Download - Thermodynamic, kinetic and phase transformation …web.access.rwth-aachen.de/THERMOCALC/proceedings/...Folie 1 Thermodynamic, kinetic and phase transformation calculations in the field

Transcript
  • © Folie 1

    Thermodynamic, kinetic and phase transformation

    calculations in the field of single crystal nickel based

    superalloys

    R. Rettig, M.M. Franke, R.F. Singer

    Institute of Science and Technology of Metals (WTM)

    Department of Materials Science and Engineering

    University of Erlangen-Nürnberg

    Germany

    ThermoCalc User Meeting - Aachen

    5th September 2013

  • © Folie 2

    Agenda

    o Nickel-based alloys as a key for energy production

    o Thermodynamic and kinetic databases for alloy development

    o Heat treatment modelling

    o Simulation of microstructure evolution

    o Summary

  • © Folie 3

    Keppel, Alstom, Cooretec Workshop, 2006

    heat recovery

    steam generator gas turbine

    generator

    steam turbine

    condensor

    plant control

    Siemens AG

    1st stage blade

    250 mm, 4,3 kg

    1 MW

    50 Hz

    10 t

    1000 °C

    3 yrs

    10.000,- $

    Efficiency (2007): ca. 58% (330 g CO2 / kWh)

    Aim 2020: ca. 63% (300 g CO2 / kWh)

    Siemens AG

    Combined cycle power plant

  • © Folie 4

    Efficiency of fossile power plants

    500 1000 1500 20000

    20

    40

    60

    eff

    icie

    nc

    y i

    nc

    rea

    se

    material improvement

    turbine outlet temperature is 500 °C

    Carn

    ot-

    eff

    icie

    nc

    y / %

    process temperature / °C

    data according to Siemens AG and DPG (2005)

    Development of efficiency Relation of efficiency and

    process temperature

    efficiency increase is always

    related to higher material temperatures

    1965 1980 1995 2010 202520

    30

    40

    50

    60

    70

    brown coal

    gas (CC)

    planseff

    icie

    ncy / %

    year of entry into service

  • © Folie 5

    Harada et al. (2003) IGTC2003

    temperature capability of nickel-

    based superalloys

    single crystalline

    directionally solidified

    polycrystalline

    wrought alloys

    Year of development

    Se

    rvic

    e t

    em

    pe

    ratu

    re

    Development of nickel-based superalloys

  • © Folie 6

    Tc

    Tg Tm

    Turbine blades

    1st stage, SGT5-4000F, Siemens AG polycrystalline directionally solidified single crystalline

  • © Folie 7

    Tc

    Tg Tm

    Turbine blades

    1st stage, SGT5-4000F, Siemens AG polycrystalline directionally solidified single crystalline

    1 mm

  • © Folie 8

    1st 2nd 3rd 4th 5th0

    2

    4

    6

    8

    10

    12

    14

    co

    nte

    nt

    / w

    t-%

    generation

    Rhenium

    Ruthenium

    PWA1483

    René N2

    CMSX-2

    René N5

    CMSX-4

    René N6

    CMSX-10

    Single crystal nickel-based superalloys

    g‘

    g

    composition of single crystal superalloys

    γ + γ‘-microstructure gives unique creep properties

    typical alloying elements (ca. 8 – 10):

    Ni-Al-Co-Cr-Mo-Re-Ru-Ta-Ti-W-B-Zr-Y

    5 µm

  • © Folie 9

    Material / process simulation at Institute WTM

    thermodynamics

    ThermoCalc

    diffusion

    DICTRA phase transformations

    TC-PRISMA

    microstructure

    MICRESS

    computer-aided alloy

    development

    inhouse software

    (MultOPT)

    process simulation

    (temperature-, fluid flow)

    - Flow3D

    - ProCAST

    - inhouse Lattice

    Boltzmann code

    Institute WTM /

    NMF

    mechanics (finite elements)

    ABAQUS

  • © Folie 10

    Agenda

    o Nickel-based alloys as a key for energy production

    o Thermodynamic and kinetic databases for alloy development

    o Heat treatment modelling

    o Simulation of microstructure evolution

    o Summary

  • © Folie 11

    Fields of application

    o prediction of:

    liquidus (melting) temperature

    γ‘-phase fraction

    γ‘-solvus temperature

    TCP-phase solvus temperatures

    o limitations:

    „exotic“ alloying elements are not available

    most commercial databases are not changable and the exact parameters are often not

    accessible

    calculations for untypical compositions may be critical

    calculations are only valid for stable equilibrium

    600 800 1000 1200 14000

    20

    40

    60

    80

    100

    g'

    L

    P

    g

    ph

    ase

    fra

    cti

    on

    s / m

    ol-

    %

    temperature / °C

    CMSX-4, database TTNi8

  • © Folie 12

    Verification of commercial database TTNi7

    R. Rettig et al. Defect and Diffusion Forum 289 – 292 (2009) 101-108

    liquidus g‘-solvus

    1300 1350 1400 14501300

    1350

    1400

    1450 with Ruwith Reno Re and Ru

    Shao05

    Fuchs02

    Sponseller96

    Copland01

    Dharwadkar92

    this workmelt

    ing

    tem

    p. m

    eas. / °C

    melting temp. sim. / °C

    800 1000 1200 1400800

    1000

    1200

    1400

    with Ruwith Reno Re and Ru

    Shao05

    Fuchs02

    Sponseller96

    Copland01

    Dharwadkar92

    this work

    Caron00

    g' s

    olv

    us m

    eas. / °C

    g' solvus sim. / °C

  • © Folie 13

    800 900 1000 1100 1200 1300

    0,1

    1

    10

    Ta

    Co Al

    Ti

    Cr

    co

    mp

    osit

    ion

    g / a

    t-%

    temperature / °C

    800 900 1000 1100 1200 1300

    0,1

    1

    10Ru

    Re

    Mo

    co

    mp

    osit

    ion

    g / a

    t-%

    temperature / °C

    800 900 1000 1100 1200 1300

    0,1

    1

    10

    Al

    Co

    Ti

    Cr

    co

    mp

    osit

    ion

    g' / at-

    %

    temperature / °C

    800 900 1000 1100 1200 1300

    0,1

    1

    10

    Ru

    Ta

    Re

    Moco

    mp

    osit

    ion

    g' / at-

    %

    temperature / °C

    good agreement bad agreement

    Phase compositions calculated with TTNi7

    R. Rettig et al.

    Defect and

    Diffusion

    Forum (2009)

  • © Folie 14

    6.5x10-4

    6.7x10-4

    7.0x10-4

    7.2x10-4

    10-14

    10-13

    10-12

    René N5

    PWA1483

    NiGe1

    NiGe8

    dif

    fusio

    n c

    oeff

    icie

    nt

    D / m

    ²s-1

    1/T / 1/K

    Diffusion database development for Ni-Ge

    0 2 4 6 8 10 1210

    -14

    10-13

    10-12

    10-11

    1250 °C 1200 °C

    1150 °C

    dif

    fusio

    n c

    oeff

    icie

    nt

    DG

    e / m

    ²s-1

    Ge / at-%

    R. Rettig et al. Journal of Phase Equilibria

    and Diffusion 32 (2011) 198-205

    interdiffusion

    DICTRA-database from diffusion couple measurements

    impurity diffusion

    6.5x10-4

    6.7x10-4

    7.0x10-4

    7.2x10-4

    10-14

    10-13

    10-12

    self diffusion

    Rettig et al. (2011)

    Hirano et al. (1962)

    Mantl et al. (1983)

    Ge impurity

    dif

    fusio

    n c

    oeff

    icie

    nt

    D / m

    ²s-1

    1/T / 1/K

  • © Folie 15

    Agenda

    o Nickel-based alloys as a key for energy production

    o Thermodynamic and kinetic databases for alloy development

    o Heat treatment modelling

    o Simulation of microstructure evolution

    o Summary

  • © Folie 16

    Agenda

    o Nickel-based alloys as a key for energy production

    oThermodynamic and kinetic databases for alloy development

    o Heat treatment modelling

    o Simulation of microstructure evolution

    o Summary

  • © Folie 17

    A multicomponent, multiphase precipitation model

    Idea of model Loop for all timesteps

    timestep 1

    Loop for all precipitate

    types

    New nucleation

    Growth of all existing

    particles

    Total removal of solute

    from matrix

    Driving force from

    CALPHAD

    Nucleation rate

    Loop for all particles

    Growth rate using

    CALPHAD

    Volume change

    Solute removal from

    matrix

    numerical Kampmann-Wagner model (1984), T. Sourmail (2002)

    red: new multicomponent model

  • © Folie 18

    A multicomponent, multiphase precipitation model

    Idea of model Loop for all timesteps

    timestep 1

    timestep 2

    Loop for all precipitate

    types

    New nucleation

    Growth of all existing

    particles

    Total removal of solute

    from matrix

    Driving force from

    CALPHAD

    Nucleation rate

    Loop for all particles

    Growth rate using

    CALPHAD

    Volume change

    Solute removal from

    matrix

    numerical Kampmann-Wagner model (1984), T. Sourmail (2002)

    red: new multicomponent model

  • © Folie 19

    A multicomponent, multiphase precipitation model

    Idea of model Loop for all timesteps

    timestep 1

    timestep 2

    timestep 3

    numerical Kampmann-Wagner model (1984), T. Sourmail (2002)

    Loop for all precipitate

    types

    New nucleation

    Growth of all existing

    particles

    Total removal of solute

    from matrix

    Driving force from

    CALPHAD

    Nucleation rate

    Loop for all particles

    Growth rate using

    CALPHAD

    Volume change

    Solute removal from

    matrix

    red: new multicomponent model

  • © Folie 20

    Modelling of TCP-phase precipitation

    1 10 100 1000 10000900

    1000

    1100

    12002.5 % Ru

    0 % Ru

    1 vol-% Ptem

    pe

    ratu

    re /

    °C

    time / h

    multicomponent Kampmann-Wagner-

    model (coupled to ThermoCalc and

    DICTRA)

    databases: TTNi8 + MobNi1

    experimental data: Sato et al. (2006) Scripta Mat

    9 x 7 x 6 μm3

    experimental 3rd generation alloy

    ASTRA1-20

    K. Matuszewski, R. Rettig et al.

    Advanced Engineering Materials (2013)

    FIB-tomography

  • © Folie 21

    the large difference in the driving force in both alloys is the reason for the very different

    precipitate lengths

    101

    102

    103

    104

    105

    0

    50

    100

    150

    200

    equilibrium

    experiment [Vol06]

    simulation

    EROS4

    IN792Re

    pre

    cip

    itate

    len

    gth

    / µ

    m

    time / h

    Modelling of TCP-phase precipitation

    Driving force influences precipitate length

    600 800 1000 12000

    2

    4

    6

    8

    10

    850 °C

    IN792Re

    EROS4

    dri

    vin

    g f

    orc

    e / k

    J m

    ol-1

    temperature / °C

    precipitate length driving force for precipitation

    Rettig et al. Acta Materialia 59 (2011) 317-327

  • © Folie 22

    Agenda

    o Nickel-based alloys as a key for energy production

    o Thermodynamic and kinetic databases for alloy development

    o Heat treatment modelling

    o Simulation of microstructure evolution

    o Summary

  • © Folie 23

    Summary

    Fields of application of thermodynamic and kinetic

    simulations

    Advanced modelling using CALPHAD-calculations as a

    basis

    Heat treatment simulation

    Precipitation simulation