Download - The Laplace Transform - WordPress.com fileSolve ๐ฟsin2 using Laplace Transform ๐ฟsin2 = ... Transform of Derivatives . Transform of Derivatives Contoh:-

Transcript

The Laplace Transform

www.asyrani.com

INTRODUCTION

Definition

Let ๐‘“ be a function defined for ๐‘ก โ‰ฅ 0. Then the integral

๐ฟ ๐‘“ ๐‘ก = ๐‘’โˆ’๐‘ ๐‘ก๐‘“ ๐‘ก ๐‘‘๐‘กโˆž

0

Notation

Examples ๐ฟ ๐‘“ ๐‘ก = ๐น ๐‘ 

๐ฟ ๐‘” ๐‘ก = ๐บ ๐‘ 

๐ฟ ๐‘ฆ ๐‘ก = ๐‘Œ ๐‘ 

Let see some examples ๐ฟ 1

Solve ๐ฟ 1 using Laplace Transform

๐ฟ 1 = ๐‘’โˆ’๐‘ ๐‘ก(1)๐‘‘๐‘กโˆž

0

= ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

= โˆ’๐‘’โˆ’๐‘ ๐‘ก

๐‘  โˆž0

= โˆ’๐‘’โˆ’๐‘  โˆž

๐‘ โˆ’ โˆ’

๐‘’0

๐‘ 

= 0 +1

๐‘ =

1

๐‘ 

Let see some examples ๐ฟ ๐‘ก

Solve ๐ฟ ๐‘ก using Laplace Transform

๐ฟ ๐‘ก = ๐‘’โˆ’๐‘ ๐‘ก(๐‘ก)๐‘‘๐‘กโˆž

0

= ๐‘ก๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

๐‘ก๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

=๐‘ก๐‘’โˆ’๐‘ ๐‘ก

โˆ’๐‘ โˆ’

๐‘’โˆ’๐‘ ๐‘ก

๐‘ 2 โˆž0

=(โˆž)๐‘’โˆ’๐‘ (โˆž)

โˆ’๐‘ โˆ’

๐‘’โˆ’๐‘ (โˆž)

๐‘ 2

โˆ’0 ๐‘’โˆ’๐‘  0

โˆ’๐‘ โˆ’

๐‘’โˆ’๐‘  0

๐‘ 2=

1

๐‘ 2

DIff Integr

+ ๐‘ก ๐‘’โˆ’๐‘ ๐‘ก

- 1 ๐‘’โˆ’๐‘ ๐‘ก

โˆ’๐‘ 

+

0 ๐‘’โˆ’๐‘ ๐‘ก

๐‘ 2

Let see some examples ๐ฟ ๐‘’โˆ’5๐‘ก

Solve ๐ฟ ๐‘’โˆ’5๐‘ก using Laplace Transform

๐ฟ ๐‘’โˆ’5๐‘ก = ๐‘’โˆ’๐‘ ๐‘ก(๐‘’โˆ’5๐‘ก)๐‘‘๐‘กโˆž

0

= ๐‘’โˆ’(๐‘ +5)๐‘ก๐‘‘๐‘กโˆž

0

๐‘’โˆ’(๐‘ +5)๐‘ก๐‘‘๐‘กโˆž

0

=๐‘’โˆ’(๐‘ +5)๐‘ก

โˆ’(๐‘  + 5) โˆž0

=๐‘’โˆ’(๐‘ +5)โˆž

โˆ’(๐‘  + 5)โˆ’

๐‘’โˆ’ ๐‘ +5 0

โˆ’(๐‘  + 5)=

1

๐‘  + 5

Let see some examples ๐ฟ sin 2๐‘ก

Solve ๐ฟ sin 2๐‘ก using Laplace Transform

๐ฟ sin 2๐‘ก = ๐‘’โˆ’๐‘ ๐‘ก(sin 2๐‘ก)๐‘‘๐‘กโˆž

0

= (sin 2๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

(sin 2๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

= โˆ’ sin 2๐‘ก๐‘’โˆ’๐‘ ๐‘ก

๐‘ โˆ’ 2 cos 2๐‘ก

๐‘’โˆ’๐‘ ๐‘ก

๐‘ 2

โˆ’ 4sin 4๐‘ก ๐‘’โˆ’๐‘ ๐‘ก

๐‘ 2 ๐‘‘๐‘กโˆž

0

1 +4

๐‘ 2 (sin 2๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

= โˆ’ sin 2๐‘ก๐‘’โˆ’๐‘ ๐‘ก

๐‘ โˆ’ 2 cos 2๐‘ก

๐‘’โˆ’๐‘ ๐‘ก

๐‘ 2

โˆž0

DIff Integr

+ sin 2๐‘ก ๐‘’โˆ’๐‘ ๐‘ก

- 2 cos 2๐‘ก ๐‘’โˆ’๐‘ ๐‘ก

โˆ’๐‘ 

+

โˆ’4 sin 2๐‘ก ๐‘’โˆ’๐‘ ๐‘ก

๐‘ 2

Let see some examples ๐ฟ sin 2๐‘ก cont

1 +4

๐‘ 2 (sin 2๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

โˆž

0

= โˆ’sin 2๐‘ก๐‘’โˆ’๐‘ ๐‘ก

๐‘ โˆ’ 2 cos 2๐‘ก

๐‘’โˆ’๐‘ ๐‘ก

๐‘ 2

โˆž0

0 โˆ’ 0 โˆ’ 2 =2

s2

Thus

1 +4

๐‘ 2 (sin 2๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

โˆž

0

=2

๐‘ 2

And

(sin 2๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘กโˆž

0

=2

๐‘ 2 + 4

Let see some examples (piecewise)

Try this

โ€ข ๐ฟ cos 4๐‘ก

โ€ข ๐ฟ ๐‘ก๐‘’2๐‘ก

โ€ข ๐ฟ ๐‘ก2๐‘’โˆ’๐‘ก + sin ๐‘ก

TRANSLATION THEOREM

Translation on the s-Axis

Examples

Translation on the t-Axis

Example

Solution

Evaluate

CONVOLUTION AND TRANSFORM OF PERIODIC FUNCTION

Transform of Derivatives

Transform of Derivatives

Contoh:- ๐‘ฆโ€ฒโ€ฒ + 2๐‘ฆโ€ฒ + ๐‘ฆ = 0

Then ๐ฟ*๐‘ฆโ€ฒโ€ฒ+ = ๐‘ 2๐‘Œ ๐‘  โˆ’ ๐‘ ๐‘ฆ 0 โˆ’ ๐‘ฆโ€ฒ 0

And ๐ฟ*๐‘ฆโ€ฒ+ = ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0

And ๐ฟ*๐‘ฆ+ = ๐‘Œ(๐‘ )

Thus ,๐‘ 2๐‘Œ ๐‘  โˆ’ ๐‘ ๐‘ฆ 0 โˆ’ ๐‘ฆโ€ฒ 0 - + 2 ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0 + ๐‘Œ ๐‘  = 0

Convolution

Convolution

Transform of Periodic Function

Example

Solution

Solution(cont.)

INVERSE LAPLACE TRANSFORM

Example

Inverse Laplace transform

Solve ๐ฟโˆ’1 2

๐‘ โˆ’

1

๐‘ 3

2

First, try to expand it

๐ฟโˆ’14

๐‘ 2โˆ’

4

๐‘ 4+

1

๐‘ 6

= ๐ฟโˆ’14

๐‘ 2โˆ’ ๐ฟโˆ’1

4

๐‘ 4+ ๐ฟโˆ’1

1

๐‘ 6

Inverse Laplace transform

Step 2nd

๐ฟโˆ’14

๐‘ 2โˆ’ ๐ฟโˆ’1

4

๐‘ 4+ ๐ฟโˆ’1

1

๐‘ 6

= 4๐ฟโˆ’11

๐‘ 2โˆ’ 4๐ฟโˆ’1

1

๐‘ 4+ ๐ฟโˆ’1

1

๐‘ 6

Now, let solve one by one

Inverse Laplace transform

Given 4๐ฟโˆ’1 1

๐‘ 2 , we need to find which theorem

in your laplace table match this Laplace Transform

So, we know that ๐‘ก๐‘› =๐‘›!

๐‘ ๐‘›+1

Then since we knew that ๐‘ ๐‘›+1 = ๐‘ 2

We can conclude that ๐‘› + 1 = 2, ๐‘ก๐‘•๐‘ข๐‘  ๐‘› = 1

Inverse Laplace transform

Now, we know n=1

So,

๐‘ก1 =1!

๐‘ 2=

1

๐‘ 2

Eh!, the laplace that we are trying to solve is 4

๐‘ 2 , so we need to modify a bit.

Inverse Laplace transform

Try to match:-

๐ฟ ๐›ผ๐‘ก =๐›ผ

๐‘ 2=

4

๐‘ 2

Wow, obviously, ๐›ผ = 4,

So

4๐ฟโˆ’11

๐‘ 2= 4๐‘ก

Inverse Laplace transform

Try to solve others:-

4๐ฟโˆ’11

๐‘ 4

๐‘› + 1 = 4, ๐‘ก๐‘•๐‘ข๐‘  ๐‘› = 3

๐›ฝ๐‘ก3 =๐›ฝ3!

๐‘ 4=

6๐›ฝ

๐‘ 4

4๐ฟโˆ’11

๐‘ 4=

6๐›ฝ

๐‘ 4

๐›ฝ =2

3

Thus

4๐ฟโˆ’11

๐‘ 4=

2

3๐‘ก3

Inverse Laplace transform

Try to solve others:-

๐ฟโˆ’11

๐‘ 6

๐‘› + 1 = 6, ๐‘ก๐‘•๐‘ข๐‘  ๐‘› = 5

๐›พ๐‘ก5 =๐›พ5!

๐‘ 6=

120๐›พ

๐‘ 6

๐ฟโˆ’11

๐‘ 6=

120๐›พ

๐‘ 6

๐›พ =1

120

Thus

4๐ฟโˆ’11

๐‘ 4=

1

120๐‘ก5

Inverse Laplace transform

Final answer

๐ฟโˆ’12

๐‘ โˆ’

1

๐‘ 3

2

= 4๐‘ก โˆ’2

3๐‘ก3 +

1

120๐‘ก5

Try this

Solution

Solution (cont)

PROPERTIES OF INVERSE LAPLACE TRANSFORM

Inverse of 1st and 2nd translation

Example of 1st translation inverse

Solution

Example of 2nd translation inverse

Inverse ofโ€ฆ

Example

Solution

SOLUTION OF INITIAL VALUE PROBLEM

Application

Example

Solution

Solving Linear ODE

Application

Figure 1

๐‘–1

๐‘–3

๐‘–2

๐ฟ

๐ถ

Application

Solve the system Figure 1 under the conditions E(t) = 60 V, L = 1 h, R = 50 Ohm, C = 10โˆ’4 f, and the currents ๐‘–1 ๐‘Ž๐‘›๐‘‘ ๐‘–2 are initially zero.

Given that:-

๐ฟ๐‘‘๐‘–1๐‘‘๐‘ก

+ ๐‘…๐‘–2 = ๐ธ ๐‘ก

๐‘…๐ถ๐‘‘๐‘–2๐‘‘๐‘ก

+ ๐‘–2 โˆ’ ๐‘–1 = 0

Application

How to solve it?

1st step

๐ฟ๐‘‘๐‘–1๐‘‘๐‘ก

+ ๐‘…๐‘–2 = ๐ธ ๐‘ก

๐‘‘๐‘–1๐‘‘๐‘ก

+ 50๐‘–2 = 60

And

๐‘…๐ถ๐‘‘๐‘–2๐‘‘๐‘ก

+ ๐‘–2 โˆ’ ๐‘–1 = 0

50 10โˆ’4๐‘‘๐‘–2๐‘‘๐‘ก

+ ๐‘–2 โˆ’ ๐‘–1 = 0

Application

How to solve it? 2nd Step Applying the Laplace transform to each equation of the system and simplifying gives

๐‘‘๐‘–1๐‘‘๐‘ก

+ 50๐‘–2 = 60

=> ,๐‘ ๐ผ1 ๐‘  โˆ’ ๐‘–1(0)- + 50๐ผ2 ๐‘  =60

๐‘ 

50 10โˆ’4๐‘‘๐‘–2๐‘‘๐‘ก

+ ๐‘–2 โˆ’ ๐‘–1 = 0

0.005,๐‘ ๐ผ2 ๐‘  โˆ’ ๐‘–2(0)- + ๐ผ2 ๐‘  โˆ’ ๐ผ1 ๐‘  = 0

Application

How to solve it? 2nd Step (Cari ๐ผ2 ๐‘  )

๐‘ ๐ผ1 ๐‘  + 50๐ผ2 ๐‘  =60

๐‘ 

0.005๐‘ ๐ผ2 ๐‘  + ๐ผ2 ๐‘  = ๐ผ1 ๐‘ 

๐‘  0.005๐‘ ๐ผ2 ๐‘  + ๐ผ2 ๐‘  + 50๐ผ2 ๐‘  =60

๐‘ 

๐ผ2 ๐‘ ๐‘ 2 + 200๐‘  + 10000

200=

60

๐‘ 

๐ผ2 ๐‘  =12000

๐‘  ๐‘  + 100 2

Application

How to solve it?

2nd Step (Cari ๐ผ1 ๐‘  ) 0.005๐‘ ๐ผ2 ๐‘  + ๐ผ2 ๐‘  = ๐ผ1 ๐‘ 

0.005๐‘ 12000

๐‘  ๐‘  + 100 2+

12000

๐‘  ๐‘  + 100 2= ๐ผ1 ๐‘ 

๐ผ1 ๐‘  =60๐‘ 

๐‘  ๐‘  + 100 2+

12000

๐‘  ๐‘  + 100 2

๐ผ1 ๐‘  =60๐‘  + 12000

๐‘  ๐‘  + 100 2

Application

How to solve it?

3rd Step

Solving the system for ๐ผ1 and ๐ผ2 and decomposing the results into partial fractions gives

๐ผ1 ๐‘  =60๐‘  + 12000

๐‘  ๐‘ +100 2 =6

5๐‘ โˆ’

6

5 ๐‘ +100โˆ’

60

๐‘ +100 2

๐ผ2 ๐‘  =12000

๐‘  ๐‘  + 100 2=

6

5๐‘ โˆ’

6

5 ๐‘  + 100โˆ’

120

๐‘  + 100 2

Application

How to solve it?

4th step

๐‘–1 t =6

5โˆ’

6

5eโˆ’100t โˆ’ 60teโˆ’100๐‘ก

๐‘–2 t =6

5โˆ’

6

5eโˆ’100t โˆ’ 120teโˆ’100๐‘ก