Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa &...

29
2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics Tokyo Institute of Technology

Transcript of Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa &...

Page 1: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

1

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Trends in high speed ADC design

Akira Matsuzawa

Department of Physical Electronics

Tokyo Institute of Technology

donsauer
Text Box
more links at end
Page 2: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

2

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Contents

• Introduction

• Technology scaling and performance of pipelined ADCs– Performance model of pipelined ADC

• Design challenge of high speed ADCs– Pipelined ADCs

• Optimization of OpAmp

• Comparator controlled Current sourcein stead of OpAmp

– Sub-ranging ADC

– Successive approximation ADCs

– Delta-sigma ADC

Page 3: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

3

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Speed and power

High Speed ADC[Sampling Freq. VS Power]

1

10

100

1000

10000

1 10 100 1000 10000

Sampling Freq.[MSps]

Power[

mW

]

12Bit(Paper)

10Bit(Paper)

12Bit Products

10Bit Products.

JSSC,ISSCC,VLSI,CICC,ESSCC

& Products

(≧10Bit,≧

10MSps)1995-2006

MHzmWbit /3.0:10

MHzmWbit /1:12

10b12b

Conversion speed has saturated at 200 MHz Smaller mW/MHz is needed for low power operation.0.3mW/MHz for 10bit and 1mW/MHz for 12bit are the bottom lines.

200MHz

ISSCC 2007

Page 4: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

4

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Pipelined ADC

1st stage

2nd Stage

SampleAmp.

SampleAmp.

Sample Amp. Sample Amp.

Transfer characteristics

Hold Sample Amplify

-Vref

+Vref

-Vref

+Vref

0 1

X2

-Vref

+Vref

-Vref

+Vref

0 1 0 1

X2

1st Stage 2nd Stage

Folding I/O characteristics makes higher resolution along with pipeline stages.

Page 5: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

5

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

M5

Vbp2

Vbp1

VoutnVoutp

Vbn1

Vbn2

Vdd

VinpVinn

Vbp1

Technology scaling for analog

M5

Vbp2

Vbp1

VoutnVoutp

Vbn1

Vbn2

Vdd

VinpVinn

Vbp1

elVsig arg:

SignalCap.

ParasiticCap.

ParasiticCap.

ParasiticCap.

ParasiticCap. Parasitic

Cap.

ParasiticCap.

smallVsig :

SignalCap.

Technologyscaling

Technology scaling can reduce parasitic capacitances.

However signal capacitance will increase to keep the same SNR atlower voltage operation.

Parasitic capacitance ���� smallerOperating voltage ���� lowerSignal swing ���� lower

Signal capacitance ����largerVoltage gain ����lower

Page 6: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

6

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Performance model for pipelined ADC

Cf

Cs Cpi gm Cpo COLRL2

1

1

p

s

ω+

OpAmpofpoleSecond

ceresisOutputR

cecapaciLoadC

cecapaciparaciticputputinputCC

loopfeedbackforcecapaciSignalCC

stageinputofcecTranscondug

p

L

oL

popi

fs

m

:

tan:

tan:

tan&:,

tan:,

tan:

βπ L

mclose

C

gGBW

2_ =

pisf

f

CCC

C

++=β

( )pisf

pisf

oLpoLCCC

CCCCCC

++

+++=

2

fs

oL

CCC

+= oLfso CCCC ===

OpAmp

++

+

+

=

++

+

+

=

o

dspi

o

dspo

o

dspieffo

ds

o

pi

o

po

o

pio

mclose

C

I

C

I

C

IVC

I

C

C

C

C

C

CC

gGBW

ααα112

1

112

1

2_

ππ

A. Matsuzawa, “Analog IC Technologies for Future Wireless Systems,” IEICE, Tan on Electronics, Vol. E89-C, No.4, pp. 446-454, April, 2006.

We have developed the performance model for pipeline ADC that can treat technology scaling.

Page 7: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

7

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Scaling and analog device and circuit parameters

 μ

ds2

effox

IVC

L2W =

(b)Cpi_N, Cpi_P,Cpo[fF/mA],ωp2_N,ωp2_P[GHz]

(a)WN,WP[μm/mA],VA_N, VA_P[V]

D

G

S

B

gdC dbC

gsC sbC

dbC

dsI

Veff=0.175V

DR

DR

L[μm]0.1 0.2 0.3 0.4 0.51

10

100

1000

Cgd

Cgs

Cap

. [f

F/m

A],

f T[G

Hz]

W[μ

m/m

A]

fT

W

2/1 S S: Scaling factor

Gate width and capacitances decrease with technology scaling.

Page 8: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

8

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Determination of signal capacitance

2

19 21066.1

×≥ −

sig

N

oV

C

DR[μm]

0.001

0.01

0.1

1

10

100

1000

0.1 0.50.05

Co[p

F]

8bit

10bit

12bit

14bit

Vin+

vout-vout+

2Veff

Vdd-4V

eff

2V

eff

Vin-

Vdd

Output signal range

Gain Boost

amp.

Larger resolution requires larger signal capacitance.Furthermore, Voltage lowering increases signal capacitance more.

5.2V3.6V2.2V1.6V1.0VVsig_pp

3.3V2.5V1.8V1.5V1.2VVdd

0.35μμμμm0.25μμμμm0.18μμμμm0.13μμμμm90nm

5.2V3.6V2.2V1.6V1.0VVsig_pp

3.3V2.5V1.8V1.5V1.2VVdd

0.35μμμμm0.25μμμμm0.18μμμμm0.13μμμμm90nm

Page 9: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

9

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[MHz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

Performance curve

①Co≫C

po,C

pi

)(・π

ds

effo

dsclose I�

VC

IGBW ∝≈

3

1_

②Cpi

<Co<C

po

) (α

・π

tConsVC

GBWoeffo

close tan3

11_

+≈

③Co<C

po、C

o<C

pi

)(αα

・π dsdsoieffo

closeI

�IVC

GBW1

3

11_ ∝

+≈

③②fFCo 50=

Performance exhibits convex curve.There is the peak conversion frequency and the optimum current. Current increase results in increase of parasitic capacitances and decrease of conversion frequency in the higher current region.

α++

α+

α+

=

o

dspi

o

dspo

o

dspieffo

dsclose

C

I

C

I

C

IVC

IGBW

112

1_

π

Page 10: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

10

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Performance summary

12bit

1

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[MHz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

8bit

1

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[MHz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

10bit

0.1

1

10

100

1000

0.01 0.1 1 10

Ids[mA]

fc[MHz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

12bit0.01

0.1

1

10

100

0.01 0.1 1 10

Ids[mA]

fc[MHz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

14bit

Scaled CMOS is effective for just low resolution ADC.Scaled CMOS is not effective for high resolution ADC.

Page 11: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

11

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Optimization of OpAmp in Pipelined ADC

M. Yoshioka, M. Kudo, T. Mori, and S.

Tsukamoto

“A 0.8V 10b 80MS/s 6.5mW Pipelined ADC with Regulated Overdrive Voltage Biasing,”

ISSCC, Dig. Tech. paper, pp. 452-453, 2007.

90nm CMOS, near sub-threshold operation, and SC level-shifthave realized 10bit 80MHz ADC with 0.8V operation and small power of 6.5mW

Page 12: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

12

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Results

30

40

50

60

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

SN

DR

[d

B]

30

40

50

60

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3S

ND

R [

dB

]

Fclk=80MS/s, Fin=11MHz

Ta=273K Ta=373K

Slow/Slow

Fast/Fast

Supply Voltage [V]

1P10M 90nm CMOSwith MIM Capacitors

10bit 80MS/s

0.8V

55.0dB @2MHz51.4dB @41MHz

6.5mW

1.18mm x 0.54mm

< 1.0LSB< 0.8LSB

Technology

ResolutionConversion Rate

Supply Voltage

SNDR

Total Power Consumption

Active Area

INLDNL

1.2Vp-p DifferentialInput Range1.2V

56.9dB @2MHz55.6dB @41MHz

13.3mW

< 0.5LSB< 0.4LSB

FoM=0.2pJ/step 0.08mW/MHz

Page 13: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

13

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Optimization of Veff

Veff [V] Ids [mA]

f c[M

Hz]

I ds[m

A]

Veff [V]

f c[M

Hz]

12 bit, 0.18um CMOS 10 bit

Blue: 0.18um

Red: 90nm

Optimum Veff is a function of resolution, current, and design rule.

The lower Veff is recommended for scaled CMOS technology.

Page 14: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

14

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Challenge to realize pipelined ADC without OpAmp

Vx is reaching the virtual ground voltage asymptotically

Conventional OpAmp

Vx is reaching the virtual ground voltage with constant rate

Comparator controlledcurrent source

T. Sepke, J. K. Fiorenza, C. G. Sodini, P. Holloway, and H. Lee, “Comparator-Based Switched-Capacitor Circuits For Scaled CMOS Technologies,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 574-575. Feb. 2006.

Comparator controlled current source can realize the virtual ground.

Now challenge for not use of OpAmp in ADC design has started.

Page 15: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

15

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Realistic comparator controlled current source

I2<< I1

T. Sepke, J. K. Fiorenza, C. G. Sodini, P. Holloway, and H. Lee, “Comparator-Based Switched-Capacitor Circuits For Scaled CMOS Technologies,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 574-575. Feb. 2006.

Time delay (Vx ���� Vo) causes voltage offset. Small inverse current source has been introduced. The offset voltage can be reduced and does not effect the conversion linearity.

10b, 8MHz ADC has been developed.Pd=2.5mW. Lowest Pd/MHz

Page 16: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

16

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Results

10b ADC FoM =0.3pJ/step, 0.3mW/MHz

Small FoM, however not amazingly

Page 17: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

17

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Sub-ranging ADC

7]Y. Shimizu, S. Murayama, K. Kudoh, H. Yatsuda, A. Ogawa, “ A 30mw 12b 40MS/s Subranging ADC with a High-Gain Offset-Canceling Positive-Feedback Amplifier in 90nm Digital CMOS,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 222-225. Feb. 2006.

Sub-ranging ADC also doesn't require OpAmp and suitable for LV operation.However it requires low offset voltage comparators.

Use of positive feedback technique has realized low offset voltage.

Positive Feedback

CKT

Pd/MHz =0.75mW/MHz which is lowest value!!

Technology revival has been found.

Page 18: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

18

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Results

Attain high ENOB of 10.5-11.030mW at 40MHz 90nm CMOS 1V Operation

0.4pJ/step

Page 19: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

19

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Successive approximation ADC

C C2

C4

C8

C16

C16

Vin Vref

C C2C2

C4C4

C8C8

C16C16

C16C16

Vin Vref

Binary weighted Capacitor array Comparator

D. Draxelmayr, “A 6b 600MHz 10mW ADC Array in Digital 90nm CMOS,” IEEE, ISSCC 2004, Dig. of Tech. Papers, pp. 264-265, Feb. 2004.

Eight interleaved SA-ADCs with 90nm CMOSattain 600MHz operation.

Successive approximation ADC

SA-ADC

Successive approximation ADC has been used long time as a low power and low speed ADC. It doesn’t require OpAmp but capacitor array and comparator. Thus this architecture looks suitable for scaled and low voltage CMOS.

Now challenge for renewal of this conventional architecture has started.

Page 20: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

20

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Improvement of SA-ADC

Tracking

Phase

Tracking

Phase

MSB MSB-1 MSB-2 LSB

MSB MSB-1 MSB-2 LSB

Synchronous

Conversion Phase

Asynchronous

Conversion Phase

Sampling Instants

Sampling Instants

α

β+= 1radix

βα+=β 1

S. W. M. Chen and R. W. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13um CMOS,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 574-575. Feb. 2006.

6bit 600MHz 5.3mW ADC has been realized with 0.13um CMOS

Asynchronous clock increases conversion frequency.Use of proper radix reduces capacitance.

Capacitor ladder with some radix number

Asynchronous clock

Page 21: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

21

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Newest SAR ADC

DDi

Ui

REF VC2Q ⋅⋅⋅⋅==== ∑∑∑∑

Sample

VTP

Track Reset Comp

Result

B[0..N-1]

INp

Pre-

charge

cncp

CU

M=2N-1

421

INn

CLK cp[0..N-2]

cn[0..N-2]

VQP

VQNVTN

CSP

CSN

CTP

CTN

SAR Controller

J. Craninckx and G. Van der Plas,

“A 65fJ/Conversion-Step 0-to-0.7mW 9b Charge-

Sharing SAR ADC in 90nm Digital CMOS,” IEEE

ISSCC 20007, Dig. of Tech. Papers, pp.246-247,

Feb. 2007.

SAR ADC must be one of the good solution for scaled analog technology.No OPamp is needed.

No static power consumption.Higher signal swing and small capacitance

Page 22: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

22

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Analog operation with capacitances

Precharge

TrackSample

VQp

VQn

Compare

c0pc0n

Precharge

CSP

VQP

CSN

c0n

c0p

c0p

c0nVQN

128CU

DDUINS VC128V

2

CQ ××××⋅⋅⋅⋅−−−−××××====

Precharge

...

VC64

VC128

V2

CQ

DDU

DDU

INS

±±±±

××××⋅⋅⋅⋅++++

××××⋅⋅⋅⋅−−−−

××××====

Capacitances can realize analog operation for SAR ADC.No static current is required and higher signal swing can be used.

Page 23: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

23

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Results

1k 10k 100k 1M 10M

6

7

8

9

Input frequency [Hz]

EN

OB

Fs = 50MS/sP = 725µW

-YesYes650.297.820CS----SARThis work

-YesNo2202.655.3300SAR31.5

---1602.53.71250Flash31.1

---510159.250PL12.7

-NoNo1700.02510.50.1SAR12.5

---7602.58.77.9PL-CBSC12.4

---4403010.450Subr.12.3

---570399.4100PL12.1

NoNo-50013.812.64.4∆Σ3.4

YesYes-300501240CT∆Σ3.1

Dec.ClockRef.

FoM includesFoM

[fJ]

P

[mW]ENOB

Fs

[MS/s]Arch.

ISSCC06

Paper #

-YesYes650.297.820CS----SARThis work

-YesNo2202.655.3300SAR31.5

---1602.53.71250Flash31.1

---510159.250PL12.7

-NoNo1700.02510.50.1SAR12.5

---7602.58.77.9PL-CBSC12.4

---4403010.450Subr.12.3

---570399.4100PL12.1

NoNo-50013.812.64.4∆Σ3.4

YesYes-300501240CT∆Σ3.1

Dec.ClockRef.

FoM includesFoM

[fJ]

P

[mW]ENOB

Fs

[MS/s]Arch.

ISSCC06

Paper #

Amazing small FoM=65fJ/step has been attained.

8bit, 0.3mW at 20MHz

J. Craninckx and G. Van der Plas,

“A 65fJ/Conversion-Step 0-to-0.7mW 9b Charge-

Sharing SAR ADC in 90nm Digital CMOS,” IEEE

ISSCC 20007, Dig. of Tech. Papers, pp.246-247,

Feb. 2007.

Page 24: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

24

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

High resolution and high speed SAR ADC

To increase the resolution, a pre-amplifier is located in front of a comparator

M. Hesener, A. Hanneberg, D. Herbison, F.

Kuttner, and H. Wenske, “A 14b 40MS/s

Redundant DAR ADC with 480MHz Clock in

0.13um,” IEEE ISSCC 20007, Dig. of Tech.

Papers, pp.248-249, Feb. 2007.

Segmented capacitor array

Page 25: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

25

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Results

66mW66mW66mW66mWTotal power Total power Total power Total power 17mWDigital power49mWAnalog power

480MHzInternal clock frequency

40MHzSample frequency

±0.9V diff.Input range1.5VSupply voltage

66mW66mW66mW66mWTotal power Total power Total power Total power 17mWDigital power49mWAnalog power

480MHzInternal clock frequency

40MHzSample frequency

±0.9V diff.Input range1.5VSupply voltage

0.13um CMOS

FoM=0.14pJ/stepHigh ENOB of 13.5bit has been attained

High

High conversion rate of 40MS/s and low power of 66mW have been attained

Page 26: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

26

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Delta-sigma ADC

4

6

8

10

12

14

16

18

0.01 0.1 1 10 100 1000

FlashSubrangingpipelinedSARfolding

Delta-sigma

Nyquist ADC:

2

sigCVSNR ∝

Delta-sigma ADC:

α⋅∝ MCVSNR sig

2

In delta-sigma ADC, higher operating frequency can increase SNR.For higher resolution ADC, the delta-sigma method must be vital.

Page 27: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

27

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Wide-band delta-sigma ADC

50mW (analog), 6mW (digital)Power consumption

1.2VSupply voltage

71dB / 69dBPeak SNR / SNDR*

0.2pJ/conv. (FOM=P/(2^enob*2*BW))Figure-of-merit (FOM)

77dB (97dB @ 200kHz, 115dB @ 3kHz)Dynamic range*

0.5mm2Active chip area

>55dB (for -1MHz input tone)Image rejection

1Vp (differential)Max. input voltage

20MHz @ 10.5MHz IFBandwidth

340MHzSampling frequency

CT quadrature cascaded Σ∆ modulator (2-2, 4b)Architecture

90nm CMOS, 1P6MTechnology

50mW (analog), 6mW (digital)Power consumption

1.2VSupply voltage

71dB / 69dBPeak SNR / SNDR*

0.2pJ/conv. (FOM=P/(2^enob*2*BW))Figure-of-merit (FOM)

77dB (97dB @ 200kHz, 115dB @ 3kHz)Dynamic range*

0.5mm2Active chip area

>55dB (for -1MHz input tone)Image rejection

1Vp (differential)Max. input voltage

20MHz @ 10.5MHz IFBandwidth

340MHzSampling frequency

CT quadrature cascaded Σ∆ modulator (2-2, 4b)Architecture

90nm CMOS, 1P6MTechnology

(*1MHz input signal, signal bandwidth is 20MHz)

90nm CMOS、、、、BW=20MHz, DR(=SNR)=77dB, 50mmW, FoM=200fJ/conv.A

DC

1i

AD

C2

i

DAC2iDAC1i DAC3i

DAC1q

AD

C1

q

DAC2q DAC3q

AD

C2

q+

+-

- +

+-

- +

+-

- +

+-

-

+

+-

-+

+-

-+

+-

-+

+-

-

R2iR1i R3i R4i

R5i R6i R7i R8i

R5q R6q R7q R8q

R2qR1q R3q R4q

C1i C2i C3i C4i C5i C6i

C1q C2q C3q C4q C5q C6q

4b 4b

4b 4b

Vpi

Vmi

Vpq

Vmq

Y1i Y2i

Y1q Y2q

AD

C1

i

AD

C2

i

DAC2iDAC1i DAC3i

DAC1q

AD

C1

q

DAC2q DAC3q

AD

C2

q+

+-

- +

+-

- +

+-

- +

+-

-

+

+-

-+

+-

-+

+-

-+

+-

-

R2iR1i R3i R4i

R5i R6i R7i R8i

R5q R6q R7q R8q

R2qR1q R3q R4q

C1i C2i C3i C4i C5i C6i

C1q C2q C3q C4q C5q C6q

4b 4b

4b 4b

Vpi

Vmi

Vpq

Vmq

Y1i Y2i

Y1q Y2q

L. J. Breems, et., al.

“A 56mW CT Quadrature Cascaded SD Modulator

with 77dB in a Near aero-IF 20MHz Band.

ISSCC 2007, pp. 238-239.

Delta sigma ADCs have emerged as a strong rival to high resolution nyquist ADCs

Page 28: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

2007.10.27 ASICON A. Matsuzawa

28

Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

Summary

• Technology issues due to technology scaling• Low voltage operation ���� small headroom

• Reducing voltage gain

• Small voltage swing ���� larger signal capacitance

• Difficult to realize high resolution ADCs

• Design challenges of ADCs

– Pipelined ADC

• Optimization of OpAmp

• Comparator controlled current source

– Revival of ADC architectures--- No use of OpAmps ----

• Sub-ranging ADC

• SAR ADC

– Delta-sigma ADC is increasing signal bandwidth

Page 29: Trends in high speed ADC design - · PDF file2007.10.27 ASICON A. Matsuzawa 1 Matsuzawa & Okada Lab. Trends in high speed ADC design Akira Matsuzawa Department of Physical Electronics

FURTHER READING

Click any one of the following links to be taken to a website which contains the following documents.

The following are some recent examples of Asynchronous ADC activity off the web.

6 bit Asynchronous December 2006Asynchronous ADC In CAD Mentor GraphicsAsynchronous Data Processing System ASYNCHRONOUS PARALLEL RESISTORLESS ADCFlash Asynchronous Analog-to-Digital ConverterNovel Asynchronous ADC ArchitectureLEVEL BASED SAMPLING FOR ENERGY CONSERVATION IN LARGE NETWORKSA Level-Crossing Flash Asynchronous Analog-to-Digital ConverterWeight functions for signal reconstruction based on level crossingsAdaptive Rate Filtering Technique Based on the Level Crossing SamplingAdaptive Level–Crossing Sampling Based DSP Systems A 0.8 V Asynchronous ADC for Energy Constrained Sensing Applications Spline-based signal reconstruction algorithm from multiple level crossing samplesA New Class of Asynchronous Analog-to-Digital ConvertersEffects of time quantization and noise in level crossing sampling stabilization

Here is some more background information on Analog to Digital converters.

A 1-GS/s 6-bit 6.7-mW ADCA Study of Folding and Interpolating ADCFolding_ADCs_Tutorialshigh speed ADC designInvestigation of a Parallel Resistorless ADC

Here are some patents on the subject.

4,291,299_Analog_to_digital_converter_using_timed4,352,999_Zero_crossing_comparators_with_threshold4,544,914_Asynchronously_controllable_successive_approximation4,558,348_Digital_video_signal_processing_system_using5,001,364_Threshold_crossing_detector5,315,284_Asynchronous_digital_threshold_detector_5,945,934_Tracking_analog_to_digital_converter6,020,840_Method_and_apparatus_for_representing_waveform6,492,929_Analogue_to_digital_converter_and_method6,501,412_Analog_to_digital_converter_including_a_quantizers6,667,707_Analog_to_digital_converter_with_asynchronous_ability6,720,901_Interpolation_circuit_having_a_conversio26,850,180_SelfTimed_ADC6,965,338_Cascade_A_D_converter7,133,791_Two_mean_level_crossing_time_interval

11.19.10_1.20PM [email protected] Sauer