Download - Wiedemann-Franz Law for Magnon Transport

Transcript
Page 1: Wiedemann-Franz Law for Magnon Transport

Wiedemann-Franz Law for Magnon Transport

Based on [Phys. Rev. B 92, 134425 (2015)] by KN, P. Simon, and D. Loss

Kouki Nakata Univ. of Basel

All the responsibility of this slide rests with β€œKouki Nakata”

Page 2: Wiedemann-Franz Law for Magnon Transport

MAIN MESSAGE

Page 3: Wiedemann-Franz Law for Magnon Transport

162 YEARS AGO

due to electron (Fermion)

[R. Franz and G. Wiedemann, Annalen der Physik 165, 497 (1853)]

γ€ŒWiedemann-Franz Law」

πœ‹2

3

π‘˜B

𝑒

2

𝑇

Thermoelectric Effects in Metal

Page 4: Wiedemann-Franz Law for Magnon Transport

THEN

Page 5: Wiedemann-Franz Law for Magnon Transport

Thermomagnetic Effects in FI

QUESTION How expressed in `AN EQUATION’ ?

due to magnon (Boson)

Universality

Page 7: Wiedemann-Franz Law for Magnon Transport

WHY? We discuss from now on

Page 8: Wiedemann-Franz Law for Magnon Transport

BACKGROUND

Page 9: Wiedemann-Franz Law for Magnon Transport

Universal Thermomagnetic Relation of Magnon Transport

GOAL

FI:Long-ranged magnetic order ``Magnon (spin-wave)’’

π‘˜B πœ‡B Magnet Heat

?

Page 10: Wiedemann-Franz Law for Magnon Transport

Universal Thermomagnetic Relation of Magnon Transport

Thermoelectric properties of Electron transport in metal

Wiedemann-Franz Law

Guiding principle

FI:Long-ranged magnetic order ``Magnon (spin-wave)’’

GOAL

Page 11: Wiedemann-Franz Law for Magnon Transport

Wiedemann-Franz Law [R. Franz and G. Wiedemann, Annalen der Physik 165, 497 (1853)]

Thermoelectric properties of electron transport

Lorenz number β„’ β‰‘πœ‹2

3

π‘˜π΅

𝑒

2: Universal

𝐾

𝜎 =

πœ‹2

3

π‘˜π΅

𝑒

2

𝑇

(𝐾: Thermal conductivity, 𝜎: Electrical conductivity)

Low temp.

Page 12: Wiedemann-Franz Law for Magnon Transport

𝑗𝑒

𝑗𝑄= 𝐿11 𝐿12

𝐿21 𝐿22𝐸

𝛻𝑇

charge

Heat

Onsager matrix 𝐿𝑖𝑗

Thermoelectric Effects

Electron (metal) Magnon (FI)

WF law (Low temp.οΌ‰

𝐿22 + 𝑂(πœ€πΉβˆ’2)

𝐿11β‰ˆ

𝐾

𝜎=

πœ‹2

3

π‘˜π΅

𝑒

2

𝑇 ? Lorenz

number β„’ β‰‘πœ‹2

3

π‘˜π΅

𝑒

2

? Seebeck 𝑆 &

Peltier Ξ  𝑆 ≑ 𝐿12/𝐿11, 𝛱 ≑ 𝐿21/𝐿11 Thomson relation: 𝛱 = 𝑇𝑆 ?

Page 13: Wiedemann-Franz Law for Magnon Transport

Electron (metal) Magnon (FI)

WF law (Low temp.οΌ‰

𝐿22 + 𝑂(πœ€πΉβˆ’2)

𝐿11β‰ˆ

𝐾

𝜎=

πœ‹2

3

π‘˜π΅

𝑒

2

𝑇 ? Lorenz

number β„’ β‰‘πœ‹2

3

π‘˜π΅

𝑒

2

? Seebeck 𝑆 &

Peltier Ξ  𝑆 ≑ 𝐿12/𝐿11, 𝛱 ≑ 𝐿21/𝐿11 Thomson relation: 𝛱 = 𝑇𝑆 ?

𝐼m

𝐼𝑄= 𝐿11 𝐿12

𝐿21 𝐿22𝛻𝐡𝛻𝑇

Magnet

Heat

Onsager matrix 𝐿𝑖𝑗

Thermomagnetic Effects

Page 14: Wiedemann-Franz Law for Magnon Transport

𝐼m

𝐼𝑄= 𝐿11 𝐿12

𝐿21 𝐿22𝛻𝐡𝛻𝑇

WF

Magnet

Heat

Thermomagnetic Effects Onsager matrix 𝐿𝑖𝑗

Electron (metal) Magnon (FI)

WF law (Low temp.οΌ‰

𝐿22 + 𝑂(πœ€πΉβˆ’2)

𝐿11β‰ˆ

𝐾

𝜎=

πœ‹2

3

π‘˜π΅

𝑒

2

𝑇 𝐾

𝐺≑

𝐿22 βˆ’ 𝐿21𝐿12/𝐿11

𝐿11= ?

Lorenz number β„’ ≑

πœ‹2

3

π‘˜π΅

𝑒

2

β„’m = ?

Seebeck 𝑆 & Peltier Ξ 

𝑆 ≑ 𝐿12/𝐿11, 𝛱 ≑ 𝐿21/𝐿11 Thomson relation: 𝛱 = 𝑇𝑆

What is their behaviors at low temp. ?

Page 15: Wiedemann-Franz Law for Magnon Transport

Charge

𝑒 Magnet

πœ‡B

Heat

π‘˜B

TARGET

Fermion VS Boson

``Wiedemann-Franz Law’’

[R. Franz and G. Wiedemann, Annalen der Physik 165, 497 (1853)]

[KN, P. Simon, and D. Loss, Phys. Rev. B 92, 134425 (2015)]

Page 16: Wiedemann-Franz Law for Magnon Transport

Point

Thermal properties β€œπ’Œπβ€οΌšDifferent ? OR Universal ?

Magnon Wiedemann-Franz Law

Quantum-statistical properties are different

Electron 𝒆 = Fermion

Magnon πœ‡B = Boson

Page 18: Wiedemann-Franz Law for Magnon Transport

Ferromagnetic Insulating Junction

𝐽ex β‰ͺ 𝐽 (weak couplingοΌ‰

𝑇L

𝑇R

βˆ†π΅ ≑ 𝐡R βˆ’ 𝐡L

βˆ†π‘‡ ≑ 𝑇R βˆ’ 𝑇L

Magnon currents Q. What happen when magnons are in condensation ? See [PRB 90, 144419 (2014)] & [PRB 92, 014422 (2015)]

Page 19: Wiedemann-Franz Law for Magnon Transport

Onsager matrix 𝐿𝑖𝑗

Magnetic current

Heat current

𝐽ex β‰ͺ 𝐽,

( π‘Ž: Lattice constant)

βˆ†π΅ ≑ 𝐡R βˆ’ 𝐡L, βˆ†π‘‡ ≑ 𝑇R βˆ’ 𝑇L

𝑇R

𝑇L

Ferromagnetic Insulating Junction

𝐿11 ∝ πœ‡B2

𝐿22 ∝ π‘˜B2

𝐿12 ∝ πœ‡Bπ‘˜B

𝐿21 ∝ πœ‡Bπ‘˜B

Page 21: Wiedemann-Franz Law for Magnon Transport

Magnon Lorenz number: β„’m β‰‘π‘˜π΅

π‘”πœ‡π΅

2: `Universal’

𝐾

𝐺 =

π‘˜π΅

π‘”πœ‡π΅

2

𝑇 ∝ 𝑇

Thermal magnon conductance: 𝐾 ≑ 𝐿22 βˆ’ 𝐿21𝐿12/𝐿11

Magnetic magnon conductance: 𝐺 ≑ 𝐿11

Thermomagnetic Effects

Low temp.: ℏ/(2𝜏) β‰ͺ π‘˜π΅π‘‡ β‰ͺ π‘”πœ‡π΅π΅

Wiedemann-Franz Law for Magnon (𝜏:Magnon lifetime)

Magnon (Boson)

Electron (Fermion)

`Universal’

Page 22: Wiedemann-Franz Law for Magnon Transport

e vs 𝝁𝑩 Electron (metal) Magnon (FI)

R. Franz and G. Wiedemann [Annalen der Physik 165, 497 (1853)]

KN, P. Simon, and DL [Phys. Rev. B 92, 134425 (2015)]

Fermion Boson

WF law

(Low temp.οΌ‰

𝐿22 + 𝑂(πœ€πΉβˆ’2)

𝐿11≑

𝐾

𝜎=

πœ‹2

3

π‘˜π΅

𝑒

2

𝑇

(Free electron at low temp.)

𝐿22 βˆ’ 𝐿21𝐿12/𝐿11

𝐿11≑

𝐾

𝐺=

π‘˜π΅

π‘”πœ‡π΅

2

𝑇

[Low temp.: ℏ/(2𝜏) β‰ͺ π‘˜π΅π‘‡ β‰ͺ π‘”πœ‡π΅π΅]

Lorenz number β„’ ≑

πœ‹2

3

π‘˜π΅

𝒆

2

β„’m β‰‘π‘˜π΅

π’ˆππ‘©

2

Seebeck 𝑆 & Peltier Ξ 

𝑆 ≑ 𝐿12/𝐿11, 𝛱 ≑ 𝐿21/𝐿11 𝑆 = 𝐡/𝑇, 𝛱 = 𝐡 [Low temp.: ℏ/(2𝜏) β‰ͺ π‘˜π΅π‘‡ β‰ͺ π‘”πœ‡π΅π΅]

Universal

Onsager relation

𝐿21 = 𝑇𝐿12 𝐿21 = 𝑇𝐿12

Thomson relation

𝛱 = 𝑇𝑆 𝛱 = 𝑇𝑆

Thermo-electric & –magnetic Effects

Page 23: Wiedemann-Franz Law for Magnon Transport

CONCLUSION

Ratio of 𝐿𝑖𝑗: 𝐾/𝐺, 𝑆, 𝛱

Universal thermomagnetic properties (i.e., Not depend on materials)

Each Onsager coefficient πΏπ‘–π‘—οΌš Depend on materials

Page 24: Wiedemann-Franz Law for Magnon Transport

SUMMARY

𝐾

𝐺=

π‘˜π΅

π‘”πœ‡π΅

2

𝑇 ∝ 𝑇

𝐾 : Thermal magnon conductance, 𝐺: Magnetic magnon conductance

Wiedemann-Franz Law for Magnon

Fundamental thermomagnetic relation of magnon transport in FI

Ratio of 𝐿𝑖𝑗: 𝐾/𝐺, 𝑆, 𝛱 Universal thermomagnetic properties

Low temp.: ℏ/(2𝜏) β‰ͺ π‘˜π΅π‘‡ β‰ͺ π‘”πœ‡π΅π΅

π‘˜B πœ‡B Μ€ WF’

Magnet: 𝐺 Heat: 𝐾

Magnon (Boson)

Electron (Fermion)

`Universal’

Based on [Phys. Rev. B 92, 134425 (2015)] by KN, P. Simon, and D. Loss