FQMH-Vol I Sampe Report

download FQMH-Vol I Sampe Report

of 96

Transcript of FQMH-Vol I Sampe Report

  • 8/12/2019 FQMH-Vol I Sampe Report

    1/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Nuclear Fuel Quality Management

    Handbook

    Volume I: Fabrication, Operation,Disposal and Transport of Nuclear Fuel

    Authors

    Karl BaurStochastikon GmbH, Wrzburg, Germany

    Elart von CollaniStochastikon GmbH, Wrzburg, Germany

    Technical Editor

    Peter RudlingANT International, Skultuna, Sweden

    cMarch 2010Advanced Nuclear Technology International

    Krongjutarvgen 2C, SE-730 50 SkultunaSweden

    [email protected]

  • 8/12/2019 FQMH-Vol I Sampe Report

    2/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Disclaimer

    The information presented in this report has been compiled and analysed by Advanced

    Nuclear Technology International Europe AB ANT International c and its subcontractors.

    ANT International has exercised due diligence in this work, but does not warrant the

    accuracy or completeness of the information. ANT International does not assume any

    responsibility for any consequences as a result of the use of the information for any party,

    except a warranty for reasonable technical skill, which is limited to the amount paid for this

    assignment by each FQMH customer.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    II

  • 8/12/2019 FQMH-Vol I Sampe Report

    3/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Contents

    Preface XI

    Acknowledgements XV

    I A Birds-Eye View on Nuclear Technology 1

    1 The Dawn of Nuclear Energy 3

    1.1 From Nuclear Threat to Nuclear Opportunity . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Quality Management of Nuclear Installations . . . . . . . . . . . . . . . . . . . . . . . . 61.3 The Nuclear Fuel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    1.3.1 Mining and Milling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3.2 Conversion and Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3.3 Producing Electric Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3.4 Fuel Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3.5 Waste Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2 Energy Source 15

    2.1 The Significance of Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Generations of Nuclear Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2.2.1 First Generation Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.2 Second Generation Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.3 Third Generation Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.2.4 Fourth Generation Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    3 International Networking 21

    3.1 The Role of International Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.2 Comprehensive Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.2.1 State Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.2.2 Industrial Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3 Public Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.4 Scientific Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.5 Individual Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.3 Selected Organisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.3.1 The International Atomic Energy Association . . . . . . . . . . . . . . . . . . . . 263.3.2 EURATOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.3.3 The OECD Nuclear Energy Agency . . . . . . . . . . . . . . . . . . . . . . . . . 293.3.4 The International Commission on Radiological Protection . . . . . . . . . . . . . 293.3.5 The Nuclear Energy Institute (USA) . . . . . . . . . . . . . . . . . . . . . . . . . 303.3.6 The Electric Power Research Institute (USA) . . . . . . . . . . . . . . . . . . . . 303.3.7 The Institute of Nuclear Power Operations (USA) . . . . . . . . . . . . . . . . . . 31

    II Technical and Physical Fundamentals 33

    4 Materials 354.1 Introduction to Material Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    4.1.1 The International Systems of Units . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010.

    III

  • 8/12/2019 FQMH-Vol I Sampe Report

    4/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    4.1.2 Measurement Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.1.3 Key Values in Material Science . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4.2 Properties of Solid Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.2.1 Crystallographic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.2.2 Ceramic Crystallographic Structures . . . . . . . . . . . . . . . . . . . . . . . . . 444.2.3 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2.4 Crystallographic Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2.5 Alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.2.6 Elasticity, Plasticity and Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2.7 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.2.8 Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    4.3 Fissile Materials as Energy Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.3.1 Uranium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.3.2 Plutonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    4.4 Materials for Nuclear Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.4.1 Zirconium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.4.2 Zirconium Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724.4.3 Iron and Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    4.4.4 Superalloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.4.5 Crystal Structures of Superalloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    4.5 Nuclear Fuel Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834.5.1 Material Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834.5.2 Uranium Dioxide UO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834.5.3 Plutonium DioxidePuO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864.5.4 Other Types of Nuclear Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    4.6 Coolants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.6.1 Water as Coolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.6.2 Gas as Coolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.6.3 Sodium as Coolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    4.7 Materials for Neutron Absorber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    4.7.1 GadolinumGd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904.7.2 ErbiumE r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.7.3 BoronB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.7.4 Zirconium DiborideZrB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    4.8 Materials for Neutron Moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.9 Auxiliary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    4.9.1 Lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934.9.2 Grinding Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934.9.3 Detergents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934.9.4 Brazing Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934.9.5 Pore Formers and Other Additives . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    5 Manufacturing Techniques and Processes 95

    5.1 Introduction to Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955.2 Heat Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    5.2.1 Introduction to Heat Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.2.2 Sintering Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    5.3 Metal Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015.3.1 Introduction to Metal Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015.3.2 Investment Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025.3.3 Rapid Prototyping (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    5.4 Forming Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.4.1 Introduction to Forming Treatments . . . . . . . . . . . . . . . . . . . . . . . . . 1035.4.2 Cold-Pilger Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045.4.3 Cold-Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    5.4.4 Cold-Pressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065.4.5 Roll-Straightening Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.4.6 Spring Coil Machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    IV

  • 8/12/2019 FQMH-Vol I Sampe Report

    5/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    5.5 Cutting Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095.5.1 Introduction to Cutting Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . 1095.5.2 Electrochemical Machining (ECM) . . . . . . . . . . . . . . . . . . . . . . . . . 1095.5.3 Electrical Discharge Machining (EDM) . . . . . . . . . . . . . . . . . . . . . . . 1105.5.4 Stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115.5.5 Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125.5.6 Milling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135.5.7 Grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    5.6 Assembling Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145.6.1 Introduction to Assembling Treatments . . . . . . . . . . . . . . . . . . . . . . . 1145.6.2 Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155.6.3 Soldering and Brazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    5.7 Coating Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185.7.1 Surface Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    6 Measurements and Inspections 121

    6.1 Measurements as a Management Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    6.1.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236.1.3 Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.1.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    6.2 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.2.1 Visual Inspection by Man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.2.2 Automatic Visual Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    6.3 Dye Penetrant Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326.4 Measurement of Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    6.4.1 Coordinate Measuring Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336.4.2 Laser Scan Micrometer Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346.4.3 Distance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    6.5 Gamma-Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    6.5.1 Active Gamma Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376.5.2 Passive Gamma Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1386.6 Helium Leak Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396.7 Radiography andX-Ray Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406.8 Eddy Current Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406.9 Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    6.9.1 Through-Transmission Ultrasonic Method . . . . . . . . . . . . . . . . . . . . . . 1436.9.2 Pulse-Echo Ultrasonic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    6.10 Measurement of Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1446.10.1 Piezo-Electric Force Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1446.10.2 Strain Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    6.11 Metallography and Ceramography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1466.11.1 Replica Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1476.11.2 Scanning Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1486.11.3 Mass Analyzing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506.11.4 Testing Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    6.12 Measurement by Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

    III Manufacturing of Nuclear Fuel 157

    7 Nuclear Fuel Pellets 159

    7.1 Nuclear Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597.2 Extraction of Triuranium Octaoxide U3O8 . . . . . . . . . . . . . . . . . . . . . . . . . . 1617.3 Conversion to Uranium Hexafluoride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    7.4 Enrichment of Uranium Hexafluoride . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1677.4.1 Uranium Enrichment and its Significance . . . . . . . . . . . . . . . . . . . . . . 1677.4.2 Present State of World Uranium Enrichment . . . . . . . . . . . . . . . . . . . . . 167

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    V

  • 8/12/2019 FQMH-Vol I Sampe Report

    6/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    7.4.3 World Uranium Enrichment Capacity . . . . . . . . . . . . . . . . . . . . . . . . 1687.4.4 Enrichment Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1697.4.5 Management of the Uranium Enrichment Process . . . . . . . . . . . . . . . . . . 173

    7.5 Conversion to Uranium Dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1747.5.1 The ADU-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1757.5.2 The AUC-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1767.5.3 The Dry Bed Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777.5.4 The GECO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777.5.5 The Integrated Dry Route Process (IDR) and the AREVA-Dry Conversion (DC)

    Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777.6 Uranium Pellet Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    7.6.1 Pellet Manufacturers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797.6.2 Additives Used in the Pellet Production . . . . . . . . . . . . . . . . . . . . . . . 1797.6.3 Manufacturing of Green Compacts . . . . . . . . . . . . . . . . . . . . . . . . . . 1807.6.4 Manufacturing of Fuel Pellets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    7.7 MOX Pellet Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1847.7.1 The OCOM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1857.7.2 TheAUPuC-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    7.7.3 The MIMAS-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1857.7.4 The COCA-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1857.7.5 The SBR-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    7.8 Uranium-Gadolinium Pellet Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    8 Production of Zircaloy Components 189

    8.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1898.2 Conversion of Zircon Sand to Zirconium Sponge . . . . . . . . . . . . . . . . . . . . . . 1898.3 Manufacturing of Zirconium Ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1918.4 Manufacturing of Hollow Tubes by Extrusion . . . . . . . . . . . . . . . . . . . . . . . . 1948.5 Manufacturing of Cladding Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1968.6 Fabrication of the Spacer Strips and Fuel Channels . . . . . . . . . . . . . . . . . . . . . 198

    9 The Fuel Assembly 201

    9.1 Introduction to Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2019.1.1 PWR Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2029.1.2 BWR Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2039.1.3 Components of Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    9.2 Fuel Cladding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089.2.1 Incentives for the Development of Cladding Material . . . . . . . . . . . . . . . . 2099.2.2 Development of Cladding Materials . . . . . . . . . . . . . . . . . . . . . . . . . 210

    9.3 Top and Bottom End Plug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2129.4 Top and Bottom Nozzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2129.5 Springs and Spacers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    9.5.1 Spacers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    9.5.2 Compression and Leaf Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159.6 Manufacturing of Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

    9.6.1 Overview of Fuel Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159.6.2 Manufacturing of Fuel Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2179.6.3 Manufacturing the Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2189.6.4 Manufacturing the Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . 2199.6.5 Final Inspection and Shipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

    9.7 Associated Core Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2209.7.1 PWR Control Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2209.7.2 BWR Control Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2229.7.3 PWR Flow Restrictor Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 2239.7.4 Neutron Source Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

    9.7.5 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

    10 Front End Inspections 227

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    VI

  • 8/12/2019 FQMH-Vol I Sampe Report

    7/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    10.1 Manufacturing and Examination Sequence Plan . . . . . . . . . . . . . . . . . . . . . . . 22810.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22910.3 Inspection of Material and Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

    10.3.1 Fuel Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23010.3.2 Zircaloy Cladding Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23110.3.3 Fuel Pellet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23310.3.4 End Plug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23310.3.5 Plenum Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23410.3.6 Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23410.3.7 Top and Bottom End Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23510.3.8 Hold Down Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23510.3.9 Guide Tube (PWR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23510.3.10 Spacer/Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23610.3.11 Instrumentation Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23710.3.12 Evaluation and Reporting of Inspection Results . . . . . . . . . . . . . . . . . . . 237

    IV The Reactor 239

    11 Fuel and Core Design Criteria 241

    11.1 The Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24111.1.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24111.1.2 Failure Mechanisms of Fuel Systems . . . . . . . . . . . . . . . . . . . . . . . . 24311.1.3 The Deterministic Safety Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 24411.1.4 The International Nuclear and Radiological Event Scale . . . . . . . . . . . . . . 24411.1.5 The Safety Margin Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24611.1.6 An Alternative Safety Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24911.1.7 Loss of Coolant Accident (LOCA) and Reactivity Initiated Accident (RIA) . . . . 25111.1.8 Anticipated Transients Without Scram (ATWS) . . . . . . . . . . . . . . . . . . . 25611.1.9 Design Requirements Due to External Safety Hazards . . . . . . . . . . . . . . . 257

    11.1.10 Risk Assessment Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25911.2 Neutron Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26011.2.1 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26011.2.2 Neutron Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26211.2.3 Neutron Moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26411.2.4 Neutron Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26511.2.5 Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

    11.3 Thermohydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27311.3.1 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27411.3.2 Peaking and Hot Channel Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 27711.3.3 Temperature Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27911.3.4 Pressure Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28011.3.5 Core Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    11.4 Mechanical, Thermohydraulic and Nuclear Design Criteria . . . . . . . . . . . . . . . . . 28311.5 Water Chemistry Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

    11.5.1 Water Chemistry of PWRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28611.5.2 Water Chemistry of VVERs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28811.5.3 Water Chemistry of BWRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

    12 Design Verification 291

    12.1 Design Tools and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29112.2 Code Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29312.3 Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

    12.3.1 Treatment of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29512.3.2 Computational Fluid Dynamics (CFD) . . . . . . . . . . . . . . . . . . . . . . . . 299

    12.3.3 Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30012.3.4 Nodal Method (NM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

    12.4 Stochastic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    VII

  • 8/12/2019 FQMH-Vol I Sampe Report

    8/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    12.4.1 Quantification of Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30112.4.2 Probability Distribution of a Random Variable . . . . . . . . . . . . . . . . . . . 30212.4.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30312.4.4 The MCNP-Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

    12.5 Design Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30712.5.1 Integrity of Reactor Internal Components . . . . . . . . . . . . . . . . . . . . . . 30712.5.2 Computer Codes for Reactor Physics . . . . . . . . . . . . . . . . . . . . . . . . 30812.5.3 Fuel Assemblies and Fuel Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . 30912.5.4 Computer Codes for the Cooling Circuit . . . . . . . . . . . . . . . . . . . . . . . 31112.5.5 Computer Codes for the Containment . . . . . . . . . . . . . . . . . . . . . . . . 311

    12.6 Validation of Computer Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31212.6.1 Historical Research Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31212.6.2 Nuclear Test Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31312.6.3 International Nuclear Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    13 In-Core Fuel Management 315

    13.1 The Tasks of In-Core Fuel Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 31513.2 Economic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

    13.3 Incore Fuel Management Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31813.4 Core Loading Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    13.4.1 Out-In Core Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32013.4.2 In-Out Core Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    13.5 Refuelling Step Sequence Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32113.5.1 Step Sequence Plan for a PWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32113.5.2 Step Sequence Plan for a BWR . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    13.6 Maintenance During Refuelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32513.7 Restart of the Reactor After Refuelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

    13.7.1 The Restart of a PWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32513.7.2 The Restart of a BWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

    13.8 Reactor Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

    13.8.1 Operation Modes for PWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32713.8.2 Operation Modes for BWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

    V Nuclear Waste and Storage 329

    14 Fuel Storage at the Reactor 331

    14.1 On-site Wet and Dry Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33114.2 Wet Storage of Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

    14.2.1 Risks Involved with Wet Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 33314.3 Dry Storage of Fuel Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

    14.3.1 Dry Storage of Fresh Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . 33414.3.2 Dry Storage of Irradiated Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . 334

    14.4 Poolside Inspections of Spent Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33514.4.1 Visual Inspection of Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . 34014.4.2 Identification of Defective Fuel Assemblies and Rods . . . . . . . . . . . . . . . . 34214.4.3 Measurement of the Oxide Layer Thickness . . . . . . . . . . . . . . . . . . . . . 34414.4.4 Analysis of the Fission Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34514.4.5 Measurement of Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34614.4.6 Relaxation of Spring Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34814.4.7 Drop Time of Control Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

    14.5 Repair of a Fuel Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34814.5.1 Exchange of a Defective Fuel Rod . . . . . . . . . . . . . . . . . . . . . . . . . . 34914.5.2 Exchange of a Defective Skeleton in PWRs and BWRs . . . . . . . . . . . . . . . 34914.5.3 Other Repair Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

    14.6 Hot Cell Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35114.6.1 Nondestructive Hot Cell Examinations . . . . . . . . . . . . . . . . . . . . . . . . 35114.6.2 Destructive Hot Cell Examinations . . . . . . . . . . . . . . . . . . . . . . . . . . 351

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    VIII

  • 8/12/2019 FQMH-Vol I Sampe Report

    9/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    15 Reprocessing of Spent Fuel 355

    15.1 Significance of Reprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35515.2 Current State of Reprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35515.3 The PUREX Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35715.4 The Electrorefining Reprocessing Technique . . . . . . . . . . . . . . . . . . . . . . . . . 35815.5 The Decontamination Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

    16 Interim and Final Disposal 361

    16.1 The Nuclear Waste Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36116.2 Implications of Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36216.3 Classification of Radioactive Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36316.4 Composition of Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36516.5 Disposal Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36616.6 Significance of Interim Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36816.7 Wet Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36916.8 Dry Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36916.9 Disposal of Low-Level Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

    VI Nuclear Transports 373

    17 Transport Requirements 375

    17.1 Global Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37517.2 Significance of Nuclear Transports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37517.3 Front End and Back End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37617.4 Safety and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37717.5 The IAEA Safety Standards TS-R-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

    18 Transports Within the Fuel Cycle 381

    18.1 Transport of Uranium Ore Concentrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38118.2 Transport ofU F6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

    18.3 Transport ofU O2-Powder or UO2-Pellets . . . . . . . . . . . . . . . . . . . . . . . . . . 38318.4 Transport ofPuO2-Powder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38318.5 Transport of Uranium-Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38418.6 Transport of MOX-Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38518.7 Transport of Irradiated Fuel Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . 38718.8 Transport of Other Irradiated Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

    19 Quality Management 389

    19.1 Science of Quality Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38919.2 Nuclear Fuel Management Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39019.3 A Short Note on Quantification of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 391

    VII Appendix 395

    A Concepts and Definitions 397

    B Acronyms and Abbreviations 441

    Bibliography 449

    Index 461

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    IX

  • 8/12/2019 FQMH-Vol I Sampe Report

    10/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    X

  • 8/12/2019 FQMH-Vol I Sampe Report

    11/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Preface

    The Fuel Quality Management Handbook (FQMH), which is presented here in four volumes, is aimed atall those involved with nuclear energy. Here, the word fuel refers to nuclear fuel and the handbook coversthe entire nuclear fuel cycle, from mining of ore to disposal of spent fuel.

    Today, quality is more important than ever and especially so in the nuclear industry, where it is a synonymfor safety and efficiency in all the phases of the fuel cycle. The focus of the FQMH is therefore quality, andthe management of quality. Quality management is closely related to the uncertainty about the future devel-opments. Hence, defining, modelling and handling of uncertainty is one of the central topics of the FQMH.The term management, as used in the FQMH, must be understood to encompass all such individuals,offices and bodies, as:

    engineers developing and improving the design of nuclear fuel and nuclear reactors;

    suppliers of nuclear fuels and nuclear reactors;

    the operators of nuclear power plants;

    international and national organizations involved in nuclear energy;

    the authorities responsible for regulating and supervising nuclear power plants;

    the offices, or agencies responsible for the granting, extension or withdrawal of operator licenses andshutdown of installations.

    The FQMH provides a comprehensive and integrated treatment of all areas related to the generation ofenergy by means of nuclear fission. In particular, of all those issues and their inter-relationships are dealtwith that have to be considered in order to assure a successful and sustainable management. The overallcontents of the FQMH are arranged as follows:

    Volume I: The FQMH-I commences with a brief history of the nuclear industry. This is followed byexpositions on the mining of uranium ore, the manufacture of nuclear fuels and of nuclear reactors,power-plant operations, the various inspections that are carried out, and the transport and reprocessingor disposal of spent fuel. A special feature of FQMH-I is that it introduces, in self-contained chapters,

    the various materials used in the nuclear fuel cycle and the technology and methodology used inmanufacturing, controlling and analyzing the fuel.

    Volume II: FQMH-II examines licensing processes and legal and regulatory frameworks in countrieswith nuclear installations. It also compares and analyzes the various procurement processes that existthroughout the nuclear industry.

    Volume III: FQMH-III is devoted to the concept of quality and to the latest scientific developmentsin this important area. Furthermore, the closely related science of quality management is introducedand explained and, finally, the numerous relevant international standards that must be considered areintroduced and examined.

    Volume IV: FQMH-IV, finally, is devoted to the most important challenge facing those charged withthe task of managing quality, namely how to handle uncertainty. Uncertainty, brought about by vari-ability in human performance, in materials, in processes, etc., plays a crucial role in almost all stages

    of the nuclear cycle. Any improvement in the handling of uncertainty may have an immediate positiveeffect on the efficiency of decisions that must be made throughout this cycle. FQMH-4, therefore,contains the latest scientific results concerning the issue uncertainty and demonstrates how thesefindings may be beneficially applied in the nuclear fuel cycle.

    Appendix: One feature of nuclear technology is the abundant use of acronyms and abbreviations whichmake reading and understanding of materials a difficult task. The text of the FQMH is written usingonly very little abbreviations. However, a comprehensive list of commonly employed acronyms andabbreviations is supplied in an appendix, which also contains an encyclopedic list of concepts anddefinitions associated with the nuclear industry. This is particularly important, as there are a numberof areas of possible ambiguity.

    The FQMH is designed to be comprehensive in the sense that the text together with the cited references

    provides the necessary working knowledge for successful quality management across the nuclear fuel cycle.Successful management leads not just to sustainable efficiency and profitability of nuclear power plants, butalso to the acceptance of nuclear energy by the wider public. Public acceptability is closely linked to the

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    XI

  • 8/12/2019 FQMH-Vol I Sampe Report

    12/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    manner in which uncertainty in nuclear energy supply, and in nuclear facility operations in particular, isaddressed and represented. This is a further reason for the focus on uncertainty in the FQMH.

    The FQMH does not set out to describe or impart new technology or scientific advances for the nuclearsector. It does, however, set out to provide new insights and to encourage an approach that can aid decision-making in the sector. It is written in an easy-to-understand style which does not assume prior specialized

    knowledge. Moreover, it uses a unified terminology that could be adapted, particularly by internationalorganizations in order to avoid the misunderstandings that can currently arise due to ambiguities in existingterminology, definitions, etc. The FQMH can therefore be used as follows:

    as material for self-study by all persons involved in the nuclear fuel cycle who wish to acquire a betteroverall understanding of their assigned tasks and responsibilities;

    as instructional material for training courses in any area of the nuclear fuel cycle, including the supply,manufacture and control of nuclear fuels, licensing and procurement;

    as a guide to the identification of weaknesses in management and decision-making in the nuclear fuelcycle, and the identification of possible corrective measures.

    Reader of the FQMH-I that are interested in getting additional expert information are referred to a number

    of different reports published by ANT International. Samples of the reports can be downloaded at theweb-site:http://www.antinternational.com. More specifically the following Reports/Handbooks givemore detailed information related to several topics covered in the FQMH-I:

    Fuel Fabrication Process Handbook, FFPH, Alfred Strasser and Peter Rudling, ANT International,Skultuna, Sweden,2005.

    Fuel Material Technology Report, FMTR Vol. I by Brian Cox, Friedrich Garzarolli, Ron Adamson,Peter Rudling, Alfred Strasser.

    Fuel Material Technology Report, FMTR Vol.II by Peter Rudling, Ron Adamson, Hubert Bairiot,Brian Cox, Peter Ford, Friedrich Garzarolli, Rolf Riess, Alfred Strasser.

    Fuel Material Technology Report, FMTR Vol. IV by Peter Rudling and Charles Patterson.

    Environmentally-Assisted Degradation of Structural Materials in Water Cooled Nuclear Reactors,

    SMDR, Peter Ford.

    More information can also be obtained from the following ZIRconium Alloy Technology, ZIRAT/Informa-tion on ZircoNium Alloys, IZNA reports:

    ZIRAT14/IZNA9 STR on Impact of manufacturing changes on Zr alloy in-pile performance by PeterRudling, Ron Adamson, Brian Cox, Friedrich Garzarolli, Alfred Strasser, Antonina Nikulina, SlavaShishov.

    ZIRAT14/IZNA9 STR on In-Reactor Creep of Zirconium Alloys by Ron Adamson, Friedrich Garzarolliand Charles Patterson.

    ZIRAT13/IZNA8 STR on Effect Of Hydrogen on Zirconium Alloy Properties by Alfred Strasser, RonAdamson and Friedrich Garzarolli.

    ZIRAT13/IZNA8 STR on Effect Of Hydrogen on Zirconium Alloy Performance by Alfred Strasser,

    Peter Rudling, Brian Cox and Friedrich Garzarolli. ZIRAT12/IZNA7 STR on Welding of Zr Alloys by Peter Rudling, Alfred Strasser,Friedrich Garzarolli.

    ZIRAT12/IZNA7 STR on Corrosion Mechanisms in Zirconium Alloys by Ron Adamson, FriedrichGarzarolli, Brian Cox, Alfred Strasser, Peter Rudling.

    ZIRAT11/IZNA6 Special Topic Report (STR) on PCI and PCMI by Ron Adamson, Brian Cox, JohnDavies, Friedrich Garzarolli, Peter Rudling and Sam Vaidyanathan.

    ZIRAT11/IZNA6 STR on Manufacturing of Zr-Nb Alloys by Antonina Nikulina, Slava Shishov, BrianCox, Friedrich Garzarolli and Peter Rudling.

    ZIRAT10/IZNA5 STR on Impact of Irradiation on Material Performance by Ron Adamson and BrianCox.

    ZIRAT10/IZNA5 STR on Structural Behaviour of Fuel and Fuel Channel Components by Friedrich

    Garzarolli, Brian Cox, Alfred Strasser and Peter Rudling. ZIRAT9/IZNA4 STR on Corrosion of Zr-Nb Alloys by Brian Cox, Friedrich Garzarolli and Peter

    Rudling.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    XII

  • 8/12/2019 FQMH-Vol I Sampe Report

    13/96

  • 8/12/2019 FQMH-Vol I Sampe Report

    14/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    XIV

  • 8/12/2019 FQMH-Vol I Sampe Report

    15/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Acknowledgements

    We would like to acknowledge the support of many persons and organizations. We are especially indebted tothe two reviewers of this handbook, who made numerous valuable suggestions that considerably improvedthe contents. Many further organizations supplied us with relevant photos, figures and advice, which madethe manuscript more lively and illustrative.

    Reviewer:

    Dr. Charles Patterson retired from Global Nuclear Fuel in 2008 as a Consulting Engineer forFuel Engineering. During 44 years with GE Nuclear Energy/GNF, he was actively engaged inthe development of fuel manufacturing processes, fuel materials, thermal-mechanical and fuelperformance models and in the improvement of fuel reliability.

    Dr. Ted Darby is a Specialist in Nuclear Materials and Engineering Fellow at Rolls-Royce plc.

    Fuel Vendors:

    AREVA NP GmbH, Paul-Gossen-Str. 100, 91001 Erlangen, Germany Global Nuclear Fuel, 3901 Castle Hayne Rd., P.O. Box 780, M/C H25, Wilmington, NC 28402,

    USA Westinghouse Electric Sweden AB, 721 63 Vsteras, Sweden

    Nuclear Power Stations:

    Kernkraftwerk Biblis, RWE Power Aktiengesellschaft, Postfach 11 40, 68643 Biblis, Germany Kernkraftwerk Gundremmingen GmbH, Dr.-August-Weckesser-Str. 1, 89355 Gundremmingen,

    Germany Kernkraftwerk Gsgen-Dniken AG, 4648 Dniken, Switzerland Kernkraftwerk Philippsburg, EnBW Kernkraft GmbH, Rheinschanzinsel, 76661 Philippsburg,

    Germany

    Other Companies:

    DME Nanotechnologie GmbH, Am Listholze 82, Hannover, Germany Helling GmbH, Spoekerdamm 2, 25436 Heidgraben, Germany Hottinger Baldwin Messtechnik GmbH, Im Tiefen See 45, 64293 Darmstadt, Germany INGNIEURBRO ODENTHAL GbR, Zum Alten Wasserwerk 6, 51491 Overath - Immekeppel,

    Germany GNS Gesellschaft fr Nuklear-Service mbH, Hollestrae 7A, 45127 Essen, Germany Mahr GmbH, Advertising & Technical Documentation, Reutlingerstr. 48, 73728 Esslingen, Ger-

    many NOVUS GmbH & Co. KG, Hessenweg 53, 49803 Lingen, Germany Olympus Deutschland GmbH, Wendenstrae 14-18, 20097 Hamburg, Germany Dr. Heinrich Schneider, Messtechnik GmbH, Rotlay-Muehle, 55545 Bad Kreuznach, Germany Keyence Deutschland GmbH, Siemensstr.1, 63263 Neu-Isenburg, Germany Salzgitter Mannesmann Stainless Tubes GmbH, Wiesenstrae 36, 45473 Mlheim an der Ruhr,

    Germany RWE Power Aktiengesellschaft, Huyssenallee 2, 45128 Essen, Germany Technische Universitt Berlin, Institut fr Werkzeugmaschinen und Fabrikbetrieb, Pascalstrae

    8 - 9, 10587 Berlin, Germany University of Graz, Institute of Earth Sciences (Geology and Palaeontology), Heinrichstrasse 26,

    A-8010 Graz, Austria URENCO Deutschland GmbH, Rntgenstr. 4, 48599 Gronau, Germany Vattenfall Europe Nuclear Energy GmbH, Germany Viscom AG, Carl-Buderus-Strae 9 - 15, 30455 Hannover, Germany

    Finally, we would like to take this opportunity to thank many experts who very open-minded andfriendly gave us many hints and pieces of advice: Anette Medin, Karin Reiche, Cornelia Wehrli, Hans-Dieter Berger, Franz Brning, Douglas Crawford, Wolfgang Drr, Eberhard Grauf, Toyoshi Fuketa,

    Martin L. Grossbeck, Lars Hallstadius, Hans-Christoph Hippe, Mikael Hultfeldt, Armin Hermann,Michael Koebl, Alexander Scholl, Glenn Torstensson, Christian Wilson .

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    XV

  • 8/12/2019 FQMH-Vol I Sampe Report

    16/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    XVI

  • 8/12/2019 FQMH-Vol I Sampe Report

    17/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Part I

    A Birds-Eye View on Nuclear

    Technology

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010.

    1

  • 8/12/2019 FQMH-Vol I Sampe Report

    18/96

  • 8/12/2019 FQMH-Vol I Sampe Report

    19/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    1. The Dawn of Nuclear Energy

    1.1 From Nuclear Threat to Nuclear Opportunity

    The development and construction of nuclear power reactors originally served only the purpose to producematerial for atomic bombs. The bombing of Hiroshima and Nagasaki (6 and 9 August 1945) demonstratedthe enormous amount of energy released by the fission of uranium or plutonium. Subsequently, manypoliticians and scientists among them the Father of the Atomic Bomb Robert Oppenheimer (Figure 1.1)

    started to worry about the devastating effects and about ethic limits1 with regard to the use of nuclear power.

    Figure 1.1: The Father of the Atomic Bomb Robert Oppenheimer 2ca. 1944.

    In 1949, the former Soviet Union performed its first atomic bomb test3. Moreover, after Stalin had passedaway, the Soviet Union began attempts in 1953 to establish cooperations in the field of nuclear technologywith developing countries. Simultaneously, also Great Britain and France were about to achieve the sta-tus of nuclear powers. In 1950, in addition to the Cold War, the Korean war had begun, which meant aconfrontation between the two superpowers, so that a nuclear war appeared possible.

    1The role of ethics in quality and quality management is discussed in depth by August Mundel (1991).

    2Robert Oppenheimer (1904-1967) was the scientific director of the Manhattan Project, the project to develop the

    atomic bomb during World War II. http://de.wikipedia.org/wiki/Robert_Oppenheimer, November 2008.3Holloway (1994), p. 323.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010.

    3

  • 8/12/2019 FQMH-Vol I Sampe Report

    20/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Figure 1.2: The thirty-fourth President of theUnited States (1953-1961) Dwight D. Eisenhower4.

    The US judged the danger to be extremelyhigh, particularly after the Soviet Union hadsuccessfully tested a hydrogen bomb. In thissituation, under the direction of Robert Op-penheimer, the project Candor was plannedwith a series of six fifteen minute, nation-wide

    Radio-TV talks to inform the public of the re-alities of the Age of Peril. However, insteadof the Candor project, which aimed to demandgreater efforts from the US citizen, PresidentEisenhower (Figure 1.2) launched the Atoms

    for Peace initiative, which was supposed topush back the nuclear military threat in fa-vor of a civilian nuclear cooperation and com-petition. Eisenhower envisaged an atomic-pool of fissionable material and joint scien-tific knowledge to be used for an internationalexploitation of nuclear energy 5 .

    On the 8th of December 1953, President Dwight D. Eisenhower delivered an address during the 470 th

    Plenary Meeting of the United Nations General Assembly in New York, announcing the new nuclear USpolicy Atoms for Peace. In his speech (Figure 1.3) Eisenhower stated 6:

    The United States would be more than willing it would be proud to take up with others princi-

    pally involved the development of plans whereby such peaceful use of atomic energy would be

    expedited. Of those principally involved the Soviet Union must, of course, be one.

    Figure 1.3: Dwight D. Eisenhower delivering his speech Atoms for Peace in 1953, United Nations General.

    Eisenhower completed his address with the following words that may be even now considered as the aim ofnuclear industry:

    To the making of these fateful decisions, the United States pledges before you and therefore

    before the world its determination to help solve the fearful atomic dilemma to devote its

    entire heart and mind to find the way by which the miraculous inventiveness of man shall not be

    dedicated to his death, but consecrated to his life.

    Subsequently, the civilian atomic age started with the First United Nations International Conference onthe Peaceful Uses of Atomic Energy, which took place between the 8th and 20th August 1955 in Geneva.

    4http://en.wikipedia.org/wiki/Dwight_D._Eisenhower, January 2009.5Hewlett and Holl (1989).6http://www.iaea.org/About/history_speech.html , November 2008.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    4

  • 8/12/2019 FQMH-Vol I Sampe Report

    21/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    The Oak Ridge National Laboratory in Tennessee had designed and fabricated a small nuclear reactor injust three months and transported it by air to Geneva. Called Project Aquarium(Figure 1.4) because itwas a swimming pool type reactor, it served as a prototype for research reactors overseas that could be

    fuelled with the low-enrichment fissionable material contributed by the United States to the international

    stockpile7.

    Figure 1.4: The swimming pool reactor is shown to Dwight D. Eisenhower during the Geneva conference8.

    The demonstration of nuclear technology during the conference in Geneva was regarded as a platform

    for comparing the relative strengths of science in capitalist and communist societies9. The conferencemarked a formidable impetus for research efforts, aiming at developing commercial nuclear concepts inmany countries. Cooperation agreements were signed between the reactor producers in order to developadvanced types of nuclear reactors. In all, about 50 different reactor concepts were developed, amongstwhich the two water cooled and water moderated concepts (pressurized water reactor, PWR, and boilingwater reactor, BWR) became widely accepted.

    The First United Nations International Conference on the Peaceful Uses of Atomic Energy can be viewedas the turnaround of the public view on nuclear energy. The chance of obtaining an almost infinite energysource replaced the fear of the disastrous effects of atomic bombs. Thousands of people of various countriescame to Geneva to see the nuclear reactor in operation. Indeed, the success of the swimming pool reactorat the Geneva conference was overwhelming:

    More than 62,000 people, including kings, queens, presidents, and other dignitaries, queued up

    to see the reactors blue glow during the two-week-long conference. It became the most popular

    exhibit at the conference. Enrico Fermis wife subsequently labeled it the worlds most beautiful

    little reactor10.

    The German journalist Manfred Kriener describes the almost unlimited enthusiasm among engineers, politi-cians and even philosophers for nuclear energy in the late 1950s. Nuclear energy was believed to be a sourceof free energy in all fields of application. Physicians hoped for new radioisotopes that would heal hithertoincurable diseases, and the German minister of agriculture was hoping that irradiated crops would defeatthe world hunger. The Ford Company designed the futuristic car Nucleon whose source of power wouldbe a nuclear reactor. Another atomic concept car named Fulgur (see Figure 1.5) was presented by Simca

    7http://www.ornl.gov/info/ornlreview/rev25-34/chapter4sb2.htm, October 2008.8http://www.iaea.org/About/history_speech.html , November 2008.9http://www.ornl.gov/info/ornlreview/rev25-34/chapter4.shtml , November 2008.

    10http://www.ornl.gov/info/ornlreview/rev25-34/chapter4.shtml , November 2008.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    5

  • 8/12/2019 FQMH-Vol I Sampe Report

    22/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    during the 1961 Chicago auto show. The German philosopher Ernst Bloch dreamt that in a blue atmosphereof peace, nuclear energy would create fertile lands from deserts and springtime from ice. He thought thatsome hundred pounds of uranium and thorium would be sufficient to make the Sahara and the Gobi Desertdisappear and to turn Sibiria and North America, Greenland and Antarctica into a Riviera.11

    In France12, the company Framatome13, founded on the 1st December of 1958 by the companies Schneider

    Group, Empain, Merlin Grin and Westinghouse, began to produce pressurized water reactors (PWR) basedon the Westinghouse concept. Another holder of a Westinghouse PWR license was Mitsubishi from Japan.In the Federal Republic of Germany14, the company Siemens-Schuckertwerke placed a license agreementwith Westinghouse that became effective in June 1957, resulting in a concept to build pressurized waterreactors (PWR). The German company AEG-Telefunken AG15 cooperated with General Electric, whichfavored boiling water reactors (BWR). In addition, the Brown Boveri Reaktor GmbH became license holderfor the concept of pressurized water reactors from Babcock & Wilcox.

    Figure 1.5: The atomic car Fulgur of Simca, France, during the 1961 Chicago Auto Show 16.

    The episode of the swimming pool reactor at the Geneva conference shows how the opportunities and

    dangers of nuclear energy were misjudged by experts and the public in the 1950s. For instance, HomiBhabha, an Indian Physicist, Nobel Prize Winner and president of the Conference, predicted in all serious-ness that controlled nuclear fusion, which promised limitless cheap electricity, would be mastered withintwenty years17. Nowadays, subjective judgements on risks and benefits of nuclear energy are still prevailingas reflected especially in the public opinion. One of the tasks of quality management of nuclear installationsis therefore linked to an objective assessment of nuclear energy. An objective assessment must not be basedon subjective postulates and assumptions, but on a verified stochastic model developed on the basis of theavailable decade-long experiences. A stochastic model needs a newly developed technique to mirror therelation between past and future. Based on a stochastic model18 reliable and accurate predictions can beobtained that are necessary to assess objectively both risks and benefits of nuclear energy.

    1.2 Quality Management of Nuclear Installations

    Quality management means all decisions and activities that aim at maintaining or at improving an alreadyachieved level of quality. Quality of nuclear plants or nuclear fuel fabrication facilities refers to its fu-ture performance with respect to safety and profitability. A nuclear installation is of high quality if threeconditions are fulfilled:

    11Cited according to Krieger (2006): in einer blauen Atmosphre des Friedens aus Wsten Fruchtland, aus Eis

    Frhling schaffen. Einige hundert Pfund Uranium and Thorium werden ausreichen, um die Sahara und die Wste Gobi

    verschwinden lassen, Sibirien und Nordamerik, Grnland und die Antarktis zur Riviera zu verwandeln.12A. Michel, 1995.13Framatome = Franco-Amricaine de Constructions Atomiques.14Krug (1998).15AEG = Allgemeine Electricitts-Gesellschaft.16http://www.carstyling.ru/en/cars.1958_Simca_Fulgur.html, October 2008.17http://www.iaea.org/About/history.html, November 2008.18A stochastic model is to be understood in contrast to the deterministic models in physics and the probabilistic models

    in statistics. In contrast to these models, a stochastic model utilizes the complete available knowledge about a process to

    describe realistically the variability in the process outcome.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    6

  • 8/12/2019 FQMH-Vol I Sampe Report

    23/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    a) Safety of the operation is assured as a necessary condition during the entire lifetime of the installation.

    b) Maximum profitability of the installation during its entire lifetime should be achieved.

    c) The disposal of nuclear waste is organized in a way that at no time radioactivity will harm the envi-ronment.

    Looking at the above points more closely shows that the safety of nuclear installations constitutes a sidecondition, while the profitability represents the objective19. The safety requirement is valid for any indus-trial facility, however, in the nuclear field, it has a special significance. This is due to:

    its origin from the most devastating military weapon;

    to the large potential consequences of any hypothetical accident in a nuclear installation.

    As to the first condition (a), a tight quality management of a nuclear installation is of crucial importance.Accidents like those in Three Mile Island and in Chernobyl which occurred due to mistakes done by reactoroperators must be avoided by any means and this handbook wants to enable the development of strategiesto prevent such incidents.

    Secondly (b), it is correct that profitability is the only task for quality management. However, this view

    could turn out to be very shortsighted if it does not extend to the entire lifetime of the installation. A qualitymanagement must assure profitability from the first to the last day of operation. Consequently, it is of utmostimportance that quality management develops and implements policies that maintain the well-functioningof material and staff.

    The third condition (c) mentioned above refers to environmental contamination and is generally dividedinto the contamination for producing nuclear fuel and the contamination related to nuclear waste arisingduring and after the operation of the installation. It is to be foreseen that in the future the significance of thiscondition will increase because of financial reasons and of reasons related to the general public acceptanceof nuclear energy.

    Quality management related to the above stated three conditions (a through c) is successful if the involvedprocesses, including their inherent uncertainties, are known and controlled. With knowledge of a specificprocess we mean that there is a sufficiently realistic quantitative model that describes realistically the vari-ability in the process outcomes. For example, two fuel pellets produced by the same process will havedifferent values of the quality characteristics such as diameter and density. A stochastic model describesthis variability and can be used as the basis for designing and implementing strategies for preventing anycostly incident. The objective of FQMH-I is to give an overview of all important processes involved in thenuclear fuel cycle.

    In general, the responsibility for the operation of an industrial facility is clearly defined, and the managers incharge can easily be identified. However, this situation is more complex in the nuclear field. In the case of anuclear installation, the responsibilities are shared by the operating company, the regulator (safety authority)in the specific country and its expert organizations, the suppliers, and certain international associations.

    Furthermore, the responsibilities do not end with decommissioning of the nuclear installation, but insteadalso cover the management of spent fuel, radioactive waste and the complete dismantling of the installation.

    Obviously, the quality management of a nuclear installation constitutes a unique challenge, since it requiresthe cooperation of rather different organizations. Moreover, quality management has to take into accountthe public concern of nuclear energy that is inherently associated with nuclear bombs, the Windscale fire20,the Three Mile accident21, and the Chernobyl accident22. One of the tasks of a quality management is toput these incidents into a general perspective of human activities. A successful nuclear fuel managementmust convincingly show that the dangers for the human society emanating from nuclear industry are much

    19A side condition constitutes a requirement that has to be met necessarily and which limits the set of possible strategies,

    while an objective represents a criterion for selecting the best strategy within the set of possible ones.20In October 1957, the graphite core of a British nuclear reactor at Windscale, Cumberland, caught fire and radioactivity

    was released before the fire could finally be put out.21The Three Mile Island Accident, Pennsylvania, in the USA took place in 1979 and led to a partial core meltdown of

    one of the reactors of the PWR nuclear power plant.22The Chernobyl accident, Ukraine, in the former Soviet Union took place in 1986 and was the worst nuclear power plant

    accident in the history of nuclear technology.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    7

  • 8/12/2019 FQMH-Vol I Sampe Report

    24/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    better controlled than for many other systems23. Such a proof must be based on models of the involveduncertainties about the future developments implying that models should be based on stochastic methodsand the introduction of the relevant methodology is therefore another objective of the handbook.

    The following introductory sections shall briefly describe the different process involved in the nuclear fuelcycle and the arising quality management issues

    1.3 The Nuclear Fuel Cycle

    The term nuclear fuel cycle includes all activities from uranium mining, enrichment, nuclear fuel fabrica-tion, using the fuel in reactors, and to recycling or disposing the spent fuel. The fuel cycle starts with thegeophysical exploration, prospecting, mining and the milling of uranium ore. Subsequently, the uraniumore passes through a number of processing steps which consist of conversion, enrichment, and fuel fabrica-tion until it is used for filling the fuel rods and fuel assemblies that are used to generate heat in a reactor. Thecycle ends with the storage, the reprocessing, and finally the disposal of spent fuel and radioactive wastethat results from the production of nuclear fuel, the operation of the nuclear reactors and the reprocessingof spent fuel.

    The nuclear fuel cycle (see Figure 1.6) may be divided into four more or less independent processes, namely:

    mining and milling of uranium ore;

    conversion and enrichment of uranium;

    fuel fabrication;

    producing energy in a reactor;

    storing, reprocessing, and disposing of spent fuel and radioactive waste.

    Figure 1.6: Nuclear fuel life cycle disposal; HLW - High Level Waste; MOX - Mixed Oxide Fuel 24.

    A very distinct and unique feature of nuclear fuel is the length of its life cycle compared to the cycles of anyother energy source. While the operating cycle of coal, oil or gas may be measured in months, the nuclearfuel cycle takes 100 thousands of years related to the decay of some of the radioactive nuclides with longhalf lives.

    23The global systems were moved close to a breakdown by the current financial crisis, the traditional way of producing

    energy led to a climate change that is threatening the existence of millions, etc.24http://www-nfcis.iaea.org/NFCIS/NFCISMAin.asp, September 2008.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    8

  • 8/12/2019 FQMH-Vol I Sampe Report

    25/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    The different stages of the nuclear fuel life cycle for about 24 tof uranium fuel, which is approximately theannual fuel consumption of a 1000MWelight water reactor, are visualized in Figure 1.6. It begins with theinput of about 45 - 50 000tof uranium ore from mining that are converted into about 170 tof uranium in theform of uranium oxide known as yellow cake. Conversion is carried out by crushing, grinding, leachingand solvent extraction. The tail contains certain decay products, heavy metals and radon, in addition to acidand other materials used in the milling process. The environmental impact by mining as well as cleanupof the hazardous tailings is often not looked at as a problem for the nuclear fuel management. However,in view of the public concerns with respect to nuclear industry, also these problems must be considered bynuclear fuel management.

    There are two main types of nuclear fuel namely uranium oxide (UO2) fuel and mixed oxide fuel (MOX U PuO2) which contains uranium oxide and plutonium oxide. The manufacturing of both types isdescribed in detail in Chapter 7. Here, the MOX fuel is taken as an example to illustrate the fuel cycle.

    Before the uranium oxide is passed to the next step, it may be mixed with about 24tof uranium from thereprocessing of spent fuel25. (The reprocessed uranium is also called REPU and according to OECD/NEA(2001b), p. 39, might play an increasing role in a sustainable development context.) The subsequent con-version process yields natural uranium hexafluoride (U F6) for the enrichment process.

    The enrichment process results in about 220 tof depleted uranium, also called uranium tail that leaves thecycle and 24tof enriched uranium hexafluoride. In the case of fabrication of MOX fuel about 230kgofplutonium, provided by reprocessing, together with the uranium dioxide (UO2) is used to produce mixedoxide (MOX) fuel pellets. The depleted uranium needs to be taken care off to minimize the environmentalimpact. Presently, depleted uranium is increasingly used for ammunition and armor plates because of itshigh density, being about 70% larger than that of lead. In fact the status of depleted uranium is not clear.Sometime it is considered as a valuable resource for the future production of energy and sometimes asnuclear waste.

    The electricity produced by nuclear reactors leaves the fuel cycle, while the spent uranium is stored formany years in so-called spent fuel storage pools until decay heat (due to decay of short-lived radioactiveisotopes) has decreased significantly. When the radioactivity of the spent fuel has decreased sufficiently, it

    may be taken to a reprocessing plant. The output of the reprocessing plant consists of recovered uranium,isolated plutonium, and high-level radioactive waste. The latter is vitrified in blocks of Pyrex glass that arecontained in stainless steel canisters. Eventually, the nuclear waste that remains must be stored in a finalrepository.

    The commercial quality management of nuclear fuel begins with the fuel procurement approximately twoyears before the refuelling of a reactor and ends when the fuel is stored in the spent fuel pool or reprocessedin a reprocessing plant. The environmental issues arising from radioactive and non-radioactive waste pro-duced at various stages of the nuclear fuel cycle are subject of ongoing scrutiny and evaluation. Actually, theenvironmental issues are addressed by many national and international agreements and regulations on thecontrol and handling of relevant processes and materials. The agreements are being improved as technologyand public policy evolves.

    The internationalization of civilian nuclear technology is one of its characteristic features. In fact, almosteach stage of the nuclear fuel cycle is regulated by international agreements and restrictions that includenumerous accounting and auditing procedures. Moreover, the contracts concerning nuclear fuel reflect theinternationalization within the nuclear field. An example is given below to illustrate the fact that qualitymanagement of nuclear fuel is faced by global issues.

    A typical contract for the sale of Australian or Canadian uranium oxide concentrate to an elec-

    tricity generating utility in Belgium for example, could first entail shipment to the USA for con-

    version to uranium hexafluoride. The equivalent quantity of uranium hexafluoride might then be

    sent from USA to the Russia for enrichment, and then on to a fuel fabrication plant in Germany

    to be turned into uranium dioxide, before going into the core of a reactor owned by the Belgian

    utility with whom the sale was originally contracted. Later, the spent fuel from the reactor may

    go to the UK or France for reprocessing.26

    25Note that in most countries reprocessed fuel is currently not used.26http://www.world-nuclear.org/education/nfc.htm, October 2008.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    9

  • 8/12/2019 FQMH-Vol I Sampe Report

    26/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    Because of the particularities of nuclear energy, the power plant operator and the fuel supplier are muchmore linked together than in other industrial fields. However, the power plant operator bears the ultimateresponsibility for the safe and profitable use of nuclear fuel. Therefore, for dealing with the public concernsit makes sense that the quality management of nuclear fuel considers the entire life cycle of the fuel, startingwith mining and ending with its final disposal.

    In the first volume of this quality management handbook, the different processes and technical details arelisted that significantly affect safety and profitability and, thus, have to be taken into account by a successfulquality management of nuclear fuel. The subsequent volumes of the handbook treat the correspondingquality management issues related to these processes.

    In the following subsections, the various stages of the nuclear fuel cycle mentioned above are describedbriefly from a birds eye view.

    1.3.1 Mining and Milling

    The mining and milling of uranium ore represent the first stages of the nuclear fuel cycle. In 2006, uraniumwas produced in 20 countries27. The largest producer was Canada with 25%, followed by Australia with

    19% and Kazahkstan with 13%, Niger with 13%, the Russian Federation with 8%, Namibia with 8%,Uzbekistan with 6% and the United States with 5%. France, Germany and Hungary produced a minoramount of uranium as a consequence of mine remediation efforts28.

    Although the special environmental issues related to uranium mining are well known, the concerns focussedmainly on the health of the workers. Only recently, these concerns have been extended to the full range ofoperational activities related to uranium mining. Because of the large quantity, uranium mill tails are ofspecial significance from an environmental point of view. Although, the following issues are related to themining process and not to the production of energy, the nuclear fuel quality management must be based onall issues involved.

    In a report29 of the International Atomic Energy Agency (IAEA) the following points of concern withrespect to the uranium mill tails are listed:

    the tail retain much of the radioactivity of the ore from which it was derived;

    the tail radioactivity is very long lived;

    the tail contains a range of biotoxic heavy metals and other components;

    the tail contains sulphide minerals which can generate acid mine drainage;

    the tail granular to slime consistency makes them susceptible to leaching, erosion or collapse undervarious conditions;

    the common method of surface tail disposal exposes a large tail surface area to the natural elementsand thus increases the risk of release of radiation, radioactivity and geochemically toxic dusts, andinteraction with surface water systems;

    the large tail surface area of these deposits (or piles) adversely affects large areas of land and renderspotentially valuable land unfit for other uses.

    1.3.2 Conversion and Enrichment

    The primary aim of developing nuclear technology during World War II were nuclear weapons. Therefore,two tasks had to be solved: firstly, enough uranium had to be obtained and converted to the gaseous com-pound uranium hexafluoride (see Section 7.3); secondly, a much more difficult task was the enrichment ofthe uranium isotope U-235 in order to obtain weapons-grade uranium and fissile uranium for producingplutonium in a nuclear reactor.

    27OECD/NEA, IAEA (2008), p. 37.28TheUranium Mine Remediation Exchange Group, (UMREG) is a network of organizations being involved in the remediation of

    closed uranium mining and ore processing facilities.29IAEA (2005a), p.1.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    10

  • 8/12/2019 FQMH-Vol I Sampe Report

    27/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    The construction of enrichment facilities, thus, had an ultimate priority within the Manhattan Project30. In1942, three huge enrichment plants were constructed in the Oak Ridge area, Tennessee, aiming at yieldinga sufficient amount of the fissile uranium isotope U-235 for the planned U-235 atomic bombs 31 and thebreeding of enough plutonium for Pu-239 atomic bombs.

    Four methods were proposed for U-235 isotope separation32, namely the gaseous diffusion method, the

    gaseous centrifuge method, the liquid thermal diffusion method, and the electromagnetic isotope separationmethod. The centrifuge separation method was abandoned, because it was not deemed possible at that timeto spin a rotator at high enough speeds for large scale isotopic separation33. The other three were carriedout in the following facilities:

    The Y-12 plant used electromagnetic isotope separation and already began its operation in November1943.

    The K-25 plant (see Figure 1.7) used gaseous diffusion for the enrichment. Its construction started inJune 1943 and was completed early in 1945.

    Figure 1.7: The Oak Ridge K-25 plant for gaseous diffusion enrichment of uranium hexafluoride34.

    The S-50 plant used the liquid thermal diffusion method and started operating on the 16th of September

    1944, after only three months of construction time.In Figure 1.8, the production of the weapons grade U-235, used for the bomb dropped on Hiroshima, isdisplayed schematically. Figure 1.8 illustrates the different enrichment techniques developed and appliedduring the war time in the USA which did not include the gaseous centrifuge technique.

    Figure 1.8: Serial enrichment ofUF6 in the three enrichment plants of Oak Ridge for obtaining an 90% U-235 content35.

    30The Manhattan Engineer District (MED) contained all activities of the USA during World War II to develop and build

    an atomic bomb. It was directed by General Leslie R. Groves and the physicist J. Robert Oppenheimer.31The Hiroshima atomic bomb was a U-235 bomb (named Little Boy), while the Nagasaki bomb was a plutonium bomb

    (named Fat Man).32http://www.atomicarchive.com/History/mp/p2s15.shtml, November 2008.33http://www.chemcases.com/nuclear/nc-07.html, November 2008.34http://en.wikipedia.org/wiki/K-25, November 2008.35http://www.chemcases.com/nuclear/nc-07.html, November 2008.

    Copyright cAdvanced Nuclear Technology International Europe AB, ANT International, 2010

    11

  • 8/12/2019 FQMH-Vol I Sampe Report

    28/96

    NUCLEAR FUEL QUALITY MANAGEMENT HANDBOOK VOLUME I 2010

    The overhasty decisions made in war times with respect t