrangeisa

formidablechallengewhenbeampowersupto120kWareused.Inordertoreducebeamheatingeffects,thewellknowntechniqueofbeampowersharinghasbeenadoptedbyimplantingthewafersin

10

largebatches.Ineachbatch60wafersaremountedontheinsideofa3.1mdiameter,watercooleddrum.Thefacetsofthedrumonwhichthewafersaremountedarecoatedwithacompliantpolymerof

suitablethermalconductivityandthewafersarepressedagainstthismaterialbythecentrifugalforcesgeneratedwhenthedrumisrotated.Thetotalareaexposedtothescannedbeamisapproximately1.5E4cm²andinordertomaintainatemperaturerisebelow120°C,athermalcontactbetweenthe

waferandthedrumofapproximately70mW/cm²°Kisrequired.Thedrumcanrotateaboutitsaxisatspeedsupto400rpmwhichprovidesradialaccelerationsofthewaferupto280Gs.Theresultingclampingforceofthewaferagainsttheelastomericcoatingresultsintherequiredimplanttemperature.

ThedrumandthesystemwhichuniformlyscansanddeflectsthebeamontotheinsideofthedrumisshownschematicallyinFigure1.AndaphotographofthedrumitselfisshowninFigure9.

Figure 9  Photograph of the wafer drum 

Onecomplicationofthisarrangementisthefactthattheangleatwhichthebeamstrikeseachwafervariesfromtheedgeofthewafertothecenterofthewaferasaconsequenceofitsrotationasthe

drumrotates.Thiseffect(12)canresultinundesirablechannelingoftheionsdownaxialorplanarchannelsofthesinglecrystalsiliconandcanoccurinbothrotatingdiskandrotatingdrumprocessstationswhenevertheincidentionbeamaxisisnotparalleltotheaxisifrotation.Itisoftenreferredto

asthe‘coneangle’effect.Inthesystemdescribedthevariationinangleisapproximately±3°andby

11

selectingtheappropriateaveragetiltandtwistangleofthewaferswithrespecttothebeam,allaxialandplanarchannelingeffectshavebeenavoided.

Wafer handling Aftereachwaferbatchhasbeenimplantedtotherequireddoseforsuccessfulexfoliation,thewafers

mustbeunloadedfromthedrumandreplacedbyanewbatchofwafersinreadinessforthenextimplant.Duringthisexchangesequencetheionbeamisnotbeingusedanditisthereforeverydesirabletominimizethetimetakenforanywaferhandling.

Tominimizewaferexchangetimesallwaferhandlingtasksaredoneinparallel.Thesystemshownin

Figure10isusedtotransferimplantedwafersfromthedrumandintoastackingelevatorlocatedinavacuumloadlock.Itconsistsofapick/placerobotmechanismandaconveyorbeltsystemasshown.Asecondsystemconsistingofidenticalcomponentsisusedforthereverseprocesswherebyun‐implanted

wafersfromasecondstackingelevatorlocatedinthevacuumloadlockaretransferredbytheconveyorsystemtoasecondpick/placerobotwhichplacesthemonthedrum.Withthisarrangement,onesystemisdedicatedtounloadingimplantedwafersfromthedrumandanothersystemisdedicatedto

loadingun‐implantedwafersontothedrum.Forthishighlyparallelarchitecturetofunctionproperlyallactionsmustbeexecutedwithhighprecision.On‐the‐flyconveyortrajectorymodificationtechniquesandactivewaferalignmentmechanismsareutilizedtocorrectanypositionalvariabilityofthewafers.

Sophisticatedstate‐machinealgorithmsareimplementedsothatanactionstartsassoonastherightconditionsaremet.Atthebeginningofeachaction,sensorsareutilizedtoensurethesoftwarestate

matchesthehardware.Alltheaxesareservo‐controlled;thereforeanydeviationfromthedesignedtrajectoryisimmediatelydetectedandreported.Attheendofeachaction,sensorsareutilizedtoconfirmsuccessfulcompletion.Asaresult,allaxesworkharmoniouslyinparallelwiththestate‐

machinegeneratingtheoptimumsequenceinreal‐time.

Finiteelementanalysis,modalanalysis,andkinematic/dynamicsimulationsoftwarehavebeenusedextensivelytooptimizethehardwareforhighspeedautomation.Complexcalculationshavebeendonetodevelopadvancedhighspeedmotioncontrolprofilesforallaxes.

Theresultisahighspeedwaferhandlingsystemwhichreliablyunloadsandloads60pseudo‐square

wafersfromtheimplantdrumandtransfersthemintothevacuumloadlockin90seconds.

Thestackingelevatorsintheloadlockareinturnunloadedandloadedbyanexternal6axisrobot(13)whichcanbeprogrammedtointerfacewithavarietyoffactorydeliverysystems.

12

Figure 10  The three main wafer transfer mechanisms of the drum load or unload system 

Performance results Theimplanterdescribedhasbeensuccessfullyoperatedwith45mAprotonbeamsatenergiesupto800keV.ThesystemisnowbeingshippedtotheTwinCreeksLaminarbasedsolarfactoryinSenatobia,MS.

Conclusion AnovelacceleratorarchitecturehasbeendemonstratedwhichiscapableofproducinghighpowerprotonbeamswithMeVenergiesandcurrentsupto100mA.Thesystemhasbeentestedusingalarge

area,highspeedprocessstationwhichiscapableofmaintainingwafertemperaturesbelow140°Catbeampowersupto120kW.Thisimplanternowprovidesapracticalanduniquesolutionforthefabricationoflowcost,flexible,singlecrystalsiliconsolarcellswithefficiencies≥16%.

References 1.Petti, Christopher.Optimal thickness for crystalline silicon solar cells. (2011).

2.Terrealt, Bernard.Hydrogen blistering of silicon: Progress in fundamental understanding. Phys.Stat.

Sol.(a)Vol.204No.7(2007).pp.2129‐2184.

3.US Patents. 7939812, 7982197, 7989784, 8044374, 8058626, 8089050 

4.Cottereau, E.DC accelerators. ParticleAcceleratorsforMedicineandIndustry,Pruhonice,CzechRepublic,May2001.

13

5.HiTek Power. [Online]www.hitekpower.com.

6.Torii, Y., et al.A high‐current density and long lifetime ECR source for oxygen implanters. Rev.Sci.Instrum.Vol.61No.1(1990).pp.253‐255.

7.Taylor, Terence and Wills, John S.C.A high‐current low‐emittance dc ECR proton source. Nucl.Instru.

MethodsPhys.Res.Vol.A309(1991).pp.37‐42.

8.Sherman, Joe, et al.A 75 keV, 140 mA proton injector. Rev.Sci.Instrum.Vol.73No.2(2002).pp.917‐921.

9.Integrated Engineering Software. [Online]http://www.integratedsoft.com/.

10.Boers, Dr. Jack E.PBGUNS (Particle Beam GUN Simulations). [Online]http://www.far‐tech.com/pbguns/index.html.

11.US Patents. 5311208, 5438203 

12.Simonton, R. and Rubin, L.Chapter7.[ed.]J.F.Ziegler.Ion Implantation Science and Technology. 

2004.

13.Staubli. [Online]http://www.staubli.com/.